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Abstract. Sentences matching is a basic task in Natural Language
Processing (NLP). Interaction-based methods, which employ inter-
actions between words of two sentences and construct word-level
matching features to classify, are generally used due to their fine-
grained features. However, they have many invalid interactions that
may affect matching precision. In this paper, we limit the objects
of interacting to shared words4 of two sentences. On the one hand,
they can reduce invalid interactions. On the other hand, because
of the different context semantics, the representation of the same
word may be quite different, conversely, the representation differ-
ence can also be used to reflect the semantic difference of different
contexts. To better extract global features of shared words, we in-
troduce a sequence-to-sequence features extractor to force decoder
to learn more contextual information from encoder. We implemen-
t the method based on Transformer[28], with syntactic parsing as
additional knowledge. Our proposed method achieved better perfor-
mance than strong baselines and the experiment results also demon-
strate the efficiency of sequence-to-sequence features extractor and
significance of the shared words.

1 INTRODUCTION

Sentences matching is a basic task in Natural Language Process-
ing(NLP) which is included in many benchmarks, such as GLUE in
[29], SNLI in [2], aNLI in [9] and so on. Many of the previous works
have provided advanced solutions to the task. Two primary ideas to
perform the task are sentence-level matching and word- or phrase-
level matching. The former, called presentation-based matching, ex-
tracts features of sentences as vectors with diverse neural networks,
and then calculates their similarity or feed them into a classifier like
[18, 17, 8]. The latter, which is also called interaction-based match-
ing, introduces more detailed matching information about words and
enhances the matching ability. [19] is a classical method that pro-
posed a matching pyramid by constructing a similarity matrix be-
tween words of texts. With the introductions of attention mecha-
nisms [1] and [15] in NLP, various attention mechanisms and their
variants have been widely applied to texts interactive matching, such
as [20, 30, 3, 10, 35, 23]. The interaction-based matching methods
can obtain more detailed information by comparing words or phras-
es within two sentences at a finer level, but the method may also be
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affected by the data distributions so that leads to limitation on gener-
alization ability. The above-mentioned methods, both presentation-
based and interaction-based, have one thing in common, that is, an
encoder is used to extract the features of words, followed by inter-
acting between words or calculating the representations of sentences,
and then performs the corresponding matching calculation.

Large-scale pre-training models have become a trend in re-
cent years, the performance of sentences matching got an un-
precedented improvement as well. BERT [4] sets new records on
eleven Natural Language Understanding (NLU) tasks which in-
clude several sentences matching task. Other variants of BERT al-
so show great improvements, like Roberta [14], XLNet [33], etc.
In MTDNN [13], Multi-Task Learning(MTL) also injects vitality
into NLU tasks. BART [11] is pre-trained for Neural Language
Generation(NLG), translation and comprehension, using denoising
sequence-to-sequence model, but achieves comparable results on
many NLU tasks as Roberta, XLNet. MASS [24] and T5 [22] also
employ a sequence-to-sequence framework to perform pre-training
but with different masking strategies and pre-training methods. All
the above encoder-decoder based pre-training methods exploit de-
coder to get more advanced information.

In many NLP tasks, we consider that the same word represents
different semantics in different contexts, especially when pre-train
word embeddings. For a negative example, a pair sentences Rose is
a beautiful girl and Rose is a kind of beautiful flower, the word Rose,
one for a girl’s name and the other for flower, has different meanings
depending on its context. In other words, backing to our matching
task, if we know the first Rose is saying a girl and the second is
saying a flower, we argue that the two sentences are not of the same
semantic type. For positive one, two sentences of How do you get bet-
ter grades? and How can I dramatically improve my grades?, to the
shared words grades, the first sentence concerns get better and the
second concerns improve while the two sub-sequences are of same
semantic so we argue that they are synonymous. Because of the dif-
ferent context semantics, the representation of the same word may be
quite different. Conversely, the representation difference can be used
to reflect the semantic difference of the contexts.

