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Abstract. In the pharmaceutical industry the screening of opaque
vaccines containing suspensions is currently a manual task carried
out by trained human visual inspectors. We show that deep learning
can be used to effectively automate this process. A moving contrast
is required to distinguish anomalies from other particles, reflections
and dust resting on a vial’s surface. We train 3D-ConvNets to predict
the likelihood of 20-frame video samples containing anomalies. Our
unaugmented dataset consists of hand-labelled samples, recorded us-
ing vials provided by the HAL Allergy Group, a pharmaceutical
company. We trained ten randomly initialized 3D-ConvNets to pro-
vide a benchmark, observing mean AUROC scores of 0.94 and 0.93
for positive samples (containing anomalies) and negative (anomaly-
free) samples, respectively. Using Frame-Completion Generative
Adversarial Networks we: (i) introduce an algorithm for comput-
ing saliency maps, which we use to verify that the 3D-ConvNets
are indeed identifying anomalies; (ii) propose a novel self-training
approach using the saliency maps to determine if multiple networks
agree on the location of anomalies. Our self-training approach allows
us to augment our data set by labelling 217,888 additional samples.
3D-ConvNets trained with our augmented dataset improve on the re-
sults we get when we train only on the unaugmented dataset.

1 Introduction

One of the challenges faced within the pharmaceutical industry is
the screening of liquid vaccines (also referred to as suspensions). A
visual inspection process is required to ensure that opaque suspen-
sions are free of undesirable particles, since aggregates are believed
to cause unwanted immunogenic responses [3, 18, 24]. Screening
suspensions is currently a manual task carried out by trained human
visual inspectors. The inspection process requires the content of each
vial to be shaken up in order to identify anomalies, which are fre-
quently only visible for an instant3. Human inspectors must remain
focused while processing large batches of vials. Therefore, while
manual inspection is effective, an automated approach offers signif-
icant potential towards a reliable cost-effective inspection. An auto-
mated solution could prove invaluable during an epidemic, allowing
pharmaceutical companies to increase the production rate of vaccines
containing suspensions without having to make a compromise re-
garding product integrity. In contrast, recruiting and training new vi-
sual inspectors would delay the role-out of much needed medicines.

In recent years there have been significant advances within the
field of automated image and video classification, with deep learn-
ing techniques utilizing Convolutional Neural Networks (ConvNets)
setting new standards. In this paper we show that deep learning can
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be used to detect non-desirable particles within vaccines consisting
of an opaque liquid. Our contributions can be summarized as follows:
1) We outline our process for constructing a video dataset using vac-
cines supplied by the HAL Allergy Group. We built an automated
vial rotator (AVR) for inducing the moving contrast necessary to
identify anomalies [20]. However, recordings suffer from motion blur
over the first 20 – 40 frames due to particles moving at a high velocity
after the vial is spun (See Fig. 3). Due to motion blur good particles
within the vials can appear elongated, making them hard to distin-
guish from anomalies. To evaluate the extent to which motion blur
affects classification accuracy we split recorded samples into seg-
ments consisting of 20 frames. We hand-labelled the segments based
on the presence of anomalies, enabling us to construct a dataset of
14k training and 6k evaluation samples, derived from 160 vials.
2) We empirically evaluate the ability of 3D-ConvNets [11] to detect
anomalies using our initial dataset, observing average AUROC (Area
Under the ROC Curve) scores of 0.94 and 0.93 for positive samples
(containing anomalies) and negative (anomaly-free) samples, respec-
tively. We also find evidence that excluding samples with motion blur
improves classification accuracy.
3) We introduce an algorithm for computing saliency maps to ver-
ify that predictions are based on the presence of anomalies. For this
we use Frame-Completion Generative Adversarial Networks (FC-
GANs) [10] to identify frame regions that impact predictions. We
conduct a qualitative evaluation of the saliency maps, finding predic-
tions are predominately relying on the correct input features.
4) Due to the small number of training samples the 3D-ConvNets
over-fit after 100 epochs. To address this issue we use self-training
(bootstrapping) for augmenting our dataset [30], incorporating the
FC-GANs-based saliency maps into a multi-classifier voting system
to automatically label additional training samples. Upon optimiz-
ing 3D-ConvNets using the additional samples we observe improved
AUROC scores of 0.96 for positive and negative evaluation samples.

