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Abstract. Finding the precise location of quantum critical points is
of particular importance to characterise quantum many-body systems
at zero temperature. However, quantum many-body systems are no-
toriously hard to study because the dimension of their Hilbert space
increases exponentially with their size. Recently, machine learning
tools known as neural-network quantum states have been shown to
effectively and efficiently simulate quantum many-body systems.
We present an approach to finding the quantum critical points of
the quantum Ising model using neural-network quantum states, ana-
lytically constructed innate restricted Boltzmann machines, transfer
learning and unsupervised learning. We validate the approach and
evaluate its efficiency and effectiveness in comparison with other tra-
ditional approaches.

1 INTRODUCTION

Quantum critical points [35] mark the transition between different
phases of quantum many-body systems [33] at zero temperature.
Finding their precise location is of particular importance to charac-
terise the physical properties of quantum many-body systems [30].
However, these systems are notoriously hard to study because the
dimension of the Hilbert space of their wave functions, being the
tensor product of the constituents of the systems, increases exponen-
tially with their size. From a practical point of view however, one is
often interested in the low-energy sector of the system, which gen-
erally involves quantum states living in a much smaller portion of
the full Hilbert space. In this case, these computational complexity
issues can be alleviated: Both deterministic and stochastic approxi-
mation algorithms have been proposed to find this relevant portion of
the Hilbert space and to accurately describe the system.

Recently, Carleo and Troyer [8] showed that a machine learning
tool, which they called neural-network quantum states (NQS), can
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effectively and efficiently simulate quantum many-body systems in
different quantum phases and for different parameters of the system.
Their approach can be seen as an unsupervised neural network imple-
mentation of a variational quantum Monte Carlo method. The authors
used a restricted Boltzmann machine (RBM) to calculate the ground
state energy and the time evolution of quantum many-body systems
such as the Ising and Heisenberg models. This work triggered a
wave of interest in the design of neural network approaches to the
study of quantum many-body systems [26]. This NQS method has
been further explored by studying its quantum entanglement prop-
erties [13], its connection with other methods [9, 15] and its repre-
sentation power [19, 23]. It has also been used to find the excited
states [10], to study different models [11, 12, 25] and to aid the sim-
ulation of quantum computing [20]. Finally, as shown in [14], more
powerful descriptions of quantum states can be achieved by simply
increasing the depth of the neural network.

We present here an approach to finding the quantum critical points
of the quantum Ising model using innate RBMs, transfer learning
and unsupervised learning for NQS. We show that our approach can
significantly improve the efficiency and effectiveness of a simple net-
work like RBM.

We first propose to analytically construct restricted Boltzmann
machine neural-network quantum states (RBM-NQS) for quantum
states deep in each phase of the system. We refer to such RBM-
NQSs as innate as they have innate knowledge, i.e. built-in knowl-
edge rather than knowledge acquired by training, of the system they
represent.

We then devise a transfer learning protocol across parameters
of the system to improve both the efficiency and the effectiveness
of the approach. We finally combine the transfer learning protocol
across system parameters with a transfer learning protocol to larger
sizes [41] to find the quantum critical points in the limit of infinite
size.

Gale Martin, in [24], was the first to evaluate the opportunity of
directly copying neural network weights trained on a particular task
to another neural network with a different task to improve efficiency.
This transfer learning approach was later improved and formalised
in [2, 29, 34]. It has been applied to all kinds of learning tasks, and
was shown to improve not only efficiency but also effectiveness [28,
36, 40].

We evaluate the efficiency and effectiveness of the approach
for one-, two- and three-dimensional Ising models in compari-
son with other traditional approaches such as exact diagonalization
method [37], a numerical approximation method called tensor net-
work method [31] and a stochastic approximation method called
quantum Monte Carlo method [16].
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The rest of the paper is structured as follows. Section 2 presents the
necessary notions of quantum many-body physics, the Ising model,
RBM and RBM-NQS. Section 3 presents the general approach and
the algorithm for finding quantum critical points, the transfer learn-
ing protocols and the analytical construction of an initial RBM-NQS.
Section 4 reports the result of the comparative performance eval-
uation of our approach. We conclude and highlight possible future
works in Section 5.

The extended version of this paper is available in [42].

2 NEURAL-NETWORK QUANTUM STATES

2.1 Quantum many-body systems

A quantum many-body system [33] consists of a large number of
interacting particles, or bodies, evolving in a discrete or continuous
D-dimensional space. These particles are generally characterised by
internal and external degrees of freedom. In the following, we con-
centrate on identical particles pinned at the nodes of a D-dimensional
lattice (D = 1, 2, 3) and fully described by their spin internal degree
of freedom which characterises their magnetic properties. The size
of the system is then given by the number N of particles, the number
of possible spin states per particle being ns. In the rest of the paper,
we consider one-half spins, meaning that each particle can only have
ns = 2 spin states.

