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Abstract. Venation network analysis stands as a promising direc-
tion of scientific research, providing new insights into the origins
and influence of plant phenotypic traits. However, its applicability is
limited by a lack of tools that would facilitate relevant data acquisi-
tion. Dicotyledons form complex reticulate networks, often elusive
for regular scanning equipment, hindering the attempts to capture
details of their anastomoses arrangement. Currently available pro-
fessional solutions operate on high-resolution noise-free images ob-
tained in a complex process of chemical clearing, sample staining,
and computationally expensive digitizing. This work introduces a
novel technique capable of detecting leaf vasculature on pixel level
and extracting a graph representation of its structure while operating
on lower resolution scans of unprocessed specimens. The proposed
transformation pipeline is designed as an array of steps — featuring
automatic leaf segmentation, machine learning-based vein recogni-
tion, a sequence of custom spatial and morphological filters, segment
radii retrieval and, finally, a graph compression and denoising algo-
rithm. Each of those stages was separately evaluated using a range of
metrics, including a new one aimed at assessing the uniformity of the
reconstructed network. Obtained results confirmed that the method
performs well in terms of both qualitative and quantitative analysis,
given the characteristic imperfections in the examined images.

1 Introduction

The leaves of flowering plants tend to exhibit complex, intricate ve-
nation structures [30]. Their most characteristic feature is the ex-
istence of numerous anastomoses [24] that distinguish them from
trivial tree-like topologies present in more primitive organisms [43].
These elaborate networks evolved to serve a diverse set of functions,
such as reinforcing mechanical stability of the lamina, transporting
water and nutrients, or discouraging potential herbivores [33].

As a result, they became a compelling research topic for a wide
range of fields. In the case of plant physiology, vein arrangements
heavily influence given leaf hydraulic capacities [25, 34] and its max-
imum photosynthetic rate [6]. In the case of paleoecology, investi-
gating them gives crucial insights into past climate changes [39] and
how they affected macroevolutionary trends [5]. Topological traits of
the vascular networks can be also used as a robust basis for species
taxonomy [42], enabling automatised differentiation and classifica-
tion [25]. Finally, developmental biology analyses venation graphs
to find facts that would advance our general understanding of tissue
growth and formation [36].

Additionally, given that planar reticular networks are ubiquitous
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and occur in various places other than vasculatures of dicotyledons
and monocotyledons [8], new discoveries in this field could poten-
tially benefit other areas of research such as studies of the blood ves-
sels in the retina, liver or brain, anastomosing foraging networks built
by slime molds and fungi, lowland river networks, human-made road
systems, force chain networks in granular materials and other scien-
tific fields, some of which may not yet exist [32].

Nevertheless, the study of leaf venation systems is often hindered
by difficulties in data acquisition and retrieval; costly, slow, and de-
structive sample processing methods being the chief issue [2]. In
consequence, there were multiple attempts at designing computer-
assisted techniques that would aid such endeavours.

1.1 Existing attempts

Some of those techniques, while also operating on input in the form
of leaf images, strive to solve problems not directly related to the
focus of this research (e.g. leaf texture classification [9]). Others deal
only with certain parts of the challenge, such as edge detection [31]
or vein identification [14].

There are, however, works aimed directly at distilling and investi-
gating full venation graphs. LEAF GUI [29] was an attempt to deliver
software capable of automatic vascular network detection and analy-
sis. The programme used two different thresholding methods (global
and local) to generate a binary image — an approach that improved
segmentation precision for unevenly illuminated images. However, it
offered only a set of built-in statistics, without providing the ability
to extract the graph for further examinations.

Another notable result was obtained during research on nested
graph cycles and the possibility of utilising them as a unique phe-
notypic trait [32]. The authors used a dataset of chemically cleared
and stained leaves, scanned at high resolution (6400 dpi). The images
were processed using a range of techniques, including Otsu thresh-
olding, Teh-Chin dominant point, and Delaunay triangulation. While
the results confirmed the method overall robustness, the restrictive
input quality requirement limited the possible range of its applica-
tions.

