
ST-MFM: A Spatiotemporal Multi-Modal Fusion Model
for Urban Anomalies Prediction
Ruiqiang Liu 1 and Shuai Zhao 1,∗ and Bo Cheng 1 and

Hao Yang 2 and Haina Tang 3 and Fangfang Yang 1

Abstract. Urban anomaly prediction is of great importance for ur-
ban management and public safety. Accurate anomaly prediction can
avoid much unnecessary loss. Urban anomalies are usually caused by
many complex factors, such as festivals, demonstrations and market
promotions. It is not possible to predict anomalies from the perspec-
tive of reason, thus, most of the previous work analyzes the impacts
of anomalies from multiple crowd flow datasets and observes the
shift to ordinary distribution when they occur. Most existing mod-
els use observation-based methods to extract relevant spatiotempo-
ral features, which are difficult to fully extract hidden relationships
and eventually lead to low accuracy and low recall. In this paper,
we propose an end-to-end deep learning based approach, called spa-
tiotemporal multi-modal fusion model to collect the impacts of ur-
ban anomalies on multiple crowd flow datasets and predict anoma-
lies in each region of the city for next time interval in turn. More
specifically, we model the city into a graph and regard each region
as a node. We use graph convolution network to obtain its spatial
features and use gate recurrent units to obtain its temporal features.
The features of those multiple modalities are further aggregated with
points of interest in a two-stage-fusion method for assigning differ-
ent weights to different functional regions. We evaluate our method
using five datasets associated with New York City: 311 complaints,
taxicab data, bike rental data, points of interest and road network
dataset. Results show the advantages nearly 10% beyond the-state-
of-the-art urban anomalies prediction methods.

1 Introduction

Urban anomalies including noise, illegal park, illegal assembly or
illegal use of public facilities, etc. have potential threats and some-
times may pose tremendous risks to public property or safety if they
are not handled timely or properly. An accurate anomaly prediction
can make the city managers warned in the early stages of anomalies
and people would have more time to prepare for the anomalies. In
this paper, we study the urban anomaly prediction problem with mul-
tiple crowd flow data; that problem being how to predict anomalies
in all the regions of the city in a future timestamp by using multiple
crowd flow datasets and the points of interest (POI) statistics of each
region in the city. It is unrealistic to analyze from the perspective of
cause as anomalies can be caused by many factors. So we analyze
the impacts of multiple datasets from anomalous events and observe
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the shift to ordinary distribution when they occur to predict the ur-
ban anomalies. Most existing methods are based on observation to
extract relevant features [18, 4], which are difficult to fully extract
hidden relationships and eventually lead to low accuracy and low re-
call.

However, several technical challenges exist in solving the anomaly
prediction problem when using deep learning based methods.

• Data sparsity: Urban anomaly records are mainly reported by the
public, but people may not report anomalies or events all the
time at all places in the city when they happened. So the records
obtained are only a subset of the real anomalies in the city. It
would deteriorate the accuracy of the model’s final prediction. Be-
sides, crowd flow data are often severely sparse. These insufficient
datasets will have great harm to the training as it is hard to get the
ordinary distribution from insufficient dataset especially when us-
ing deep learning based method.

• Feature-based fusion: Most of the urban computing problems are
based on the historical observation of a dataset to predict the next
state of the same dataset or simply predict a binary classification.
In this paper, we analyze the impacts of urban anomalies by de-
viating other datasets from ordinary distribution, so we need to
fuse the features extracted from multiple datasets. This can easily
lead to over-fitting problems. How to find a proper way to com-
bine features from datasets in different sources and distribution is
a challenge.

• Complex spatial relationship: Urban regions are not regular grids,
and the outlines of the cities are also not regular. Typical methods
usually model the city into a grid map and ignore the road net-
work relationships and the outline of regions, only by considering
the relationship between the regions from the Euclidean distance
[19]. In fact, the division of each region in the city is mostly di-
vided by both the road network system and some geographical
factors like hills or rivers within the city. Two regions with long
Euclidean distances may also have a great impact on each other
as there may be a highway connection. How to combine the road
network system to consider the connection between regions is also
a challenge.