A quantum many-body model defines how particles interact with
each other or with external fields. Several prototypical models, such
as the Ising model, describe the pairwise interactions of the spins of
particles in addition to the interaction with external fields. The phys-
ical properties of each model depend on the respective magnitude of
all these interactions, which becomes the parameters of the model.

Specifying the value of the spin for each particle gives a configu-
ration of the system. The number of possibe configurations is, there-
fore, 2N in our case.

In quantum physics, the possible physical states of a given sys-
tem are described by state vectors |Ψ〉, called wave functions, living
in the so-called state space. Formally, this state space is a complex
separable Hilbert space and state vectors are simply linear combina-
tion of all the basis state vectors, denoted by |x〉, associated to each
possible configuration x, |Ψ〉 = ∑

x Ψ(x)|x〉. The dimension of the
Hilbert space is given by the number of possible distinct configu-
rations, which is 2N in our case. Each complex coefficient Ψ(x) is
called a probability amplitude. |Ψ(x)|2/ZΨ gives the probability of
the configuration x in the state |Ψ〉, where ZΨ =

∑
x |Ψ(x)|2. The

collection of all these probabilities defines the multinomial probabil-
ity distribution of all possible configurations x of the system.

For a given grid, number of particles and external fields, the dy-
namics of a system is fully described by its Hamiltonian. The Hamil-
tonian is a Hermitian matrix of size nN

s ×nN
s that describes how the

system evolves. Furthermore, the eigenvalues of the Hamiltonian are
the possible energies of the system and the corresponding eigenvec-
tors are the only possible states in which the system can be individu-
ally found after a measurement of its energy has been performed.

The energy functional E[Ψ] of a state with wave function |Ψ〉 is
given in Equation (1), where Eloc is the local energy function of a
given configuration x, as defined in Equation (2), where Hx,x′ is the
entry of the Hamiltonian matrix for the configurations x and x′.

E[Ψ] =
∑
x

|Ψ(x)|2
ZΨ

Eloc(x) (1)

Eloc(x) =
∑
x′

Hx,x′
Ψ(x′)
Ψ(x)

(2)

Formally, the energy functional is the expected value of the local
energy. Do note that the local energy Eloc of any configuration x
gives the average energy value of the corresponding state |x〉. Based
on the variational principle in quantum mechanics, the energy func-
tional of a given state |Ψ〉 is always larger than or equal to the lowest
possible energy of the system, i.e. to the lowest eigenvalue of the
Hamiltonian. It reaches this minimal value when |Ψ〉 is precisely the
corresponding eigenvector called the ground state of the system.

Several methods have been developed to find the ground state.
The most straightforward method is to diagonalize the Hamiltonian
matrix [37, 22]. This method does not scale well as the size of the
system increases. Instead, deterministic and stochastic approxima-
tion methods have been proposed and used. Tensor network meth-
ods [31] are deterministic approximation methods using variational
techniques and combining the exact diagonalization with the idea of
density matrix renormalisation group [38]. Quantum Monte Carlo
methods [16] are stochastic approximation methods.

A phase is a region in the space of the parameters of a model
in which systems have similar physical properties. In the thermody-
namic limit, each possible phase is characterised by so-called order
parameters that achieve different values in each phase region.

A phase transition occurs when the system crosses the boundary
between two phases and the order parameters change values. When
this happens, the nature and the properties of the system change qual-
itatively. The transition happens when the parameters of a model are
varied. In the limit of infinite system size, the transition is typically
described by an abrupt change in the observable physical properties
or their derivatives. The term “quantum phase transition” is used
for phase transitions in the ground state alone (i.e. for a system at
zero temperature). The parameters of a model that correspond to this
abrupt change define the quantum critical points. For finite-size sys-
tems, the transition is not abrupt but smooth. Mathematically, this
means that, for a given size of the system, we need to find the in-
flection point of the order parameter as a function of the parameters
of the system. Since it is not possible to empirically determine the
parameters that yield the quantum critical point of an infinite system,
it is necessary to extrapolate its limit value from a series of values
simulated from systems of increasing sizes. In the remainder of the
paper, when we mention a critical point, we refer to the quantum
critical point.

2.2 Ising Model

We focus on the quantum transverse field Ising model, which has
been studied extensively in the literature [5, 32] as it is a simple
model and displays most of the qualitative features present in com-
plex models.

The Ising model describes particles pinned on the sites of a lattice
carrying a binary discrete spin. Each spin is in one of two states: up
or down represented by +1 or −1, respectively. A configuration x is
given by the value of the spin on each site: x = (x1, x2, · · · , xN )
where xi = ±1.

Each particle interacts with its nearest neighbours and with an ex-
ternal magnetic field along the x-axis, characterised by the parame-
ters J and h, respectively. We consider a homogeneous Ising model
where the parameters are translationally invariant.