Other noteworthy achievements include procedures employing X-
ray imaging [2], scanning of pre-skeletonised leaf samples [3], or
aspiring to construct a general-purpose solution capable of under-
standing a broader array of biological structures (e.g. those present
in wings of certain insects) [11]. Similar problems were also encoun-
tered in case of related domains, i.e road [40] or cardiovascular net-
works [28]. Nonetheless, developing an accessible and low-cost ex-
traction technique remains a valid challenge.
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2 Data acquisition

In order to conduct the further research, it was necessary to acquire
a sufficiently diverse dataset containing images of unprocessed an-
giosperm laminae. Due to their dense and reticular venation net-
works, locally occurring dicotyledons species were chosen as the
plants of interest. The acquisition procedure itself consisted of two
stages: samples gathering and their subsequent digitising.

Collecting of the leaf samples took place during July and August
of 2018. It was conducted in multiple locations in the Małopolskie re-
gion of southern Poland: Dobra, Kraków, Polanka Wielka, Skawina,
Zabierzów, and Libertów. Obtained material belonged to the follow-
ing species: Ulmus minor Mill., Tilia L., Fagus sylvatica L., Aescu-
lus hippocastanum L., Acer platanoides L., Sambucus L., Populus L.,
Juglans regia L., Carpinus betulus L., Quercus L., Morus alba L.,
Alnus Mill., Corylus L., and Vitis L.. Once collected, the leaves were
stored under pressure for a day prior to scanning in order to make
them flattened and expose the venation networks better. They were
not processed physically in any other way, i.e. no chemical cleaning
or staining was involved.

Digitising was performed using an Epson Perfection V300 scanner
with 600 dots per inch optical resolution — a general-purpose non-
professional apparatus. The gear choice was motivated by the de-
sire to develop an extraction technique whose applicability would not
be restricted by expensive equipment requirements. Scans were cap-
tured in a blacked-out environment with the device lid kept open, as
those conditions provided the best results quality. Other approaches
(such as scanning with a white background or with an additional light
source above the sample) were assessed as inferior and rejected at the
initial stages of the research.

Output images were initially 7019 pixels wide and 5096 pixels
high, which amounted to roughly 65MB files. However, it was pos-
sible to optimise their size by cropping out the void space around the
region of interest, reducing the effective area up to 9 times. No fur-
ther modifications were applied to the photographs before forward-
ing them to the actual graph extraction pipeline. The final dataset
consisted of 376 pre-cropped scans. Their example representative can
be seen in Figure 2a.

3 Extraction pipeline

The proposed network extraction method can be expressed as a
pipeline of operations, the output of one acting as the input of the
subsequent step. The whole process is divided into two major stages:
one dealing with the problem of vein detection and one responsible
for the venation graph reconstruction.

3.1 Vessel detection

The aim of the first pipeline stage was to transform the initial image
into a binary form that would enable a straightforward distinction
between the veins and the non-vein areas. In the ideal case pixels
containing vessels should be coloured white, leaving all the other
ones black. Its function can be interpreted as a digital (and therefore
more accessible) equivalent of the previously mentioned chemical
staining and etching process. A simple supervised learning solution
in form of a feed-forward artificial neural network was employed in
order to achieve this objective.

3.1.1 Leaf area detection

Training a supervised model requires a set of examples that had been
labelled beforehand by an external expert. In case of vasculature
recognition such set is comprised of appropriately marked pixels: es-
tablished as either empty or depicting a vein. An additional auxiliary
classifier was used to facilitate the process of obtaining those mark-
ings. Its purpose was to identify the non-rectangular area occupied
by the leaf lamina and, as a consequence, spare the need to label and
analyse the irrelevant background regions during the steps to follow.

That task turned out to be a relatively uncomplicated one, as a
simple shallow neural network has proven to be a sufficiently capable
tool for dealing with it. The utilised architecture consisted of only
two layers: input (75 units) and output (2 units). The input contained
a pixel to be classified and its neighbourhood up to the radius rl of
2 pixels (in the sense of L∞ metric), each pixel represented by 3
values corresponding to the RGB channels. The reasoning behind
the chosen rl is detailed in Section 4.1.1.