To address the issues mentioned above, we propose a deep learn-
ing method based multi-modal framework named spatiotemporal
multi-modal fusion model (ST-MFM for short) to predict anomalies
in all the regions of the city. In order to consider the road network re-
lationships and POI characteristics, we first model the city as a graph
and consider each region as a node and POI in regions as the features
of nodes. Then we obtain the spatial and temporal information of
each crowd flow dataset by using graph convolution network (GCN)
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and gate recurrent units (GRU). Finally we design a two-stage fusion
method to fuse all the information obtained from multiple datasets
to predict the region where the next anomaly will occur. We use 5
real-world datasets collected from the city of New York, including
bike rental dataset, taxicab dataset, POI dataset, road network sys-
tem dataset and 311 complains dataset to evaluate our method.

The evaluation results show that our model can predict anomalies
in all regions timely and more accurately than the state-of-the-art
baselines. In summary, our contributions are summarized as follows:

• We designed a unified spatiotemporal multi-modal fusion model
that jointly considers multiple crowd flow datasets, road network
system dataset and POI dataset to predict the urban anomalies.
Analysis from multiple aspects will be more analytical than using
only single modal data, and it can compensate for the impact of
data sparseness to some extent.

• We proposed a modeling approach to model the city as a graph,
and a GCN-based model that captures the spatial features of crowd
flow dataset. We found that approach is a better way than raster-
izing the city into a grid map and using CNN to obtain spatial
features when handling the urban ground plane problems.

• We conducted two parts of the extensive experiments on real-
world datasets from the city of New York. The results confirm
that our modeling approach is better than rasterizing, and also our
method consistently outperforms the competing baselines by more
than 10%.

2 Related Work

2.1 Spatiotemporal prediction in urban computing

Many methods have been designed for predicting urban anomalies
previously. In [22, 18], both the authors divide urban anomalies pre-
dicting into two states, which can be summarized as probing and
aggregation. And also a Markov model is designed to predict the
current state of each region by considering multiple previous states
to predict urban events [4]. Though deep learning has proven its per-
formance and efficiency in various fields of urban computing, none
of their models is deep-learning-based. In recent work, deep learn-
ing based algorithms have also appeared to predict urban anomalies.
Considering that the anomalous events are not enough to train a deep
neural network, the authors turn to predict the normal crowd flow and
compare it with the actual flow to predict whether an abnormal event
has occured [20].

Dataset in urban computing usually has spatial and temporal at-
tributes, while problems based on spatiotemporal prediction are fun-
damental for data-driven urban management. A large number of
methods have been developed to various topics in prediction prob-
lem of urban computing, including the taxicab or ride-hailing de-
mand [3, 16], predicting crowd flow data [17, 15, 23, 11, 5], and
traffic prediction [21]. These problems are similar to some extent,
which are all to extract the temporal and spatial attribute distribution
rules embedded in the datasets through deep-learning-based models.
However, their tasks are all based on a single modality, which uses
historical data from a dataset to learn its spatiotemporal distribution
and predict the future timestamp of the same dataset.

The crowd flow predicting problem is similar to the task of our
submodality network, which is also extracting the spatiotemporal
features in crowd flow datasets. CNN-based residual networks are
used to capture spatial dependencies and three categories including
closeness, period, and trend to capture its temporal dependencies

[19]. Furthermore, spatiotemporal features can be extracted by lo-
cal CNN and LSTM model [15] and convolutional recurrent network
which is combined with CNN and RNN [23]. In all the methods men-
tioned above, a city is first rasterized into a grid map, and CNN is
used to capture spatial dependency which we thought is not so prop-
erly. We would explain the reason later and confirm it with some
experiments.

2.2 Graph convolution network in urban
computing

Graph convolution network can be seen as an operator operating on
the graph [7]. It allows data from non-Euclidean structures to retain
graph topology information and share parameters like CNN. GCN
is ideal for dealing with urban computing problems on the ground
plane, as the road system network divided a city into a graph with
regions naturally. Recent researches in urban computing have used
GCN to extract spatial dependencies. Multi-graph convolution net-
work is used to predict ride-hailing demand by constructing multi-
ple graph relationship between regions and extract the features with
GCN [3]. However, they also divide the city into a grid map and con-
sider a grid as a region, instead of dividing the city with road network
system. In traffic prediction problem, the linear operation in GRU is
replaced with graph convolution operation and each road is consid-
ered as a vertice to extract the spatiotemporal relationships [21]. Both
their tasks and modeling ideas are different from ours, and they use
historical data from the same dataset to predict the future timeslot
condition.