Equation (3) gives the 2N × 2N Hamiltonian matrix of the Ising
model where neigh(·) is a function that returns the nearest neigh-
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bouring sites and the σα
i are the Pauli matrices where α = x, y, z

and i indicates the position of the spin it acts upon. Only the relative
strength between J and h matters. For instance, Ising model with
h = 1 and J = 1 has the same static properties as a model with
h = 2 and J = 2 except that the energy is doubled in the latter.
Therefore, we refer to J/|h| as the parameter of the system in the
Ising model.

H = −h
n∑
i

σx
i − J

n∑
i

∑
j∈neigh(i)

σz
i σ

z
j . (3)

We are interested in the possible magnetic phases of the system.
In the paramagnetic phase, the magnetic field h dominates over the
interaction J . The ground state is oriented in the x-direction and
the magnetisation in the z-direction is zero. All configurations are
equally probable in this state. In the ferromagnetic phase, where
J > 0 and dominates h, the particles interact to align parallel to
each other. The configurations where spins are parallel to each other
(e.g. all spin-ups and all spin-downs) are the most probable ones. In
the antiferromagnetic phase, where J < 0, neighbouring particles
interact to align anti-parallel to each other. Due to the symmetry of
the Ising model, the antiferromagnetic phase is equivalent to the fer-
romagnetic one, up to a redefinition of the directions of the spins.
In particular, the transitions from paramagnetic to ferromagnetic and
antiferromagnetic phases will happen at the same absolute value of
J/|h|. Therefore, in this paper, we concentrate on paramagnetic and
ferromagnetic phases and consider only positive values of h. Please
refer to [42] for the details of the antiferromagnetic phases.

We look at the squared magnetisation order parameter, denoted
by M2

F and shown in Equation (4), which shows the presence of
ferromagnetism, while it is zero in the paramagnetic and antiferro-
magnetic phases. M2

F becoming non zero marks the transition point
between the paramagnetic and ferromagnetic phase. We refer to this
order parameter as the ferromagnetic magnetisation M2

F .

M2
F =

1

N2

∑
x∈x

|Ψ(x)|2
ZΨ

(
N∑
i=1

xi

)2

. (4)

An equivalent magnetisation for the antiferromagnetic phase and
also magnetic correlations between different spins is detailed in [42].

The order parameter can be computed exactly by diagonalization
of H to get |Ψ(x)|2/ZΨ. However, it is intractable as the size of the
system increases. We then need approximate methods such as tensor
network and quantum Monte Carlo for large size systems.

For the one-dimensional Ising model, in the limit of infinite size, it
is exactly known that critical points are located at J/|h| = ±1 [32].
The system is antiferromagnetic when J/|h| < −1, paramagnetic
when −1 < J/|h| < 1 and ferromagnetic when J/|h| > 1.
For the two- and three-dimensional models, the three same phases
are observed in the same order, but with critical points located at
J/|h| = ±0.32847 [3] and J/|h| = ±0.1887 [4], respectively,
based on quantum Monte Carlo simulations.

2.3 Restricted Boltzmann machine

An RBM is an energy-based generative model [21]. It consists of a
visible layer x and a hidden layer h. Each one of the N visible nodes
{x1, · · · , xi, · · · , xN} represents the value of an input. The only de-
sign choice is the choice of the number of hidden nodes. It is usual
to consider a multiple, α, of the number of visible nodes. The hidden
layer consists of α×N hidden nodes {h1, · · · , hj , · · · , hα×N}. The

visible node xi and the hidden nodes hj are connected by the weight
Wi,j . An RBM is fully described by the N × (α × N) matrix of
weights.

An RBM represents the distribution p of configurations of its in-
put layer as a function of its weights as given in Equation (5), where
ZW is the normalisation constant. A gradient descent updating the
weights can train an RBM to learn the probability distribution of a
set of examples that minimises the log-likelihood whether it is super-
vised or unsupervised. The RBM is able to sample a configuration
from this multinomial distribution. When trained with a set of exam-
ple configurations, the RBM learns their distribution by minimising
an energy function, which is the negative log-likelihood of the dis-
tribution. This is done by Gibbs sampling with stochastic gradient
descent or contrastive divergence [18].

p(x) =
1

ZW

∏
j

2 cosh

(∑
i

xiWij

)
(5)

The Gibbs sampling process is as follows. From a given initial
visible configuration x, for each hidden node hj , a value is gener-
ated by sampling from the conditional probability p(hj | x) given in
Equation (6). From this hidden configuration, for each visible node
xi, a value is generated by sampling from the p(xi | h) given in
Equation (7).

p(hj = 1|x) = sigmoid

[
2

(∑
i

xiWij

)]
(6)

p(xi = 1|h) = sigmoid

[
2

(∑
j

Wijhj

)]
(7)

2.4 Restricted Boltzmann machine neural-network
quantum states

An RBM-NQS is exactly an RBM where the visible node represents
one of the N particles of the quantum many-body system and its
value represents the value of the spin of that particle. Each node of the
RBM-NQS is a Bernoulli random variable with possible outcomes
representing the two values of a spin, namely −1 or +1.