Normalized Exponential Function (Softmax) [13] was used as the
activation function on the output layer in order to make the out-
put vector a probability distribution. The weights of the network
were optimised using the Stochastic Gradient Descent [4] technique
with learning rate parameter η = 0.01 and a Categorical Cross-
Entropy [17] loss function.

The classifier yielded by the aforementioned configuration suc-
cessfully selected inhabited regions of the scanned images, while ig-
noring noise introduced by dust specks and minuscule tissue remains
that tend to soil the device glass when working with organic matter.
Figure 2b demonstrates the example results of its work.

Figure 1. GUI application created to aid the manual labelling of the
training samples

3.1.2 Labelling procedure

Pixel-level precision of the vein predictions is necessary to recon-
struct the finest of the network vessels. Thus, the assembled set of
training observations should strive to maintain the same order of fi-
delity. Nevertheless, collecting pixel-wise markings on a large scale
is a tedious and time-consuming endeavour. To aid that effort and
make it as effective as possible, a complementary GUI tool was im-
plemented and employed during the labelling step. A sample screen-
shot of the application in the middle of the process can be seen in
Figure 1.

There were three key design goals for this software: to provide
the user with the necessary context to correctly label the given pixel,
to minimise the number of actions required to do so, and to provide
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a satisfactory perceivable latency (lower than 10 ms) [7]. The first
one was achieved by the double-window interface (offering both a
zoomed-in view and a broader picture), the second by offering cus-
tomisable keyboard shortcuts. However, real-time rendering of the
category mask, random jumping to an unmarked area, and persis-
tence of the provided labels caused performance issues.

Several optimisations were deployed to deal with those problems
and speed up the labelling experience. The current label mask for a
whole image was precomputed and loaded from the hard drive dur-
ing application start, with relevant cropping being applied to the pre-
sented view as suitable. Similarly, the list of possible jump locations
was predetermined and stored in memory for future uses. Finally,
saving of the gathered information became manually triggered to
minimise the number of costly write operations. Together, they al-
lowed a quick and reliable collection of user-provided labels.

3.1.3 Vessel detection

The actual detection of the vascular segments was performed by a
slightly deeper neural network trained on the previously marked sam-
ples. It should be noted that it was sufficient to use a training set
around three orders of magnitude smaller than the area of a single
leaf, containing less than 0.15 % of its pixels (the validation and test
sets were obtained in the same way, but using patches from samples
unknown to the classifier). Additionally, an already trained model is
usually reusable for other specimen belonging to the same species,
lowering the need for manual labelling even further.

The utilised neural network encompassed three hidden layers,
apart from the input and output one. The input layer once again con-
sisted of 75 units (RGB channels of a square 5×5 pixel window). The
hidden layers utilised the Rectified Linear Unit (ReLU) [16] activa-
tion function and comprised 35, 35, and 34 units, respectively. Lastly,
the output layer contained the standard 2 Softmax [13] activated units.
The SGD [4] optimiser and the Categorical Cross-Entropy loss [17]
were used once more to obtain the final network weights.

This rather simple and straightforward model architecture was
chosen over more sophisticated approaches for a number of reasons.
First of all, the discussed task was extremely local in its nature —
the objects to be detected were, by definition, always placed in the
exact centre of the input image. Also, apart from the largest ones, the
vessels were usually a few pixels wide and positioned close to one
another. Those factors, together with the limited volume of the train-
ing data, caused contemporary approaches (such as Deep Convolu-
tional Neural Networks [27], which promote spatially local input fil-
ters and stack layers of them to construct a hierarchy of increasingly
global and abstract features) to be an unfavourable alternative. Fi-
nally, the subsequent stage is, to a certain level, noise-tolerant due to
the nature of the information aggregating operators (such as median).
Near-perfect classifier accuracy was therefore desirable, but not crit-
ical — and the described model provided an acceptable performance
(its more comprehensive evaluation can be found in Section 4.1.2).
Sample outcome of this pipeline step is depicted in Figure 2c.