2.3 Deep learning based multimodal fusion
framework

Problems in urban computing are often affected by multiple factors,
and methods based on multi-modal fusion usually get a better per-
formance compared with the models that analyse from a single di-
mension of datasets. The urban big data fusion methodologies can
be summarized by classifying them into three categories: DL-output-
based fusion, DL-input-based fusion and DL-double-stage-based fu-
sion [9]. DMVST-Net is proposed to extract the features from both
spatiotemporal view and semantic view and fuse the outputs of those
submodals [15]. In [12], the temporal feature and spatial feature are
first extracted from the same dataset and used as input to fuse into
the model to profile urban residents. All their jobs are to use the
same dataset to extract different dimensions and merge to predict
the state of the same dataset in the next moment or binary classifica-
tion problem, which is fundamentally different from the way we use
multiple datasets to analyze the shift from ordinary distribution to
predict the next state of another dataset. Those difficulties make the
urban anomaly prediction problem previously solved by analyzing
the state rather than an end-to-end deep learning network. Though
the deep learning network has proved its performance in many other
problems.

3 Preliminaries

In this section, we formulate the problem of urban anomaly predic-
tion using multiple crowd flow datasets and other external datasets,
including POI and road system datasets.
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3.1 Definition: Urban ground plane graph

In this study, we use road network system dataset including highways
and arterial roads and also geography information of the city to par-
tition a city into regions with a map segmentation method. We then
consider each region {ri | ri ∈ r1, r2, ..., rv} as a node in graph, v
means the number of the regions in the city, as the graph has v nodes.
If two regions are adjacent to the boundaries or reachable directly by
road system like bridges and tunnels without passing through another
region, these two nodes in graph are considered to be connected. The
adjacency matrix of the graph can be define as A ∈ R

v×v where

Ai,j =

{
1, ri and rj are connected
0, ri and rj are not connected

Figure 1. New York City is divided into a graph by road network system.
Due to geographical factors, the city is further divided into several large

blocks. Between large blocks and blocks, small regions of the same color
represent areas that are connected by bridges and tunnels.

From the POI dataset, we can get the number of hospitals, parks,
etc. in each region of the city. It can be denoted as a tensor F ∈
R

v×f , where f means the number of POI categories. We recognize
that its POI characteristics reflect the functional characteristics of
the region, and we consider that crowd flows in regions with simi-
lar functional characteristics will have a close flow pattern [13]. For
example, the work-oriented area will have a similar peak period of
commuting, while the tourist area will reach a peak in the holiday.
The flow patterns in these two regions are completely different, even
if they are in close Eucli-distance, and that would help when we pre-
dict anomalies based on crowd flow datasets. It is significant to con-
sider its own default flow pattern when predicting anomalies from
the extent to which data deviates from its ordinary distribution.

From then on we convert a city into a form of a graph. Each region
of the city is considered as a node of the graph, and the features of
nodes are obtained from POI.

3.2 Definition: multiple crowd flow datasets
(inflow/outflow)

In this study, we use bike rental dataset and taxi pickup-pickoff
dataset as multiple crowd flow datasets. A crowd flow dataset Γ con-
sists of a bunch of trip records, each of which can be considered as
a six-element tuple < ts, lats, lngs, te, late, lnge >, meaning the

timeslot and location of beginning and ending point of the trip. The
subscripts of s and e mean the beginning point and ending point of
the trip, and lat, lng mean the latitude and longitude of the points.
We then convert the spatial information, i.e. latitude and longitude to
the explicit region in the city, which means the explicit node in the
graph. Each trip record γ can be viewed as < ts, ns, te, ne >. We
pre-set a time interval Δt and divide the time according to this time
interval to count the changes in crowd flow during each time interval.
More often, ns, ne are collections of nodes when the beginning or
ending point of the trip is at the boundary between regions, as the
bike station or taxicab pickup-pickoff point is usually on the side of
the road. For simplicity, the inflow and outflow of the crowd flow
dataset at the timeslot t are defined as

γ =< ts, ns, te, ne > (1)

xin,i
t =

∑
γ∈Γ

{1/Nne | te ∈ [t, t+Δt), ne = i} (2)

xout,i
t =

∑
γ∈Γ

{1/Nns | ts = [t, t+Δt), ns = i} (3)

where γ is a trip record in the dataset collection Γ, and Nne,s is
the number of regions to which the beginning or the ending point
belongs.

At the timeslot t, inflow and outflow in all nodes can be denoted
as a tensor Xt ∈ R

2×n, where X0,i
t = Xin,i

t , X1,i
t = Xout,i

t ,
i ∈ [1, n].