Instead of minimising the log likelihood of the distribution of
training data, as it is generally the case for unsupervised energy-
based machine learning models, RBM-NQS minimise the expected
value of the local energy given in Equation (8).

Eloc(x) =
∑
x′

Hx,x′

√
p(x′)
p(x)

=
∑
x′

Hx,x′

√√√√∏
j

cosh
(∑

k x
′
kWkj

)
cosh

(∑
l xlWlj

)
(8)

In RBM-NQS, in order to minimise the energy of the system,
leveraging the variational principle, the expected value of the local
energy of the configurations is minimised. This makes the connection
between the RBM-NQS and the Hamiltonian of the system it is try-
ing to simulate. Indeed, Equation (8) is similar to Equation (2) where
the ratio of wave functions is assumed to be the same as the square
root of the ratio of their norm. Here we recall that |Ψ(x)|2/ZΨ is
the probability of a configuration, and we stress here that the ground
state of the Ising model can be chosen as a real and positive function,
which allows us to write Ψ(x) =

√
p(x)/ZΨ.
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The unsupervised training process does not need any example.
It can rely on random configurations that it generates. The itera-
tive minimisation process alternates the Gibbs sampling of config-
urations, the calculation of the expected value of their local energy
and stochastic gradient descent until a predefined stopping criterion
is met.

The trained RBM-NQS, as described above, is an ansatz of the
function |Ψ(x)|2/ZΨ of the ground state for a given parameter J/h
and a system of given size and dimension. We can use it to sample
configurations according to |Ψ(x)|2/ZΨ, estimate the ground state
energy and estimate the order parameters.

3 FINDING THE QUANTUM CRITICAL
POINTS

3.1 Overview of the approach

The approach that we consider for finding the critical points is as
follows. We simulate an initial system at a selected initial parameter
J/|h|, find its ground state and calculate the order parameter corre-
sponding to the critical point that we are looking for. We repeat the
operation increasing and decreasing the parameter with an initial step
size. We are looking for an inflection point in the function of the pa-
rameter of the system that gives the value of the order parameter. We
recursively reduce the step size until we identify the inflection point.
This first algorithm finds the inflection point of a system of a given
size.

The algorithm, therefore, receives the following input: the descrip-
tion of the system (its dimension and its size), the initial parameter
J/|h| of the system, the initial step size, the order parameter and the
desired precision. The algorithm additionally stores the upper bound
of the parameter of the system to look for the inflection point to
make sure that the algorithm terminates if it does not find any in-
flection point. The algorithm terminates when the desired precision
is reached or no inflection point is found.

We then repeat, as long as our computing resources reasonably
allow, this algorithm for increasing sizes of the system. This is done
to find the value of the critical point at the limit of infinite size of the
system by the extrapolation of the inflection points.

We use RBM-NQS to simulate the system and calculate the order
parameters. However, the repeated training of RBM-NQS for sys-
tems under different parameters and of increasing sizes is expensive.
We devise three optimisations. The first, presented in Subsection 3.2,
is the analytical construction of the innate RBM-NQS for a parameter
deeply in the quantum phases to avoid being accidentally trapped in
a local minimum. The second, presented in Subsection 3.3, is the use
of transfer learning across parameters to avoid successive cold starts.
The third, presented in Subsection 3.4, is the use of transfer learn-
ing to larger sizes again to avoid successive cold starts. Algorithm 1
shows what we used to find quantum critical points.

3.2 Construction of innate restricted Boltzmann
machine neural-network quantum states

From physical understanding, we can infer the form of the probabil-
ity distribution |Ψ|2 of the configurations of a system if sufficiently
deep in each phase, and construct an innate RBM-NQS that repro-
duces qualitatively the features of this distribution.

Several works have analytically or algorithmically constructed
RBM-NQS, e.g. [7, 27], for effective representations of quantum
many-body systems. Here we use a standard topology of RBM, and
instead we analytically evaluate its weights.

Algorithm 1: Finding the Quantum Critical Point
Input: Initial and maximum parameter p and pmax, initial and

maximum system size N and Nmax and step size s
Output: Quantum critical point
mN

p ← construct innate RBM-NQS for the model with size N
and parameter p (see Subsection 3.2).

INFLECTIONS ← [ ]
while N < Nmax do

pi ← parameter’s inflection point between −pmax and
pmax by transferring mN

p to mN
p+s and mN

p−s (see
Subsection 3.3).

add pi to INFLECTIONS.
transfer mN

pi to m2N
pi (see Subsection 3.4).

p ← pi, N ← 2N .

return extrapolation of INFLECTIONS

If J/|h| = 0, there are no interactions between spins, the sys-
tem is in a deep paramagnetic phase and all the configurations are
equiprobable. Putting all the weights to zero gives such distribution
but forbids optimisation as all gradients are identical. Therefore, we
sample the weights from a normal distribution with zero mean and
a small standard deviation. This construction resembles the common
initialisation method of the weights of an RBM [18].