3.2 Venation graph reconstruction

A greyscale image depicting the probability of finding a vein in a
given pixel was a starting point for the second processing stage,
aimed at recreating the whole venation structure in a graph form.
That stage began with several image-preprocessing steps, then per-
formed network extraction, simplification, and finally, segment width
recognition.

3.2.1 Network preprocessing

During this phase, a sequence of transformations listed below was
applied to the input image to expose the network topology and facil-
itate the subsequent graph reconstruction.

Binarisation First, the classifier predictions had to be binarised.
It was done using a standard single threshold technique [35], assign-
ing 1 to the pixels with prediction values Ix,y ∈ [0, 1] higher than
binarisation threshold tb, and 0 otherwise.

binarisetb(Ix,y) =

{
1 if Ix,y � tb ,
0 otherwise.

(1)

A threshold value of tb = 0.5 was chosen for the context of this
work; justification of that decision is included in Section 4.1.2. Fig-
ure 2d presents a typical image state after this step.

Quasi-median filter The role of the next step was to both elimi-
nate outlier noise and regenerate missing parts of the veins discon-
nected due to not satisfying the tb threshold. To do so, a quasi-median
filtering scheme was designed and applied to the image. Normally,
the median filter sets the value of a central pixel to the dominant
class of a certain neighbourhood. However, veins are often relatively
thin and, thus, tend to not constitute the majority in a given area. As a
consequence, a threshold parameter tq was introduced so as to adjust
the filter to this particular phenomenon.

quasi-mediantq ,rq
(Ix,y) =

⎧⎨
⎩
1 if

n∑
i=1

n∑
j=1

Ni,j(Ix,y) � tqn
2 ,

0 otherwise;
(2)

where Nn×n(Ix,y) | n = 2rq + 1 is the matrix containing neigh-
bourhood of a given pixel Ix,y up to the radius rq .

The lower the threshold, the more often positive values are as-
signed, increasing the recall of the method, yet risking to compro-
mise its precision by producing new false positives. The final values
of tq = 0.2 and rq = 2 were chosen as a middle ground between
connecting erroneously separated veins and introducing extra noise
into the pipeline. Effects of the filter application are shown in Fig-
ure 2e.

Quasi-watershed transform Leaf vascular networks form a retic-
ulate structure that keeps the organ nurtured [21]. The minuscule
free-ending veinlets have the crucial role in this process, but to make
the delivery possible they have to be connected with the root of the
network. Hence, the reconstructed structure should form a connected
graph.

However, noise and errors accumulated during the preceding steps
might have introduced additional, unreachable components. In order
to obtain a valid outcome, all those isolated sub-graphs had to be
removed. This problem was solved using a custom stochastic filter
inspired by the Watershed Transform [20].

The utilised implementation began by generating wn random seed
points (catchment basins) on the image. Each of them acted as a
metaphorical fountain, immersing the neighbouring non-zero pixels
in water. Water flow was executed by running Breadth-First Search
simultaneously from each of the sources. A Disjoint Set [15] was em-
ployed to keep track of discovered components, performing a union
operation whenever two of them overlap. In the end, only pixels be-
longing to the largest connected component are allowed to keep the
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(a) Scanned leaf lamina (b) Leaf area detection (c) Vessel detection

(d) Binarisation (e) Quasi-median filter (f) Quasi-watershed transform (g) Morphological thinning

(h) Shape-preserving compression (i) Width estimation (j) Shape-simplifying compression

Figure 2. Step-by-step overview of the proposed network extraction pipeline

positive binary value. In case of the discussed images wn = 100 has
proven to be a sufficient number of basins; a sample result is depicted
in Figure 2f.