Based on the above observations, we propose a new sequence-
to-sequence method to extract the contextual features of the shared
words of paired sentences, see in Figure 1. We take the not shared
words and special tokens of ([CLS], [SEP ]) as the input of En-
coder and the rested as the input of Decoder. We get the hidden fea-
tures of shared words from Decoder and match the same word one-
to-one correspondence between each of the hidden feature matrices.
We then input the obtained feature matching matrix into the classi-
fier after max- or avg-pooling to get the matching type. Our main

4 the same words between two sentences
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Figure 1: The general architecture of our proposed method (blue arrows are notes).

contributions are as follows:

• To our best knowledge, we are the first to use the shared words
contextual differences as matching features of paired sentences
for matching task.

• We use encoder and decoder both as features extractor of one sen-
tence.

• Explicit syntactic information is introduced into the Encoder to
guide structure features extracting. The experiment results show
that it helps a lot with the best performance of our proposed
method.

2 RELATED WORK

In this section, we introduce some related previous works and de-
scribe them simply.

2.1 Semantic matching

As a fundamental and general NLP task, sentence matching has
made rapid progress. Generally, the previous works use encoder as
features extractor which is almost based on RNN and its variants.
However, the development of attention mechanisms injects great vi-
tality into sentences matching tasks whatever representation-based
or interaction-based methods. [25] proposes an iterative refinemen-
t LSTM-based encoder for sentence embeddings which is different
from traditional stacked-LSTM encoders. [27] introduces a compact
and powerful method in which paired sentences are compared, com-
pressed and propagated to enhance the representation learning abil-
ity. [6] improves the performance of both long and short sentence
embeddings through introducing words distance mask that captures
the local dependency which is also implemented based on Trans-
former. Distance mask is explicitly added to multi-head self-attention
weights to learn more about phrase structures. Our proposed method
also inspired by it. [12] performs multi-turn inferences of multiple
matching features. For each turn, a particular feature instead of all
features is focused so that the model can capture the matching in-
formation adequately. It demonstrates that fused features will lose
much information. It’s also why our method works. [26] proposes
multiway attention networks in which query information is added in-
to the answer through different forms of attention and they finally
use the representation of the answer fused the query as feature of the
classifier. [21] significantly improves upon the state of the art in 9 out
of the 12 tasks studied by using the 12-layer decoder of Transformer
for pre-training and then fine-tuning the model on specific tasks.

2.2 Transformer

Transformer achieved the state of the art results on the WMT 2014
English-to-German translation task and English-to-French transla-

tion task when it is proposed. Different from traditional sequence-
to-sequence models, the Transformer is a simple and parallelized
network using only attention mechanism and models sequence in-
formation by position embeddings instead of most used RNN or its
variants. As a sequence-to-sequence method, Transformer consists
of encoder and decoder including six layers respectively.

For the encoder of Transformer, each layer contains two sub-
layers: multi-head attention and position-wise feed-forward network-
s. Multi-head attention consists of several parallelized self attention
layers to which scaled dot-product attention weights are calculated
as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q ∈ Rn×dk ,K ∈ Rm×dk , V ∈ Rm×dv , dv, dk are dimen-
tions of V and K respectively, n, m are the first dimension size of Q
and K,V . Note that 1√

dk
is the scaling factor where it differs from

dot-product attention. Multi-head attention then concats the output
of each head:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

where headj = Attention(QWQ
j ,KWK

j , V WV
j ), WQ

j ∈
Rdm×dk , WK

j ∈ Rdm×dk , WV
j ∈ Rdm×dv , dm is the model’s hid-

den dimension, h is the number of attention heads, and Q = K = V
in self-attention. Multi-head attention encourages the model to joint-
ly attend to information from different representation subspaces at
different positions. Following the multi-head attention, a fully con-
nected feed-forward networks layer which is applied to each position
separately and identically is implemented for linear transformation
with ReLU activation:

FFN(x) = max{0, xW1 + b1}W2 + b2 (3)

Residual connection and layer normalization are used in each sub-
layer.

The decoder of the Transformer also is composed of six stacked
layers as the encoder. A multi-head cross-attention between the out-
puts of encoder (K, V ,in Formula(1)) and multi-head self-attention
sublayer of decoder (Q, in Formula(1)) is added to each of decoder
layers except the two sublayers mentioned in encoder.