If J/|h| → +∞, the interactions between particles are dominant
and the system is in a deep ferromagnetic phase. The configurations
where all spins are up or all spins are down are the most probable.
We then construct the weights of the RBM-NQS to ensure that the
probability is maximal for these two configurations. This is achieved
by setting all of the weights of each visible node to a particular hid-
den node to be the same and zero for the other hidden nodes. Once
again, instead of using zero weights, we sample small values of the
weights from a normal distribution. A similar procedure can be used
for the antiferromagnetic phase when J/|h| → −∞ [42].

As mentioned earlier, in order to avoid being accidentally caught
in a local minimum during the initial training of the first RBM-NQS
for an arbitrary initial parameter, we choose the initial parameter to
be deeply in one of the phases and construct an innate RBM-NQS.
We refer to this construction as RBM-NQS-I. Additionally, we refer
to the RBM-NQS starting from a cold start as RBM-NQS-CS.

3.3 Transfer learning protocol among parameters

Physically, it is expected that the wave function of systems under
different but nearby values of their parameters are neighbours in the
Hilbert space, although this may not be true if they are separated by
a phase transition. Therefore, we expect the RBM-NQS to be similar
for two systems for sufficiently nearby values of the parameters.

Following the terminology in [40], the base network is a trained
or RBM-NQS-I for a value of the parameter of the system. The tar-
get network is a RBM-NQS for a different value of parameter with
the same number of visible and hidden nodes. We can thus directly
transfer the weights from the base network to the target network.

After transferring the weights, we trained or fine-tuned the tar-
get network until it converges to a new ground state. We expect that
fewer iterations are needed for the target network to converge than it
would take for a cold start initialised with a set of random weights.

We apply this parameter transfer protocol to define an algorithm to
look for the inflection point of a system of a given size. We first con-
struct an RBM-NQS-I. We then calculate the order parameter value
at the ground state and we iterate with this transfer learning protocol
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with adaptive step sizes until we locate the inflection point. We refer
to this algorithm as RBM-NQS-IT.

3.4 Transfer learning protocol to larger sizes

Physically, it is also expected that there is a relationship between
the wave function of systems with the same parameter value but of
different sizes as if they were the same system at different length
scales [39]. We have explored such physics-inspired transfer learning
protocols in [41] and demonstrated their superiority over a cold start
from both the effectiveness and efficiency points of view.

We want to find the critical points in the limit of infinite size.
We expect the value of the parameter corresponding to the inflection
points of a system of increasing finite sizes to converge asymptoti-
cally to this limit.

In our problem, this means that we need to transfer an RBM-NQS
that has been optimised for a system with a certain size to another
RBM-NQS with larger size and identical parameters.

The base network is an RBM-NQS for a given value of the param-
eter of the system. The target network is an RBM-NQS for the same
value but for a system of larger size. The protocol needs to leverage
insights in the physics of the quantum many-body system and model.
The details of the protocol are given in [41].

We use this transfer learning protocol to a system of larger sizes
to find the inflection point for a series of systems of increasing sizes.
Instead of starting from the same initial parameter at each size of the
system, we instead start from the parameter at the inflection point
of the system of smaller size by using transfer learning protocol to
larger sizes. We then find the inflection point at the larger size. Fi-
nally, we extrapolate the value of the critical point in the limit of
infinite size. We refer to this algorithm as RBM-NQS-ITT.

4 PERFORMANCE EVALUATION

The performance evaluation is threefold. We evaluate the perfor-
mance of the RBM-NQS-I construction, RBM-NQS-IT for finding
the inflection point for a system of a given size and RBM-NQS-
ITT for finding the critical points at the limit of infinite size in Sub-
section 4.1, 4.2 and 4.3, respectively. We evaluate the effectiveness,
which is the accuracy of the inflection point or the critical point, and
the efficiency, which is the processing time. All of the evaluations are
done for systems with open boundary conditions.

The training of the RBM-NQS is done in an iterative manner. In
each iteration, we take 10,000 samples to evaluate the local energy
and its gradients. At the last iteration, we use these samples to calcu-
late the order parameters. We update the weights using a stochastic
gradient descent algorithm with RMSProp optimiser [17] where the
initial learning rate is set to 0.001. Based on our empirical exper-
iments, we set α = 2 considering the efficiency and effectiveness
trade-off. For RBM-NQS-CS, a random weight is sampled from a
normal distribution with 0.0 mean and 0.01 standard deviation fol-
lowing the practical guide in [18]. For RBM-NQS-I, a random weight
is sampled from a normal distribution with either 0.0 or 1.0 mean and
0.01 standard deviation as required by the construction. Note that the
value of 1.0 was chosen as it results in better performance after test-
ing a range of values between 0.1 and 1.5.