Morphological thinning Some of the methods applied in related
works use semi-automated techniques of junction and centre line de-
tection [26]. However, they are not feasible for venation networks
processing because of the problem scale — a single leaf scan con-
tains at least several thousand junctions. Instead, to separate singular
veins from the others and mark their centrelines automatically, the
Morphological Thinning [23] filter was employed.

Every thinning method strives to satisfy the following four goals:
to preserve the currently present connectivity, to leave the already
existing curves unchanged, to create medial curves that lie along the
midpoints of elongated objects and are as thin as possible, and finally,

to do it in a lowest achievable number of operations. The utilised vari-
ant analyses the image iteratively, removing pixels that match a set of
criteria, which themselves change slightly during odd and even iter-
ations. Those criteria were designed to reduce densely populated ar-
eas, but simultaneously avoid breaking eight-connected components
and 2× 2 squares [18].

The output of the characterised filter is a skeletonised version of
the venation image, depicting centrelines of the individual veins and
their intersections. Example of such outcome is portrayed in Fig-
ure 2g.

3.2.2 Graph reconstruction

The binary skeleton provided by the precedent pipeline steps can be
utilised as a basis for a naive recreation of the vessel graph. The
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method works as follows: each non-zero pixel on the resulting im-
age constitutes a graph node and there is a graph edge between such
node and all the other nodes in its Moore neighbourhood [41] of
range rm = 1. The result is a raw network that faithfully reflects the
input data but has several shortcomings.

The unnecessary high number of nodes and edges (up to 3× 105)
inflates the memory footprint of such structure and would signif-
icantly affect the running time of most graph analysis algorithms.
Also, the fact that all edges are exactly 1 pixel long hinders the ef-
forts to obtain meaningful features characterising them (such as the
diameter of a given segment). Two graph compression algorithms
(shape-preserving lossless and shape-simplifying lossy one) together
with width estimation scheme were introduced to deal with the afore-
mentioned problems.

Shape-preserving compression Due to the nature of the previ-
ously applied thinning transform the only nodes with a degree greater
than 2 are those lying near the junctions. Therefore, it is potentially
possible to replace a sequence of connected degree 2 nodes with a
single edge equivalent. Nonetheless, such operation would destroy
information about the given edge curvature and hamper future in-
vestigations of its parameters. Instead, the employed graph compres-
sion procedure aimed to reduce only those edges that form a single
straight line.

The proposed algorithm works in an infinite loop. During each
iteration, it lists all the non-intersection nodes. It then visits each one
of them and, if the straight-line criterion is met, removes it along with
its edges and creates a new edge connecting its neighbours. After
such iteration, the number of such replacements is checked. If no
changes were made in the current run, the algorithm stops.

Algorithm 1 Compression of the straight edges
(V,E) ← G
s ← true

while s do

s ← false
D ← {v ∈ V | Degree(v) = 2}

for d ∈ D do

if Degree(d) = 2 then

{m,n} ← {v ∈ V | (v, d) ∈ E}
if Direction(n, d) = Direction(d,m) then

V ← V � {d}
E ← E � {e ∈ E | d ∈ e} ∪ {(m,n)}
s ← true

Since the initial edge placement was based on the Moore neigh-
bourhood, nodes that belonged to separate branches but were lying
too close to the intersection (i.e. 1 pixel away) became erroneously
connected. Such faulty edges were nonsensical from the domain
perspective but cluttered most of the junction points. An additional
graph clean-up procedure was introduced in order to discard them.

It was derived from the following three observations: incorrect
edges were always exactly 1 pixel long; they formed triangle-shaped
(and rarely square-shaped) cliques; if the intersections were close to
each other those cliques overlapped. Thus, the aim of the clean-up
algorithm was to remove every clique satisfying the aforementioned
conditions by replacing its components with a single node. The coor-
dinates of that new node were equal to a median of the ones belong-
ing to the nodes it supplanted.