2.3 Syntactic parsing

Syntactic parsing is one of the critical technologies in NLP. It is used
to determine the syntactic structures of sentences or the dependency
relationships between words of sentences. [3] shows that syntactic
parsing information can achieve additional improvement on careful-
ly designed chain LSTMs even other strong models. Another recent
research [7] performs a series of experiments to explore the essence
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Figure 2: The three main components of our proposed method: Encoder (left), Decoder (middle) and Matcher (right). u is update.

of the representations learned by different layers of BERT. The re-
sults show that BERT can capture rich linguistic information such as
phrase information in lower layers, syntactic information in the mid-
dle layers and semantic information in the upper layers. The linguis-
tic information is extremely significant for the strong performance
of BERT on diverse language understanding benchmarks. Therefore,
one intelligent agent could be more powerful if its features extractor
can capture rich and multi-aspect information. Unlike BERT, Trans-
former has only six stacked layers that may not enough for more
plentiful features. Without adding model parameters, it is a good idea
to add some auxiliary knowledge. Another reason we leverage syn-
tactic information is that we mask the shared words in the input of
encoder which leads to the loosely coupled encoder.

3 METHOD

In this section, we will define the task format, some notations used
later and make a detailed description of our proposed method.

3.1 Problem Statement

Given a pair of sentences, s1 and s2, the target of this task is to get
the matching type m(s1, s2), where m(.) ∈ {0, 1}, 1 for matching
and 0 for not. s1 = (wi) for i ∈ [0, 1, 2, ..., l1] and s2 = (wj)
for j ∈ [0, 1, 2, ..., l2], where l1 and l2 are the lengths of s1 and s2
respectively. The shared words are the words existing in both s1 and
s2 at the same time.

3.2 The proposed model

The proposed method mainly includes three components: Encoder,
Decoder and Matcher. Encoder is responsible for extracting rich con-
text information about not shared words. The decoder is mainly used
to explore representations of the shared words by forcing Encoder to
contribute more information about their context. By calculating the
representation differences or correlations between paired same word-
s from two sentences, the Matcher obtains the final matching feature
and put it into a classifier to get matching type.

3.2.1 Input

As shown in Figure 3, the input embeddings include three parts: word
embeddings (W2V), Part-of-Speech tagging embeddings (POS) and
position embeddings (PE). POS features are used to help phrases
learning in lower layers.

For the Encoder, as shown in the left of Figure 2, the proposed
method replaces the shared words with [blank] tokens firstly but still
keep their position and POS embeddings. So that we have the com-
plete position information of sentence to perform the dependency
guides in the middle layers.

For the Decoder, on the contrary, we only use the shared words
as input but the position information is the absolute position in the
original sentence. So the length of Decoder input is relatively shorter
than that of Encoder.

In the actual experiment, a pair of sentences may exist too many
shared words or a few even none except the begin and end tokens of
([CLS], [SEP ]). So we present three strategies for choosing shared
words, with decreasing priority:

• Tokens of [CLS] and [SEP ] will always be selected for the se-
mantic comparison of paired sentences. Therefore the input of De-
coder contains at least two shared words.

• Tokens not in stopwords will be chosen preferentially because the
stopwords generally are not so meaningful but modifying.

• Tokens in stopwords will be added to shared words set if there are
not enough non-stopwords.

Note that if there are too many shared words, we randomly choose
the fixed number of them.

We define W2V as v, PE as pe and POS as pos, so the input e of
Encoder or Decoder can be formulated as:

e = Dropout(Layernorm(v + pe+ pos)) (4)

where Layernorm(.) performs layer normalization and
Dropout(.) randomly inactive some values.

3.2.2 Encoder

Our proposed method is based on Transformer, but we did some
transformations inspired by [7] which demonstrates that the low lay-
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Figure 3: The input of Encoder and Decoder.

ers of BERT will learn more phrases information, the middle ones for
syntactic dependency information and the upper ones for semantic
information. Now therefore we leverage syntactic parsing obtained
from tool Stanford CoreNLP1 to guide the Encoder. We divide the
Transformer encoder of six layers into three abstract layers: lower
layers, middle layers and upper layers.