The training stops after it reaches the dynamic stopping criterion
used in [41], i.e. when the ratio between the standard deviation and
the average of the local energy is less than 0.005 or after 30,000
iterations. Since there is randomisation involved in the training, the

value reported in the paper is an average of 20 realisations of the
same calculation.

We compare this approach with the traditional methods of exact
diagonalization, tensor networks and quantum Monte Carlo. For the
exact diagonalization, we use the implicitly restarted Arnoldi method
to find the eigenvalues and eigenvectors [22]. Our computational re-
sources only allow us to compute exact diagonalization up to 20
particles. For the tensor network method, we use the matrix prod-
uct states algorithm [31] with a bond dimension up to 1000. Both of
the methods run only once since there is no randomisation involved.

The existing code of RBM-NQS is implemented in C++ with sup-
port for Message Passing Interface under a library named NetKet [6].
We ported the code into TensorFlow library [1] (available on
Github 1) for a significant speedup with the graphics processing units.

For the algorithm to find the inflection point, we choose the initial
step size as 1.0 and we divide the step size by 10 at each iteration.
The algorithm stops when the precision is 10−3.

4.1 Construction of innate restricted Boltzmann
machine neural-network quantum states

The performance evaluation of RBM-NQS-I deeply in each phase is
twofold. First, we construct RBM-NQS-I without training and eval-
uate them. Second, we fine-tune the RBM-NQS-I until it reaches the
stopping criterion and evaluate them. We evaluate the effectiveness
and efficiency by comparing the value of the energy and the order pa-
rameters and by comparing the iterations needed for the training until
it reached the stopping criterion with RBM-NQS-CS, respectively.

We choose J/|h| = 0 and J/|h| = 3 for the cases of deep param-
agnetic and ferromagnetic phases, respectively. In the ferromagnetic
case, the weights are sampled from a normal distribution with either
0.0 or 1.0 mean and 0.01 standard deviation as prescribed in Subsec-
tion 3.2.

Table 1 shows the evaluation of the RBM-NQS-CS and RBM-
NQS-I for a one-dimensional system where the size of the system
is 128 and the system is deep in the paramagnetic phase (J/|h| = 0)
or the ferromagnetic phase (J/|h| = 3).

For J/|h| = 0, we observe that both the energy and the order pa-
rameter for both the RBM-NQS-CS and RBM-NQS-I without train-
ing are very close to the result of the tensor network method. When
we train the RBM-NQS-I, it stops directly because it already reaches
the stopping criterion. The value of the energy and order parameter
are not exactly the same as the tensor network value due to the noise
introduced in the weights and from the sampling process.

For J/|h| = 3, we observe that the results of the RBM-NQS-I are
closer to the result of the tensor network method and need less itera-
tions to converge to the stopping criterion than RBM-NQS-CS. How-
ever, the energy and the order parameters of the RBM-NQS-I without
training is quite far from the result of the tensor network method. We
hypothesise that this is because J/|h| = 3 is not deep enough in the
ferromagnetic phase. Our experiments with larger J/|h| with small
size systems show that the value of the energy and order parameters
construction is closer to the correct value [42]. Furthermore, even
though the energy of the RBM-NQS-CS is quite close to the result
of the tensor network method, we observe that the value of the order
parameters are very far. This means that the training of RBM-NQS-
CS remains stuck in a local minimum and does not converge to the
ground state.

We have done similar experiments in two- and three-dimensional

1 https://github.com/remmyzen/nqs-tensorflow
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systems. We saw trends similar to the results of one-dimensional sys-
tems [42].

We showed that using RBM-NQS-I on one-dimensional systems
deep in each phase is more effective and efficient than RBM-NQS-
CS. Furthermore, no training is needed in the case of deep param-
agnetic phase (i.e. J/|h| = 0). Therefore, from this point forward,
we choose J/|h| = 0 as our initial parameter in our algorithm for
finding the critical points.

Table 1. The performance evaluation of the RBM-NQS-CS and RBM-
NQS-I for one-dimensional system in Ising model where the system size is
128 and parameter of the system J/|h| = 0 and J/|h| = 3. The reported
value is average value over 20 realisations. The value inside the parentheses
is the standard deviation.

Method Energy M2
F

J/|h| = 0
RBM-NQS-CS without training -127.9799 (0.0029) 0.0079 (0.0001)
RBM-NQS-I without training -127.9799 (0.0029) 0.0079 (0.0001)
RBM-NQS-CS with training -127.9799 (0.0029) 0.0079 (0.0001)
RBM-NQS-I with training -127.9799 (0.0029) 0.0079 (0.0001)
Tensor Network -128.0000 0.00781

J/|h| = 3
RBM-NQS-CS without training -127.9061 (0.2577) 0.0078 (0.0001)
RBM-NQS-I without training -217.5726 (0.3152) 0.2934 (0.0009))
RBM-NQS-CS with training -372.2911 (4.7748) 0.0981 (0.1041)
RBM-NQS-I with training -391.7046 (0.0182) 0.9658 (0.0005)
Tensor Network -391.9119 0.9698

4.2 Finding quantum critical points for a system of
a given size

We evaluate the performance of the algorithm for finding the inflec-
tion point for a system of a given size with RBM-NQS-IT.