Figure 2. The anomaly occurred in the No.147 region at the time interval
of No.2134. It may be difficult to find anomalies when only analyzing the

offset from a single dataset. But it would be much more obvious if the offsets
are analyzed together from multiple datasets.

3.3 Definition: anomalies prediction problem

Similarly, we count the dataset of urban abnormal reports in all re-
gions of the city. A threshold is set in advance, and when the num-
ber of anomalous reports in a region exceeds the average number of
anomalies in the region by more than this threshold within a certain
interval of time, it is considered that an anomalies occurs in this re-
gion at this time interval. The anomalies at tth interval of all regions
as the prediction target can be denoted as Yt ∈ R

1×v . So the anoma-
lies prediction problem can be redefined as:

Given the historical observations in N intervals of m crowd flow
datasets {X1,t, X2,t, ..., Xm,t | t = T, T − 1, ..., T −N}, the fea-
tures of all nodes F , and the adjacency matrix of the graph A, to
predict YT .
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4 Proposed Spatiotemporal Multimodal Fusion
Framework

In this section, we provide details for our spatiotemporal multi-
modal fusion model. Figure 3 shows the architecture of our proposed
method, which is comprised of two stages of processing. The first
status of processing is to extract spatiotemporal dependencies from
each crowd flow dataset. It contains three subnetworks, each of which
is motivated by the combination of GCN and GRU neural networks.
In the second stages of processing, we fuse those modality features
with POI features, and use a shared-weight fully connected layer to
get the final prediction result.

4.1 Spatiotemporal subnetwork

As we mentioned above, most of the work in the extraction of spatial
dependency uses the method of dividing the city into a grid map and
extract it with CNN. Here we propose a new modeling method that
uses road network system to separate the city into a map of graph,
and use GCN to extract spatial information. Below we quantitatively
analyze why our method is superior to CNN-based method in urban
ground plane computing problem.

Figure 4 shows how CNN and GCN work. The convolution of
CNN is essentially a filter that uses shared parameters. The feature
map is implemented to calculate the spatial feature by calculating the
weighted sum of the central pixel and the adjacent pixel. However,
non-transform invariance cannot be maintained on the non-Euclidean
structure data, as the topology of a graph cannot guarantee the same
number of adjacent nodes from each node. This mechanism makes
CNN unable to process non-Euclidean structure, e.g. graph. And if
CNN is used to deal with the urban problem of the ground plane,
it means to ignore both the relationships between regions and also
outlines of regions but forcibly divide the city into rectangular areas.
Those methods including CNN and local CNN would destroy the
topological relationships between regions of the city. Furthermore,
the CNN operator will put the nearby non-information space, such
as the space within river, into the calculation and discard the relevant
regions such as the regions at the other end of the bridges.

The convolution in GCN is more like an operation on the graph
[8]. With the help of eigenvalues and eigenvectors of Laplacian
matrices, GCN can extract the spatial dependency of the topology
graph instead of destroying it. With normalized Laplacian matrix
L = I − D−1/2AD1/2, A ∈ Rv×v is the adjacency matrix, and
D is the degree matrix of adjacency matrix A. Graph convolution
operation [2] can be defined as

Xl+1 = σ(
K∑

k=1

αkL
kXl) (4)

, where Xl denotes the features in lth layer, αk is the trainable vari-
able, and σ is the activation function. In terms of the convolution
operation, K actually defines the size of the reception field. If K
is set to be 1, the filters from GCN act on each node of the graph
and its first-order neighbourhood. If K is set to be 2, they would act
on both its first-order and second-order neighbourhood and calculate
the weighted sum. So different levels of travel in multiple crowd flow
dataset should set different values of K as they have obviously dif-
ferent probability of crossing the number of regions. For example, K
of the taxi dataset should be smaller than the K of the bike dataset as
taxi passengers are more likely to reach the final destination directly

instead of continuing to move to another area. Therefore taxi passen-
gers will have a smaller scope of influence in other surrounding areas
than the bicycle traveler at the same time and same location.