For lower layers, we add the POS embeddings into the token em-
beddings as syntactic guides. The lower layers of Encoder can be
formulated as:

lk = MultiHead(fen
k−1, f

en
k−1, f

en
k−1) (5)

ffc
k = FFN(Layernorm(lk + fen

k−1)) (6)

fen
k = Layernorm(ffc

k + Layernorm(lk + fen
k−1)) (7)

where k ∈ [1, ..., lower index] is the integer index of lower lay-
ers while lower index is the max index, lk defines the output of
multi-head attention, l0 = e and operation (+) represents residual
connection.

The attention mechanism can capture the stucture of text. For mid-
dle layers, we add firstly the syntactic dependency matrix, which
defines the syntactic structure of the sentence, to some of the at-
tention weights of middle layers multi-head attention. Then we re-
softmax the attention weights to get new weights for self-attention
representations. Note that we define the syntactic dependency matrix
SDM ∈ Rmax len×max len, where max len is the max length of
the encoder input, SDM(i, j) = 1 if word wi depends on wj oth-
erwise SDM(i, j) = 0. We introduce syntactic dependency matrix
to guid middle layers for two reasons: First, we replace shared words
with [blank] tokens so word embeddings information of them is lost
but we still want to get their dependency structure. For the second,
syntactic structure is considered significant as one of multi-aspect
information. So the middle layers are formulated as:

headkh = softmax(
QhK

T
h√

dk
+ SDM)Vh (8)

mk = MultiHead(fen
k−1, f

en
k−1, f

en
k−1) (9)

ffc
k = FFN(Layernorm(mk + fen

k−1)) (10)

fen
k = Layernorm(ffc

k + Layernorm(lk + fen
k−1)) (11)

where k ∈ [lower indexlower index + 1, ...,middle index] is
the integer index of middle layers while middle index is the max in-
dex, mk defines the output of multi-head attention, Qh = Kh = Vh

are the input of the h th head and the input of first middle layer is
the last output of lower layers. We simply add the syntactic depen-
dency matrix to the last head of every middle layer in Formula(8).
The upper layers formulations are as same as the lower layers.

1 https://stanfordnlp.github.io/CoreNLP/

3.2.3 Decoder

Original decoder employs two mask strategies: padding mask and
sequence mask. The former avoids calculating padding tokens when
doing self- or cross-attention while the latter is used to do decoding
by not letting the word see the words after itself. In our case, we ar-
gue that the Decoder tokens should focus on all words before and
after itself for comprehensive information. So like BERT, we em-
ploy a bidirectional decoder with shared words of each sentence as
inputs. The Encoder and Decoder share word embeddings. Another
dissimilitude is that we use less layers to decode, see next section for
detail. The Decoder layers are formulated as follows:

fde
0 = esw (12)

lsk = MultiHead(fde
k−1, f

de
k−1, f

de
k−1) (13)

lns
k = Layernorm(lsk + fde

k−1) (14)

lck = MultiHead(fen
6 , fen

6 , lns
k) (15)

lnc
k = Layernorm(lck + lns

k) (16)

fc
k = FFN(lnc

k) (17)

fde
k = Layernorm(fc

k + lnc
k) (18)

where k ∈ [1, 2, ..., de layers], esw is the embeddings of shared
words, lsk represents output of multi-head self-attention, lck is multi-
head cross-attention output between the output of Encoder and the
output of multi-head self-attention in current layer, fc

k is output of
fully connected layer, lns

k, lnc
k and fde

k are residual connection and
layer normalization after lsk, lck and fc

k respectively.

3.2.4 Matcher

The primary idea of the proposed method is that we judge whether t-
wo sentences are semantically similar by exploring whether the same
words in two sentences focus on the similar contents. We implement
a comparison in the Matcher component.