The effect of those two sub-steps was a graph still completely con-
sistent with the input image, but considerably smaller and free of

Algorithm 2 Removal of the intersection cliques
(V,E) ← G
G′ ← (V, {e ∈ E | Length(e) = 1})
C ← ConnectedComponents(G′)

for c ∈ C do

Q ← {q ∈ Cliques(c) | |q| > 2}
for q ∈ Q do

E ← E � {(m,n) ∈ E | m ∈ q ∧ n ∈ q}
for k ∈ q do

for l ∈ {v ∈ V | (k, v) ∈ E} do

E ← E � {(k, l)} ∪ {(Centre(q), l)}
for u ∈ Q do

if q ∩ u �= ∅ then

E ← E ∪ {(Centre(q),Centre(u))}
V ← {v ∈ V | Degree(v) > 0}

faulty edges. Sample visualisation of such network can be seen in
Figure 2h.

Vessel width estimation The graph obtained during the previous
steps captured only the topological features of the given leaf vascu-
lature. However, it did not include information about the diameter
of individual vessels, crucial when analysing network flow capacity.
This step aimed to retrieve that information by applying a simple
inflate-and-stop technique.

The algorithm iterates over all edges once and tries to expand each
of them until a stopping criterion is met. Since the processing of a
single edge does not affect the other ones, the operation can be paral-
lelised without further changes. The inflation begins with a set con-
taining all pixels belonging to a given edge. Then it adds to the set all
pixels in rm = 1 Moore neighbourhood of the ones already taken.
Next, it checks whether the stop condition is satisfied. If not, the loop
is repeated and the current set becomes inflated once more.

The stopping criterion checks whether the percentage of pixels de-
picting veins in a pre-thinned image among all the inflation set pixels
(left side of the inequality) is lower than a certain threshold (right
side of the inequality). Formally, it can be expressed as

v

(l + 2i)(2i+ 1)
< 1− l(1− tw)

l + 2i
, (3)

where i is the inflating iteration number, v is the number of vessel
pixels, l is the original length of the edge and tw is the sensitivity
parameter governing the algorithm tolerance to missing vessel frag-
ments.

In case of this work, a value of tw = 0.95 was chosen, allowing
only a small fraction of pixels in the expanded set to be empty. The
provided formula is adaptive in its nature, i.e. with each iteration the
condition becomes increasingly harsh, preventing noise-induced un-
controlled expansion. The estimated width is equal to the number of
feasible iteration. Results of such assessment are visualised in Fig-
ure 2i.

Shape-simplifying compression The straight-line requirement of
the first compression algorithm was a demanding one, limiting the
possibility of edge aggregation to relatively short segments. Width
estimation described in the previous step was, in consequence, done
in a very local manner and yielded a noisy outcome.

To deal with that problem, and to further reduce the output graph
size, another compression pass was performed, but this time omitting
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the same-angle principle and only requiring the removed node degree
to be equal to 2 in order to be discarded. The width w of the final
aggregated edge was equal to the weighted sum of the intermediate
ones:

w =

∑
i

liwi∑
i

li
(4)

where wi is the width of the ith edge it replaced and li is its length.
The outcome of that second compression algorithms (and the final
result of the extraction pipeline) is presented in Figure 2j.

4 Tuning and evaluation

The following acronyms are used in table headers throughout this
section: F1 (F-score), P (precision), R (recall), TP (true positives),
FP (false positives), FN (false negatives), and TN (true negatives).
Detecting a vein in a given pixel is treated as a positive result, the
opposite outcome as a negative one.

4.1 Evaluation of the vessel detection stage

The initial stage consisted of typical machine learning tasks. Their
evaluation was therefore executed by employing standard measures
and tools, such as accuracy or cross-validation.

4.1.1 Leaf area detection tuning

The first parameter that needed to be tuned was the rl radius deter-
mining the input of the leaf area detector. Even the smallest possible
value rl = 1 offered acceptable performance (99.417 ± 0.035%
accuracy, estimated using 10-fold cross-validation on a dataset con-
taining almost 0.5×106 samples). However, closer inspection of the
misclassified samples revealed that they were mostly dust specks,
few pixels in size and far away from the region of interest. Increas-
ing the radius to rl = 2 (resulting in 5×5 pixel input window) solved
that problem without overcomplicating the classifying model.