Extracting both the temporal dependence and spatial dependence
is a key problem in handling crowd flow data. Considering that
the crowd flow data is not only closely related to the data at the
previous time intervals, it also has periodicity at the same time of
both the previous days and weeks. We first pick out the relevant
consequent historical observation, including {Xt−1, ..., Xt−n1},
{Xt−24−1, ..., Xt−24−n2}, {Xt−(24×7)−1, ..., Xt−(24×7)−n3

} rep-
resenting the situation a week ago, a day before and at this moment.
n1 ,n2 and n3 are three hyperparameters, which are length of close-
ness, period and trend sub-model inputs. These three inputs would be
sent into three sub-models as the categories of closeness, period and
trend with the same network structure, including a k-hop GCN and
several GRU units, to extract a longer temporal dependency of the
distribution. The k-hop GCN will extract the spatial distribution fea-
tures of the crowd flow data in each region from itself to the k-order
neighbor regions.

X l+1
t = σ(f(Lk)Xl

tW
l) (5)

f(Lk) is the k-order polynomial function of the Laplacian L, to ap-
proximate the connection relationship of regions in k-hop. Xl

t means
the input in t interval of l layer, and W l is the learnable parameters.
Then the vector that fully extracts the spatial features will be sent to
GRUs to capture the temporal features of successive time intervals.

We use GRU network to capture the temporal sequential depen-
dency, which is proposed to address the exploding and vanishing
gradient issue of traditional Recurrent Neural Network (RNN). In
this paper, we use the original version of GRU [1] and formulate it
as:

ht = GRU(Xl+1
t ;ht−1) (6)

where ht is the output representation of all regions at time interval t.

4.2 Multi-modal fusion

We consider that the tensor merged from early fusion in each modal-
ity has fully extracted the temporal and spatial variation of each re-
gion itself and its adjacent regions through spatiotemporal subnet-
work. However, our ultimate task is to predict urban anomalies. An
anomaly might not be that anomalous in terms of a single dataset but
might be considered as an anomaly when checking multiple datasets
simultaneously as we are predicting by accumulating the deviation of
multiple datasets. Besides, due to the difference in regional function-
ality, a pattern of crowd flow change that is abnormal in one region
may not be an abnormality but a normal behavior in another region.
For example, a large number of crowds entering a work-oriented area
on Friday afternoon may be because there is a large event happen-
ing. But it may be just a normal situation if this pattern occurs in an
entertainment-oriented area. So we need to combine these extracted
spatiotemporal features from multiple crowd flow data with the func-
tionality of specific regions, to finally predict the probability of urban
anomaly in all regions.

In late fusion component, we fuse the tensor of both features ex-
tracted from multiple modalities and POI, and use fully connected
layers to get the final prediction. We first add these features to each
node directly in the graph with the method of adding channels, as
these features are all information on some kinds of dimensions of
the region. Considering that the features of each graph node already
contain the spatiotemporal features of its own and neighbour nodes
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Figure 4. Extracting spatial features using CNN and GCN with K = 1
and K = 2 respectively. (a) CNN needs to rasterize the city and only

consider the Euclidean distance between the regions. (b) GCN retains the
topology information and outline of the regions and considers the connection

information.

and also the regional function information, for this fully connected
layer, it needs to do the same job for each node. That is, use all these
information about this region to analyse whether an abnormality will
occur no matter which corner of the city the region is in the city. So
we design the parameters in this fully connected layer to be shared
by all the nodes in the graph and choose the sigmoid function as the
activation function to make the output in the range of [0,1] to indicate
the probability of anomalies in this region.

Yt = sigmoid([{hi | i ∈ m};F ]×Wshared + bshared) (7)

Wshared ∈ R
a×1 and bshared ∈ R

1×1 is learnable parameters, a is
the sum of channels of all spatiotemporal features from m modalities
and channels of features from POI F . {hi | i ∈ m} means the
collection of m modality features and [; ] means the concatenation of
the collection.

In our work, we predict the probability of urban anomaly in every

region in the city in t interval, the loss function is defined as:

L(θ) = ‖Yt − Ŷt‖+ λLreg (8)

The second term Lreg is an L2 regularization term to minimize the
size of the network model and avoid the over-fitting problem, and λ
is a hyperparameter. θ are all learnable parameters in ST-MFM.

4.3 Algorithm and Optimization

Algorithm 1 outlines ST-MFM training process. We first construct
the training instances from the original sequence data, ST-MFM is
trained via backpropagation and Adam optimizer [6].

Algorithm 1 ST-MFM Training Algorithm
Input: Historical observation of m crowd flow datasets:

{X1,t, X2,t, ..., Xm,t | t = T, T − 1, ..., T −N};
historical records of anomalies: {YT−N , ..., YT−1};
features of all nodes: F ;
adjacency matrix of the graph: A;
lengths of closeness, period, trend sequence:n1, n2, n3.