As shown in Figure 1, taking the output of Decoder multi-layers as
shared words hidden features, we calculate hidden features of same
word in two sentences one-to-one correspondence by operation of
subtracting or element-wise product to get the matching matrix. For
example, we apply element-wise product to hidden decoder states of
shared word helpful from two sentences and get a result vector of this
shared word. Then we pool the matching matrix into a matching vec-
tor by max- or average-pooling, and feed it into a linear classifier to
get the match type. Note that, the matching matrix is heterogeneous
because the matching vector contains both sentences semantic dif-
ferences and shared words contextual differences. We formulate the
Matcher component as follows:

M1 = fde,1
de layers (19)

M2 = fde,2
de layers (20)

M = (M i
1 ◦M j

2) (where swi
1 = swj

2) (21)

mv = pooler(M) (22)

class = Softmax(FFN(mv)) (23)

where M1 and M2 are the output of Decoder for paired sentences,
M is the matching matrix, ◦ represents element-wise product, swi

1

and swj
2 are shared words from s1 and s2 respectively where the or-

ders may be different, mv is matching vector obtained by pooler(.)
(max− pooling or avg − pooling) and class is the matching type
probability distribution of the input paired sentences.
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4 EXPERIMENTS

We implement our experiments based on Transformer on three classi-
cal datasets: QQP1,2, SciTail3 and SNLI4. And our proposed method
performs better than some strong baselines. The following are de-
tailed introductions of our experimental datasets, settings, optimiza-
tion object, results and ablation experiments.

4.1 Datasets

4.1.1 QQP

QQP (Quora Question Pairs) dataset contains over 400,000 ques-
tions duplicate pairs from the community question-answering web-
site Quora (train: 364k, test: 391k). The task belongs to paraphrase
tasks, which is used to judge whether the paired questions are e-
quivalent in semantic meaning. However, the dataset is unbalanced
with about 63% negative examples and 37% positive examples. Each
pair of questions is assigned a label 1 for semantic equivalence and
0 for not. [29] offers detailed information of it and gives a base-
line of it which gets the best performance by the experiment of
LSTM +Attn+ Elmo with a single task.

4.1.2 SciTail

In [9], SciTail dataset is first introduced. It is the first entailmen-
t dataset that is acquired from science question answering created by
converting a multiple-choice question and the correct answer choice
into an assertive statement to form the hypothesis. 27k pairs of sen-
tences are included in it (train: 23.6k, dev: 1.3k, test: 2.1k). SciTail
is considered a textual entailment task in which it contains two tar-
get labels: entails and neutral. [9] provides a baseline of it which is
called by DGEM (Decomposed Graph Entailment Model).

4.1.3 SNLI

SNLI (the Stanford Natural Language Inference) is a manually writ-
ten corpus which consists of 570k pairs of English sentences (train:
550k, dev: 10k, test: 10k). It contains three label types: entailment,
contradictory and neutral. Supporting natural language inference, al-
so known as recognizing textual entailment, the task corresponding
to the dataset is to determine whether the given paired sentences are
semantic entailment or contradictory or neutral. [2] introduces the
corpus in detail and gives a baseline first time. Note that, different
from the above two, the task is a three-way classification.

4.2 Loss optimization object

The sequence-to-sequence framework is generally employed in NL-
G. Therefore, maximizing the log probability of correctly decoding
shared words given the rest words of the input sentence is our first
goal. We define Decoder loss as:

Ldecoder = −
∑

swi∈sw

logP (swi|sw−) (24)

1 https://gluebenchmark.com/
2 https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-

Question-Pairs

where sw− is not shared words. Our final goal is judging the seman-
tic matching type by a classifier. So the other loss function is given
by a cross-entropy:

Lclassify = −
∑

class num−1
i=0 yi log(y

−
i ) (25)

where class num is the number of matching types, y is the ground
truth and y− = class is the prediction result. The overall optimal
object is:

L = αLdecoder + βLclassify (26)

where α and β are weight hyperparameters.

4.3 Experiment settings

In our experiments, we employ the Transformer as our base code and
apply a series transformations on it.