The performance evaluation is twofold. We first provide an anal-
ysis by plotting the values of the order parameter as a function of
the parameter J/|h|. We then evaluate the inflection point for each
system’s size and compare the value to other traditional methods to
compare its effectiveness.

Order parameter analysis. We plot the value of the M2
F as a

function of J/|h|. We use RBM-NQS-CS and RBM-NQS-IT to com-
pute the order parameter at the ground state of each point in the space
of the parameter of the system. In the limit of infinite size, there
should be an abrupt change of the derivative at the critical point and
the value of the order parameter should change from 0 to an increas-
ing function. For efficiency, we compare the time needed for all of
the computation.

For one-dimensional systems, we calculate the order parameters
for J/|h| within the range [0, 2] with 0.1 intervals and for system
with size n = {8, 16, 32, 64, 128}. For two-dimensional systems,
we calculate the order parameters for J/|h| within the range [0, 1]
with 0.1 intervals and for systems with sizes n = {2× 2, 4× 4, 8×
8, 16× 16}.

Figure 1 (a,b) shows the value of the ferromagnetic magnetisation
M2

F for one-dimensional systems with RBM-NQS-CS and RBM-
NQS-IT, respectively. For RBM-NQS-CS, we observe that it fails to
get to the correct value before or after the inflection point for N =
64 and 128. This is possibly due to the network being trapped in a
local minimum. For RBM-NQS-IT, we observe that the change in the
derivative of the order parameter is more abrupt as we increase the
size of the system as expected and the value of M2

F are closer to zero
in one phase and closer to a function of the distance from the critical
point in the other phase as we increase the size of the system.

We observe that the weights of RBM-NQS-IT do not change dras-
tically over the parameter range explored around the transition point.
This is because the magnetisation behaves smoothly across the tran-
sition point even for the large system sizes we consider here.

The results for other order parameters show similar trends as the
result of the ferromagnetic magnetisation M2

F [42]. The result for
the tensor network method, two- and three-dimensional systems are
available in [42].
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Figure 1. The ferromagnetic magnetisation M2
F for one-dimensional sys-

tems for J/|h| within the range [0, 2] with 0.1 intervals and for system
with size n = {8, 16, 32, 64, 128} with RBM-NQS-CS (a) and RBM-NQS-
IT (b). The exact quantum critical point at the limit of infinite size is at
J/|h| = 1 [32].

It takes approximately 10 minutes to compute one realisation of
128 particles with RBM-NQS-IT. Meanwhile, RBM-NQS-CS takes
approximately 5 hours and our implementation of the tensor net-
work method takes approximately 60 hours. Even though this is not a
fair comparison, we show here that the RBM-NQS leveraging graph-
ics processing units gives a significant speedup. Furthermore, RBM-
NQS-IT boosts the speed even further.

Quantitative evaluation. We evaluate the inflection point for each
system’s size. We evaluate the performance on one-dimensional sys-
tems from N = 8 and doubling each time until N = 128. For two-
dimensional systems, we start from N = 2 × 2 and doubling each
time until N = 16× 16.

We comparatively evaluate the effectiveness and efficiency of
RBM-NQS-CS and RBM-NQS-IT. To evaluate the effectiveness, we
compare the value of the inflection point at each size of the sys-
tem with the tensor network method [31] and exact diagonalization
for one-dimensional systems. For two-dimensional systems, we only
compare with exact diagonalization.

Table 2 shows the value of the inflection point for different sizes
of the system of one- and two-dimensional systems with RBM-NQS-
CS, RBM-NQS-IT and tensor network method with ferromagnetic
magnetisation M2

F .
We observe that RBM-NQS-CS performs the worst overall since

the value of the inflection point is far from both the tensor network
and exact diagonalization methods, especially in systems of large
size. It is particularly unstable in a one-dimensional system with 64
and 128 particles, as shown by a very large standard deviation. We
observe that the tensor network method is closer to the exact diago-
nalization method for systems of small size than RBM-NQS-IT. We
see that both the inflection point for RBM-NQS-IT and tensor net-
work converge towards J/|h| = ±1, the exact critical point at the
infinite size limit [32].

In two-dimensional systems, both the results of RBM-NQS-CS
and RBM-NQS-IT are close to the exact diagonalization method.
However, RBM-NQS-IT is closer to the exact diagonalization
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method result than RBM-NQS-CS by a small margin. We believe
that the performance of RBM-NQS-CS and RBM-NQS-IT is similar
because of the small sizes considered, which were chosen so as to
be able to compare to exact diagonalization results. The results for
other order parameters and three-dimensional systems are available
in [42].