Output: Learned ST-MFM model
1: D ← ∅
2: for all crowd flow datasets i (i ≤ i ≤ m) do

3: for all available time interval t (1 ≤ t ≤ N − 1) do

4: Sc = {Xt−1, ..., Xt−n1}
5: Sp = {Xt−24−1, ..., Xt−24−n2}
6: Sq = {Xt−(24×7)−1, ..., Xt−(24×7)−n3

}
7: put an training instance ({Sc,Sp,Sq}, Yt) into D
8: initialize all learnable parameters θ in ST-MFM
9: repeat

10: randomly select a batch of instances Db in D
11: find θ by minimizing the objective (6) with Db

12: until stopping criteria is met

5 Experiments

In this section, we introduce two parts of our experiments with five
real-world datasets collected in New York City. The first part of
the experiment is to verify that we model the city into a graph and
used GCN to extract spatial dependency is better than those methods

Figure 3. ST-MFM architecture. It takes several relevant intervals before t as input, and outputs the anomaly probabilities in all regions at interval t.
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which model the city into a grid map and use CNN to extract the
spatial dependency. Therefore, we use a spatiotemporal subnetwork
in the model, i.e. the NYC bicycle rental dataset or the NYC taxi
dataset, to predict the crowd flow at the next time interval, as there
is more deep-learning-related work on this issue. In the second part
of the experiment, we evaluate our urban anomaly prediction perfor-
mance of our model with several existing urban anomaly prediction
methods.

5.1 Experiment Settings

Datasets We evaluate our proposed model with five real-world
datasets from New York City. Each dataset details are as follow.

• NYC-Bike: NYC-Bike dataset contains 8081216 trip records with
344 bike stations and more than 6000 bikes of NYC in 2014, from
01/01/2014 to 01/01/2015.

• NYC-Taxi: NYC-Taxi dataset contains 165 million trip records
and more than 14 thousands taxicab of NYC from 01/01/2014 to
01/01/2015. The dataset including both yellow taxi and green taxi
in NYC.

• Road Network: We collect the road network dataset in NYC in-
cluding level from L1 to L5 in NYC, 2013. To simplify the prob-
lem, we approximate road information did not change in 2014.

• NYC-POI: The NYC-POI dataset includes 24031 instances
of 14 categories: ”Entertainment”, ”Automotive/Vehicles”,
”Business”,”Technology”, ”Education”, ”Restaurant”, ”Gover-
ment/Community”, ”Health”, ”Family”, ”Finance”, ”Construc-
tion”, ”Shopping”, ”Sports” and others.

• NYC-Anomaly: We use 311 data in NYC as the anomalies report
dataset. 311 is NYC’s governmental non-emergency service num-
ber, which allows people in the city to complain about everything.
The dataset is a sub-dataset with four kinds of 311 Service Request
including ”Noise”, ”Blocked Driveway”, ”Building/Use”, ”Illegal
Parking” in 2014. And we set the threshold for the anomalous re-
ports to be 5. That is, when the number of anomalous reports in a
region exceeds the average number of anomaly reports in the re-
gion by more than 5, we consider an anomaly occurs in this region
at this time interval.

Table 1. Details of crowd flow datasets in graph modeling approach

Dataset Total Maximum Minimum Variance
NYC-Bike 8M 186.50 -174.00 8.67
NYC-Taxi 165M 1703.83 -2740.00 1533.67

Table 1 shows the details of actual flows as xinflow − xoutflow

from two datasets, including the maximum value, minimum value
and variance of all time intervals in all regions. These data can
be used to measure the accuracy of the crowd flow prediction. We
choose data from the last two months as the testing data, and all data
before that as training data.

Hyperparameter Settings We set the hyperparameters based
on the performance on validation set. In GCN-based spatiotemporal
submodel, we set the kernels of GCN 10 and Kbike = 2, Ktaxi = 1
as the value of K in GCN. The dimension of hidden representation
of GRU is set to be 64. We set each time interval to be 1 hour. To
capture longer temporal dependency we set {n1, n2, n3} is {3,4,5}
as the length of three dependent sequences. Learning rate is set to be
0.001 and batch size is 32 and the λ of regularization loss is 0.001.