We define our Encoder of 6 layers of multi-head attention and
feed-forward network that is the same as the original Transformer
except we add a syntactic dependency matrix to its middle layer-
s. Of each layer of Encoder and Decoder, we use 8 heads, 512d of
W2V, PE and POS embeddings, 2048d for the first layer of FFN
sublayer and 512d for the last7 layer of FFN sublayer, dk = 64 .
We use dropout dr = 0.1, lr = 1e − 5 for learning rate. For the
loss weights of two types, we use α = 0.04 and β = 0.96 em-
pirically. We use Adam optimizer with initial learning rate lr and
reduce it dynamically along with the training process with decay fac-
tor decay factor = 0.8 if there is no improvement on accuracy, f1
or loss value for patience5 iterations. For the datasets of QQP and
SNLI, class num = 2 but class num = 3 for SciTail. We use
max− pooling for pooling operation and element-wise product for
features interaction because we found them perform better in exper-
iments.

Also, we’ll explore the dividing position of the Encoder layers for
best performance from which the Encoder is divided into lower, mid-
dle and upper abstract layers. As for the number of Decoder layers
and the shared words sequence length, we’ll study them respectively
as well.

4.4 Results

In this section, we will report our experimental results on several ex-
plorations including whether shared words matter or not, how long
the sequence of the shared words should be, how to divide the En-
coder into 3 abstract layers and how many layers for the Decoder. We
also show some strong baseline results and our ablation experiment
results.

4.4.1 Significance exploration of shared words

We experiment with an encoder to verify the significance of shared
words. We design three models to perform it. For the first mod-
el, we apply Transformer encoder as feature extractor and calcu-
late the element-wise product of each word in s1 with all words in
s2 followed by max − pooling which leads to one word match-
ing vector. After acquiring all words matching vectors, we employ
max − pooling on them so that we obtain the one of the match-
ing vectors. For the sake of symmetry, we do the same operations by

3 https://leaderboard.allenai.org/scitail/submissions/public
4 https://nlp.stanford.edu/projects/snli/
5 changes with dataset, batch size, evaluate steps
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Figure 4: The sentence length distributions (top) and shared words sequence length distributions (bottom) for paired sentences ([CLS] and [SEP ] included)
on three datasets (left: QQP, middle: SNLI and right: SciTail).

Table 1: The accuracy results on dev sets of three models: Tr En ALL (Trans-
former Encoder and ALL words participate in interactions), Tr En SWs
(Transformer Encoder and only Shared Words participate in interactions) and
Ours (our proposed method)

model QQP SNLI SciTail
Tr En ALL 85.1 85.1 86.5
Tr En SWs 85.3 85.5 86.9

Ours 88.5 88.4 87.7

swapping two sentences. Then we concat the two matching vector as
final feature and put it into classifier.

The above model interacts all words between the s1 and s2. To
explore whether shared words really matter, we set up the second
comparison experiment. We just interact with the shared words one-
to-one correspondence for the paired sentences. The shared words are
chosen by the strategies in section 3.2.1. We calculate the element-
wise product of a pair of same words from different sentences to get
a matching matrix. Then we apply max-pooling on matching matrix
and feed the resulting vector into a linear classifier.

To compare with the models mentioned above, settings of two lay-
ers of Decoder, 20% or 30% length of shared words and [2, 4] di-
viding indexes of Encoder are applied to our proposed method in
this section. The results in Table 1 show that the method interacting
between shared words performs better than that between all word-
s. More noises are added into the final matching feature so that the
information which really matters is diluted. However, our proposed
method achieves the best performance of the three methods. This fur-
ther validates that using the only encoder to extract information of a
word is not enough. Generating shared words in the decoder can ac-
tually force the decoder to learn more helpful contextual information
from the encoder.

4.4.2 The max length of Decoder input

In our task, the sentences are usually short. In Figure 4 top we ex-
hibit the sentence length distributions and the bottom is the distri-
butions of shared words sequence length for the paired sentences on
three datasets. In this case, how long the Decoder input should be
set is of prime importance because hundreds or thousands of original
sentences contain less than 5 words. There are three extremes: the
Encoder input is too short, the second one, the Decoder input is too
short which only consists of ([CLS], [SEP ]) and the last one for
both. Here, if the Encoder input is too short, we don’t mask it simply
and if the target is too short, the decoder degenerates to contain only
semantic vectors. For the general case, we need to develop a reason-
able strategy to define the shared words sequence length. Obviously,
the tendency towards the two distributions (Figure 4 top and bot-
tom respectively) are consistent. This means that we need to choose
the length of the sequence of the shared words proportional to the
sentence length, rather than all the paired sentences share the same
length.