4.1.2 Vessel detection tuning

The vessel detecting classifier was tuned using the train-validation-
test approach. Three separate datasets were obtained by labelling
small fragments of leaf lamina, each dataset containing samples from
a different area. Their sizes and class compositions are presented in
Table 1. The training dataset was intentionally created as almost bal-
anced, others reproduce more accurately the actual class distribution.

Table 1. Contents of vessel detector tuning datasets.

Dataset Samples Veins Non-veins

Train 6437 3165 (49.17%) 3272 (50.83%)
Validate 3299 1018 (30.86%) 2281 (69.14%)
Test 3298 1083 (32.84%) 2215 (67.16%)

Over 103 various neural network configurations were evaluated in
order to select the optimal one. All their parameters were picked ran-
domly from the pre-set ranges unless specified otherwise. The ran-
dom search of parameter space was utilised instead of grid search due
to its statistically higher efficiency and lower required computation
time [1].

Each considered arrangement started with a fixed 5 × 5 pixel in-
put layer, followed by a varying number of hidden fully connected

layers (between 1 to 4, each of them containing from 10 to 60 units),
and a 2 unit output layer. Also, three different optimisers were tested:
SGD [4] (with and without the Nesterov Momentum [37] modifica-
tion), Adam [22], and Nadam [12]. Learning rates were picked uni-
formly from a ]0, 1] range. Adam hyper-parameters were assigned
in accordance with the original authors’ suggestion (β1 = 0.9,
β2 = 0.999, ε = 10−8). Network training was stopped if the loss
value did not improve by at least Δ = 0.005 during the last p = 10
iterations. In the end, all candidate architectures were compared us-
ing their accuracy scores on the validation dataset.

The winning arrangement has been already characterised in Sec-
tion 3.1.3. Its performance was additionally assessed using the pre-
viously left aside test dataset. Details of the obtained results are pre-
sented in Table 2. Elbow rule together with Receiver Operating Char-
acteristic and Precision-Recall curves [19] were used to establish an
appropriate discrimination threshold tb for the binarisation step (Sec-
tion 3.2.1).

Table 2. Results obtained with the chosen vein detection model.

Dataset F1 P R TP FP FN TN

Validate 0.946 0.944 0.948 0.674 0.017 0.016 0.293
Test 0.939 0.926 0.951 0.647 0.025 0.016 0.312

4.2 Graph reconstruction evaluation

Quantitative evaluation of the following steps (i.e. image filters ap-
plication and network reconstruction) is conceptually harder, as there
exists no indisputable ground truth to which one can compare the
pipeline outcome. Consequently, the measures discussed in this sec-
tion should be interpreted as guidelines to correct performance judge-
ment, rather than the optimisation goals themselves.

4.2.1 Quasi-median filter threshold

The threshold parameter tq of the quasi-median filter represents the
trade-off between being able to rectify detection result and creating
unintended false positives. Low values cause small segments discon-
nected by noise from a central component to stay this way. High
ones, on the other hand, create new edges non-existent in the original
image.

Table 3. Skeletonised image consistency scores depending on tq .

tq F1 P R TP FP FN TN

0.1 0.342 0.903 0.211 0.806 0.004 0.150 0.040
0.2 0.338 0.933 0.206 0.808 0.003 0.151 0.039
0.3 0.321 0.955 0.193 0.809 0.002 0.153 0.037
0.4 0.301 0.966 0.178 0.809 0.001 0.156 0.034
0.5 0.237 0.979 0.135 0.810 0.001 0.164 0.026
0.6 0.129 0.993 0.069 0.810 0.000 0.177 0.013

In order to estimate the desirable tq a quasi-accuracy measure was
proposed. To calculate it, the outcome of the binarisation step was
treated as the correct class labels, while pixels from the thinned im-
age served as the hypothetical classifier output. As a result, the ob-
tained scores (presented in Table 3) depicted the consistency between
the network skeleton and the original vein predictions. If the applied
filtering prevented noise-caused detachments from the core network
the score should improve. Thus, tq = 0.2 was selected using the
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elbow rule, as for the subsequent values the associated F1 scores
started to deteriorate.