5.2 Results on crowd flow prediction

We take our spatiotemporal subnetwork as a GCN-GRU based
method to predict the crowd flow to evaluate the capacity for ex-
tracting spatiotemporal relationships because this sub-topic has more
outstanding work to be compared with. We only use the NYC bicy-
cle rental dataset or the NYC taxi dataset alone as a submodal input,
and add a fully connection layer with sigmoid activation function in
the output of submodel to make its output range [-1,1]. Finally, the
output is denormalized as the final prediction of regional changes in
crowd flow.

In this part of experiment, we measure our method by Root Mean
Squared Error (RMSE) as

RMSE =

√√√√ 1

m

m∑
i

(x̂i − xi)2 (9)

where x̂i is the denormalized predicted value and xi is the actual
flow change value as xinflow − xoutflow in region i. We compare
our method with the following methods:

• Auto-Regressive Integrated Moving Average (ARIMA): ARIMA
is a well-known model for understanding and predicting future
values in a time series.

• Vector Auto-Regressive (VAR): VAR is a more advanced spa-
tiotemporal model that captures the pairwise relationship between
all flows. But due to the large number of parameters, it has heavy
computational costs.

• Convolutional LSTM (ConvLSTM) [10]: ConvLSTM is a deep
learning model that combines CNN and LSTM, specifically de-
signed for spatiotemporal prediction. It replaces the convolution
operation with the switch between states.

• Deep Spatio-Temporal Residual Networks (ST-ResNet) [19]: ST-
ResNet extracts the spatiotemporal features by using residual
learning and merges them in a fusion process along with external
information such as weather condition and holidays.

• Deep Multi-View Spatial-Temporal Network (DMVST-Net) [16]:
DMVST-Net is a multi-view based deep learning approach. It con-
sists of three different views: the temporal view, the spatial view,
and the semantic view modeled with LSTM, CNN and graph em-
bedding respectively.

In these methods except GCN-LSTM we all use the modeling ap-
proach that rasterizes the city into rectangular areas with a grid of
multiple sizes including {(20,40), (40,20), (29,29)} to reduce the
impacts of grid sizes. We choose the grid of these sizes in order to
make the total number of regions roughly the same as our modeling
method. It ensures that the actual results of crowd flow are distributed
similarly in different modeling styles.

Table 2 shows the performance of our proposed method comparing
with all other competing methods. We run each baseline 10 times and
report the mean and standard deviation of each baseline.

Specifically, the traditional time-series prediction methods do not
perform well, as these methods only focus on the law at the same
time intervals of history or simply calculate the mean. Other exter-
nal factors and inter-regional spatial connection have been ignored.
For deep learning algorithms that take into account both the re-
gions spatial relationships and the temporal dimension from regions,
these methods are better than those traditional time series prediction
method.

Also, our method outperforms those neural-network-based meth-
ods. Compared to those models, our network is not too deep and size
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Table 2. Results on crowd flow prediction

methods-(grid size) Bike-RMSE Taxi-RMSE
ARIMA-(40,20) 8.14 25.51
VAR-(40,20) 8.20±0.33 33.53±6.37
ConvLSTM-(29,29) 5.31±0.63 16.13±5.74
ST-ResNet-(40,20) 4.52±0.42 15.74±2.54
DMVST-Net-(40,20) 3.88±0.48 12.35±3.32
GCN-GRU 2.40±0.56 10.15±2.14

is not too large. We consider this is because the crowd flow dataset
we use to predict is traveled through the road network system. Di-
viding the city by road network system may be more relevant to the
real situation, so this modeling method can obtain more accurate spa-
tial features. And GCN method can extract only the information of
the most relevant closely related neighbor regions and ignore the dis-
tant regions that are not closely related. The results confirm that our
modeling approach is more suitable for solving urban ground plane
computing problem as it can extract the spatiotemporal features bet-
ter.

5.3 Results on urban anomalies prediction

Considering that there are many factors involved in the urban fore-
casting problem, and it is also not enough to predict the occurrence
of urban anomalies by analyzing the effects on a single dataset bring
from anomalies. Most of the existing methods need to manually ex-
tract features of divide the calculation into multiple parts rather than
an end-to-end deep learning based network.

We compare our ST-MFM with the following baselines:

• Crowdsourcing-based Urban Anomaly Prediction Scheme
(CUAPS) [4]: CUAPS develops a Bayesian model to identify
anomalies distribution and uses a Markov model to predict
anomalies.

• Urban Anomaly PreDiction (UADP) [14]: UAPD focuses on the
distribution of anomalous reports and detects the change point of
the anomaly sequences to predict anomalies.