For two sentences, we define L is the min length of them
([CLS], [SEP ] included). The max length of shared words sequence
at most is defined as:

Lsw = max{min{L× factor,max length}, 2} (27)

where factor is in [0.1, 0.2, 0.3, 0.4], max length is a hyper pa-
rameter of max Decoder input length and L sw ≥ 2. In this sec-
tion, we set 2 layers of Decoder and [2, 4] diving indexes of Encoder.
Table 2 shows the results with different factor. Longer input of De-
coder can cause performance degradation, which illustrates that if the
factor is too big, more stopwords will be included while they may
not have enough contextual differences. The results also suggest that
masking too many words of Encoder input sequence is not conducive
to contextual information extraction.
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Table 2: The accuracy results on dev sets for exploration of factor (left)
and the dividing way of Encoder layers (right) where (1,234,56) represents
the lower layer(s) contain(s) the 1st layer,the middle layer(s) contain(s) the
2nd,3rd,4th layers and the upper layer(s) contain(s) the 5th,6th layers.

factor QQP SNLI SciTail dividing QQP
0.1 85.9 86.4 79.2 (12,34,56) 88.5

0.2 88.5 88.1 87.7 (1,234,56) 87.3
0.3 87.3 88.4 87.3 (12,345,6) 87.7
0.4 87.2 87.6 83.9 (1,2345,6) 88.0

4.4.3 The dividing positions of Encoder layers

We divide the Encoder layers into 3 abstract layers: the lower,middle
and upper layers. For contrast, we employ four dividing strategies
to test their performance. As shown in the right of Table 2, we ac-
quire the best dividing positions of (12, 34, 56)(see also [2, 4]). This
results partly tell us that phrase information, syntactic information
and semantic information are almost equally significant in semantic
matching tasks therefore we need comparative number of parameters
to fit them.

4.4.4 The number of Decoder layers

In the process of the experiments, we found that different numbers
of Decoder layers matter a lot for the experiment results. Therefore,
we perform different numbers from 1 to 6 to test their performance.
See the results in Table 3, when we use 2 or 3 layers of Decoder, it
achieved best performance. We argue that this is because the shared
words sequence is too short. The more layers, the more capacity the
model owns, but we can’t fit it better with a few words.

Table 3: The accuracy results on dev sets for exploration of the number of
Decoder layers (de layers).

de layers QQP SNLI SciTail
1 87.3 86.7 83.3
2 88.5 88.1 87.7

3 88.1 88.4 86.2
4 84.1 83.5 82.7
5 79.7 78.6 80.5
6 78.9 77.4 79.7

4.4.5 Best performance on three datasets

We test our method of optimal configuration on the above datasets
respectively. We also list some results of previous works’ results as
our strong baselines of which attention-based methods are applied
in Table 4. In the listed previous works, [3, 9, 27, 12, 29, 26, 5, 32]
employ interaction-based methods like us. Without losing generality,
we also list some representation-based methods as [21, 6]. The re-
sults demonstrate that our proposed method is effective and robust.
On the other hand, it also shows the strong features extraction ability
of the Transformer. Note that FTLM[21] is Finetuned Transformer
Language Model which improves natural language understanding by
generative pre-training. In their pre-training task, they use a 12 layers
Transformer decoder as a language model which also inspired us for
our proposed method. However, as the last listed line in Table 4, our
results are still quite far from the best-reported models StructBERT
[31], Semantics-aware BERT [34] and MTDNN [13], which used
large-scale pre-trained models or multi-task models based on BERT
[4]. This is also a performance limitation of the traditional method-
s compared with the large-scale pretrained or multi-task advanced
methods.