4.2.2 Network uniformity measure

The process of designing the graph extraction pipeline highlighted
one additional issue. During the method development phase, there
was a need for a measure that would express the general quality of the
output structure, i.e. lack of artefacts and anomalies. The first attempt
at specifying such score mirrored the approach used in Section 4.2.1:
the final graph was rendered and compared with the initial vessel
prediction. However, the gathered F1 values were often unrelated to
the common-sense assessment of the result correctness.

(a) δu = 0.49× 106, F1 = 0.58 (b) δu = 14.67× 106, F1 = 0.70

Figure 3. Uniformity measure and its relation to the F1 score

A novel measure, inspired by an observation of arterial branches
blood flow [38], was introduced to deal with that problem. In case of
nutrition flow networks, the relation between radii of adjacent vessel
tends to satisfy the following equation:

Rα = Rα
1 +Rα

2 + · · ·+Rα
n , (5)

where R is the radius of the main branch, Ri | i ∈ {1, . . . , n} are
the radii of the thinner sub-branches and α is a parameter specific to
a given vessel type. For the sake of this work, it was assumed that α
is roughly constant and equal to 2.7 — a guess that should be verified
in future studies.

The proposed score measures how much a given graph violates the
law described above. In formal terms it could be defined as

δu =
m∑
i=1

|Rα −
ni∑
j=1

Rα
i,j | , (6)

where α is the previously discussed coefficient, m is the number of
intersections, ni is the number of sub-branches in a given intersec-
tion, and Ri,j are the appropriate radii. An example of its practical
application is demonstrated in Figure 3, where (unlike the F1 score)
it favours the cleaner variant of width reconstruction.

5 Conclusions

The proposed pipeline is a robust tool, enabling efficient extraction
of the vessel networks from scanned leaf images. Choices made dur-
ing its design were driven by two principles: to maintain simplicity
and to perform both qualitative and quantitative results evaluation

Figure 4. Example of an extracted leaf venation graph

when the correct decision is ambiguous. Full-size example of the fi-
nal reconstructed venation graph can be seen in Figure 4. After the
last compression step, it is comprised of 32500 nodes and 44297
edges (together with information about their diameter), confirming
the method ability to capture low-level details of analysed structures.

Nonetheless, there are various areas left open for subsequent re-
search. Vessel detection is a context-dependent activity (the proba-
bility that a given pixel contains a vein is higher if its neighbours
contain it as well). Integrating that information into the utilised clas-
sifiers is a promising solution for increasing their accuracy and reli-
ability. Alternative pipeline arrangements and configurations (using
different perceptive windows and filter sequences) could be also ex-
plored and evaluated, potentially boosting the method performance.
Furthermore, it might be fruitful to design and implement a middle-
way graph simplification algorithm: one that would keep nodes in
key bending points of a given segment while still considerably reduc-
ing their number. Finally, the gathered networks themselves await an
in-depth investigation with dedicated tools, such as invariant-based
fingerprinting [10].

The presented outcomes were obtained using an Apple MacBook
Pro 15 2019 Series personal computer (2.6 GHz Intel Core i7, 16 GB
2400 MHz DDR4, Intel UHD Graphics 630 1536 MB). The average
pipeline execution time for a single input image was equal to 17.5±
6.6 min, with vessel detection (10.1±3.7 min) and width estimation
(2.9 ± 1.1 min) being the chief contributors (estimates are based
on 12 repeated runs). The high variance of the reported values is a
result of differences between individual leaves, particularly in size
and venation structure. However, it should be noted that optimising
the method calculations time was not the focus of this study and, as a
consequence, utilised implementations were often unrefined (e.g. no
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GPU support for neural network). If necessary, it would possible to
parallelise the computation heavy steps in a map-reduce scheme: the
vein segments (as well as the whole leaf scans) can be processed
independently from one another.
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