It takes approximately 5 hours for one realisation to find the in-
flection point for innate RBM-NQS-IT for a system with a size of
128 particles. However, the absolute variance of the inflection point
is relatively small, around 0.001. Therefore, in practice, one run suf-
fices. Even though the RBM-NQS-CS takes approximately less than
1 hour, it is unstable and gives a wrong value for the inflection point.
Our tensor network algorithm takes approximately 20 hours to find
the inflection point.

Table 2. The value of the inflection point for one-, two- and three-
dimensional systems of given sizes with RBM-NQS-CS, RBM-NQS-IT, ten-
sor network and exact diagonalization method with ferromagnetic magneti-
sation M2

F order parameter. The value inside the parentheses is the standard
deviation.

System

size
RBM-NQS-CS RBM-NQS-IT

Tensor

network

Exact

diag.

8 1.114 (0.009) 1.105 (0.006) 1.11 1.109

16 1.007 (0.008) 1.040 (0.005) 1.08 1.090

32 1.011 (0.009) 1.013 (0.001) 1.05 -

64 1.004 (0.009) 1 (0.001) 1.02 -

128 0.646 (0.38) 1 (0.001) 1.01 -

2× 2 0.662 (0.04) 0.673 (0.05) - 0.69

4× 4 0.5 (0.0) 0.501 (0.003) - 0.51

4.3 Finding quantum critical points at the limit of
infinite size

We evaluate the effectiveness of RBM-NQS-ITT for finding the crit-
ical points at the limit of infinite size. We use the (L, 2)−tiling pro-
tocol defined in [41] for the transfer learning protocol to larger sizes
by transferring the parameters at the inflection point of a smaller size
system to a larger one.

The performance evaluation is twofold. We first provide an analy-
sis by plotting the values of the order parameter as a function of the
parameter J/|h|, which has been done in Subsection 4.2. We then
provide an evaluation by fitting the value of the inflection point at
each size of the system to show towards which value it converges in
the infinite-size limit.

Order parameter analysis. We observe in Figure 1 that with
RBM-NQS-IT the inflection point converges toward ±1.0, which is
the exact critical point at the limit of infinite size [32], as we increase
the size of the system.

For two-dimensional and three-dimensional systems, we observe
similar trends as those observed in one-dimensional systems [42].
Results for other order parameters show similar trends as those for
the ferromagnetic magnetisation M2

F [42].
Quantitative evaluation. We evaluate the position of the critical

point at the limit of infinite size by extrapolating a series of inflec-
tion points at increasing system sizes as a function of the size of the
system. We fit a function of the form f(N) = a + b Nc with non-
linear least squares, where a, b and c are the function parameters.

The constraint of the parameter is b > 0 and c < 0 for ferromagnetic
order parameters. The value of a approximates the value of the criti-
cal point at the limit of infinite size. We exclude the RBM-NQS-CS
from this evaluation since we have shown in the previous sections
that RBM-NQS-IT effectiveness is better.

Figure 2 (a) shows the evaluation of the critical point at the limit
of infinite size by fitting the inflection points as a function of the
size of the system in the one-dimensional model with ferromagnetic
magnetisation M2

F order parameter. We compare the result of RBM-
NQS-ITT with the tensor network method. The value of a is 0.999
and 0.923 for RBM-NQS-ITT and our tensor network algorithm, re-
spectively.

Figure 2 (b) shows the same evaluation for systems in two dimen-
sions. The value of a on RBM-NQS-ITT is 0.302, which is close to
the value 0.32847 based on quantum Monte Carlo method [3]. The
result for three-dimensional systems and with other order parameters
are available on [42].
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Figure 2. The evaluation of the critical point at the limit of infinite size by
fitting the inflection points as a function of the size of the system in one- (a)
and two- (b) dimensional models. We use the ferromagnetic magnetisation
M2

F to find the critical point. The critical point at the limit of infinite size is
at J/|h| = 1 [32] and J/|h| = 0.32847 [3] for one- and two-dimensional
system, respectively.

5 CONCLUSION

We have proposed an approach to finding quantum critical points
with innate restricted Boltzmann machine neural-network quantum
states and transfer learning protocols. We applied the proposed ap-
proach to one-, two- and three-dimensional Ising models and in the
limit of infinite size.

We have empirically and comparatively shown that our proposed
approach is more effective and efficient than cold start approaches,
which start from a network with randomly initialised parameters. It
is also more efficient than traditional approaches.

A natural extension to this work is the study of the quantum criti-
cal exponents, which describe the behaviour of the order parameters
close to the phase transitions. We also would like to further explore
the opportunities to analytically and algebraically construct neural-
network quantum states. Such approaches may be used to devise so-
lutions to other problems such as characterisation of properties of
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different quantum many-body systems, the study of their time evolu-
tion, as well as the study of quantum few-body systems.
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