Table 4: The accuracy results on QQP, SNLI, SciTail test sets. The last line is
the best result of each of the datasets until 2020/02/01.

model QQP model SNLI model SciTail
Base[29] 86.5 Base[16] 77.3 Base[9] 77.0

BiMPM[32] 88.1 HIM[3] 88.6 CAFE[27] 83.3
DIIN[5] 89.1 MIMN[12] 89.3 MIMN 84.0

MwAN[26] 89.1 MwAN 89.4 FTLM[21] 88.3
Ours 89.1 Ours 89.7 Ours 88.9

Best[31] 91.0∗ Best[34] 91.9∗ Best[13] 96.1∗

4.5 Ablation experiments

In this section, we further analyze whether the syntactic information
really matters or not. We perform three experiments: removing the
POS embeddings from inputs of Encoder and Decoder, removing the
syntactic dependency matrix from the middle layers of Encoder and
removing both. The resultss in Table 5 demonstrate that syntactic de-
pendency matrix is critical for the masking words of Encoder input.
The POS embeddings make a little contribution to our best perfor-
mance.

Table 5: The accuracy results on QQP dev set of ablation experiments. (-)
represents remove corresponding item(s) from the whole model.

Dataset Ours -POS -SDM -POS-SDM
QQP 88.5 87.8 85.7 85.1

5 CONCLUSION

In this work, we propose a share-word sensitive sequence-to-
sequence features extractor based on Transformer which includes
three main components: Encoder, Decoder and Matcher. Different
from the traditional sentence matching method, we employ the De-
coder to learn more contextual information of shared words from En-
coder. Because we replace the shared words embeddings of Encoder
with [blank] embeddings, it’s more difficult to learn structure infor-
mation. Therefore we also introduce syntactic analysis information
to the Encoder as guides. We divide the Encoder into three abstrac-
t layers: the lower, middle and upper layers. The lower layers are
for basic phrase information, the middle layers are for the depen-
dency information while the upper layers are for the semantic infor-
mation. Evaluations on the significance of shared words demonstrate
that shared words in paired sentences matter a lot for the semantic
matching. The length of the sequence of the shared words is a crucial
factor when we actually practice it. The exploration of the number of
Decoder layers reminds us of the matching of networks’ capacity and
data size is important. Our sequence-to-sequence features extractor
develops a new idea for sentence matching or other NLU tasks while
it remains yet to be developed. Compared with some other classical
methods, our method has achieved better results. However, a mass
of works should be explored for sequence-to-sequence feature ex-
traction which is also the next research plan of us, such as how to
combine it with large-scale pre-training and how to jointly learn with
other tasks like multi-task learning.
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[25] Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann, ‘Sentence embed-
dings in nli with iterative refinement encoders’, Natural Language En-
gineering, 25, 467–482, (2019).

[26] Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, and Ming Zhou,
‘Multiway attention networks for modeling sentence pairs’, in IJCAI,
(2018).

[27] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui, ‘Compare, compress and
propagate: Enhancing neural architectures with alignment factorization
for natural language inference’, in EMNLP, (2017).

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, in NIPS, (2017).

[29] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman, ‘GLUE: A multi-task benchmark and analysis
platform for natural language understanding’, (2019). In the Proceed-
ings of ICLR.

[30] Shuohang Wang and Jing Jiang, ‘A compare-aggregate model for
matching text sequences’, ArXiv, abs/1611.01747, (2016).

[31] Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Liwei Peng, and
Luo Si, ‘Structbert: Incorporating language structures into pre-training
for deep language understanding’, ArXiv, abs/1908.04577, (2019).

[32] Zhiguo Wang, Wael Hamza, and Radu Florian, ‘Bilateral multi-
perspective matching for natural language sentences’, in IJCAI, (2017).

[33] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le, ‘Xlnet: Generalized autoregressive pre-
training for language understanding’, ArXiv, abs/1906.08237, (2019).

[34] Zhuosheng Zhang, Yu-Wei Wu, Zhao Hai, Zuchao Li, Shuailiang
Zhang, Xi Zhou, and Xiaodong Zhou, ‘Semantics-aware bert for lan-
guage understanding’, ArXiv, abs/1909.02209, (2019).

[35] Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, Ying Chen, Wayne X-
in Zhao, Dianhai Yu, and Hua Wu, ‘Multi-turn response selection for
chatbots with deep attention matching network’, in ACL, (2018).

J. Li et al. / A Shared-Word Sensitive Sequence-to-Sequence Features Extractor for Sentences Matching 2077