• Compute and Aggregate individual anomaly scores (ind+int) [18]:
It proposes the similarity-based ”Compute Individual Anomaly
Scores” to give an anomaly score and detects anomalies by OC-
SVM and rbf kernel.

Table 3. Results on urban anomalies from NYC 311 Services with existing
predicting methods

methods Accuracy Precision Recall F1-score
CUAPS 0.661 0.698 0.762 0.728
UAPD 0.655 0.690 0.742 0.716
ind+int 0.692 0.683 0.771 0.730
ST-MFM 0.740 0.725 0.803 0.788

Table 3 shows the result of our method and other baseline methods.
From the experimental result, our method is better than other meth-
ods. Our approach is an end-to-end process where the associated fea-
tures between data and data are discovered by the model training
rather than relying on manual observation. This makes some hidden
relationships that are difficult to find through observation but also
useful can also be extracted as features, and the robustness of the
algorithm is better than those of non-deep-learning-based methods.
The method which focuses on the distribution of anomaly dataset
does not perform well. We think that may be because the anomaly

distribution of each city or region is different. Focusing on the dis-
tribution of the anomaly itself may lead to reduced generalization of
the model.

5.4 Effects of different components

To investigate the effects of different components, we evaluate the
following variants of ST-MFM by removing or changing different
components from the model, including:

• ST-MFM-NoPeriod (NoPeriod): We transform the spatiotemporal
features extraction module by removing long temporal dependen-
cies and leave only the closeness module and expand its input to
the original input number. That is to set {n1, n2, n3} be {0,0,12}.

• ST-MFM-NoPOI (NoPOI): NoPOI removes the late fusion stage,
which uses POI data to fuse in order to consider different anoma-
lies performance in different functional regions. It inputs the re-
sults of the early fusion phase into the activation function of tanh
and directly obtains the anomalies prediction results.

• ST-MFM-CNN (ST-CNN): ST-CNN models the city into a grid
map and replaces the GCN structure by CNN.

• ST-Bike: ST-Bike model removes the multiple modality fusion
stage and only uses the spatiotemporal extraction module with
bike rental dataset and simply fuse POI to predict the anomalies.

• ST-Taxi: Similar to ST-Bike, ST-Taxi only use the taxicab dataset
and POI to predict the anomalies.

Table 4. Results on urban anomalies from NYC 311 Services with
different components

methods Accuracy Precision Recall F1-score
ST-MFM 0.740 0.725 0.803 0.788

NoPeriod 0.722 0.703 0.805 0.780
NoPOI 0.704 0.663 0.760 0.722
ST-CNN 0.660 0.688 0.720 0.705
ST-Bike 0.700 0.691 0.766 0.677
ST-Taxi 0.655 0.644 0.683 0.632

Table 4 presents the results of the proposed measures. i) The per-
formance of ST-CNN is much worse than other multi-modal fusion
models, which implies again that the graph modeling approach con-
tains more useful information than rasterizing the city into rectangu-
lar regions. ii) The performance of NoPeriod is close to but still worse
than ST-MFM, which indicates that the temporal information is con-
centrated in the most recent time period, and also indicates the effi-
ciency of longer temporal dependency module. iii) The performance
of ST-Bike and ST-Taxi is worse than NoPeriod and NoPOI, which
certifys the significance of multi-modals. iv) ST-MFM achieves the
best performance, which indicates the graph modeling approach as
well as multi-modal component could effectively extract features and
fuse them to improve the prediction performance.

6 Conclusion and Discussion

In this paper, we investigate the urban anomalies prediction problem
and we are the first to define the city into a graph by using road net-
work system and propose a deep learning based end-to-end method to
solve this problem. We propose a spatiotemporal multi-modalilty fu-
sion model which uses graph convolution network and gate recurrent
units to extract the spatial features and temporal features from mul-
tiple crowd flow datasets, and finally fuse them with POI to predict
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the probabilities of anomalies. We further demonstrate why model-
ing the city into a graph and using graph convolution network is more
suitable than CNN in urban ground plane problem and we do com-
parative experiments to confirm the idea. When evaluated on real
world datasets, the proposed model achieved significantly better re-
sults than other existing state-of-the-art methods. For future work, we
plan to (1) consider the levels of the road system and assign different
weights in the graph with different levels of roads when modeling;
(2) aggregate other graphic processing algorithms in the model; (3)
evaluate the proposed model on other urban computing forecasting
tasks.
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