The remainder of the paper proceeds as follows: first we discuss
the related work (Section 2), followed by the visual particle inspec-
tion challenge and the relevant background literature (Section 3).
We subsequently outline our dataset construction process (Section 4)
and benchmark the ability of 3D-ConvNets to detect anomalies in
suspensions (Section 5). In Section 6 we introduce FC-GANs as
a means to produce saliency maps, which serve a double purpose:
(i) we use the saliency maps to verify that predictions are based on
the presence of anomalies; (ii) we propose a novel self-training tech-
nique that incorporates the saliency maps into a multi-classifier vot-
ing system. We find that networks trained using the augmented self-
training dataset outperform 3D-ConvNets trained with the unaug-
mented dataset (Section 7). We consider future work in Section 8,
and conclude the paper in Section 9.
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2 Related Work

Past efforts towards automating particle inspection have relied on
segmentation methods for tracking and classifying potential anoma-
lies individually using an adaptive sampling strategy [31]. However,
for the evaluated product capturing eight sequential images for each
vial is sufficient for classification. In contrast, the anomalies within
the product discussed in this paper are often obscured due to high
opacity. Therefore, longer image sequences are required to detect
anomalies. Furthermore, the large number of good particles increases
the computational burden for segmenting and identifying each po-
tential defect. Recently Tsay and Li [26] showed that deep learning
can be used to detect faults in lyophilized (immobile) drug products.
Faults were detected with 85-90% accuracy using samples consisting
of six images at 90 degree rotations. The authors encountered chal-
lenges with the network overfitting due to limited amounts of training
data. To mitigate overfitting transfer learning was used. In contrast,
we turn to self-training in Section 7. Zhao et al. [32] investigate a mo-
bile product using a single-frame Faster-RCNN network combined
with clustering to determine the target motion area. However, the au-
thors find that single image classification is unreliable for this task.
Therefore, due to our product requiring a moving contrast for iden-
tifying anomalies we turn to 3D Convolution Neural Networks (3D-
ConvNets) for our evaluation, and propose FC-GANs-based saliency
maps in Section 6 for determining the target motion area.

3 Background

In this section we first summarize the challenges of visually inspect-
ing opaque liquid vaccines containing suspensions, before discussing
the techniques drawn upon to overcome them.

3.1 Visual Particle Inspection Challenges

Correct lighting conditions are a prerequisite for identifying anoma-
lies within liquid vaccines, since, due to a lack of contrast, their
identification under natural lighting conditions is currently infeasi-
ble for human or automated visual inspection. A light intensity must
be found that is sufficient for illuminating the vial while provid-
ing a moving contrast to identify the smallest particles [20]. To ob-
tain a moving contrast human inspectors shake the vials to induce a
swirl during manual inspections. Automated approaches meanwhile,
such as the semi-automatic Seidenader V90+ inspection machine,
use servo motors to stir up particles inside the vials. However, this
approach has a side-effect of creating bubbles within the liquid. Fur-
thermore, light reflections and dust particles resting on the outer sur-
face of the vials can often be mistaken for anomalies within the liq-
uid [20]. Opaque suspensions further increase the task difficulty by
obscuring anomalies, which as a result are frequently only briefly
visible. Figure 1 depicts some of these challenges.

3.2 Convolutional Neural Networks

Convolutional neural networks (ConvNets) represent the current state
of the art for image classification tasks [9, 7]. Their strength lies in
their large learning capacity, which can be adjusted through chang-
ing the network’s depth and breadth [15]. ConvNets take advantage
of assumptions regarding the location of pixel dependencies within
images, reducing the number of weighted connections compared to
a fully-connected neural network [15]. Traditional ConvNet archi-
tectures consist of multiple linear convolution and pooling layers

stacked up on top of each other followed by fully connected lay-
ers preceding the classification layer [25]. The convolutional layers
are banks of filters which are convoluted with an input to produce an
output map [10]. A non-linear activation function is then applied to
the output map such as the Rectified Linear Unit (ReLU) [17].

3.3 Video Classification

The moving contrast required for detecting anomalies means net-
works must be able to process a temporal dimension. Two methods
for coping with this additional dimension are Long Short-Term Mem-
ory (LSTM) cells for an arbitrary length history [8] and 3D-ConvNets
using three dimensional convolutional layers [11]. The filter size
within each convolutional layer is therefore set to a defined height
H , width W , color channel size C and length T , representing the fil-
ter’s length along the temporal dimension [11, 13]: H×W ×C×T .
In this paper, we use 3D-ConvNets.

3.4 Greying the Black-Box

Despite being a black-box based technique, deep learning models
are increasingly deployed in safety-critical systems [19]. While mis-
classification of edge cases cannot be ruled out, there have been ef-
forts to “grey out the black-box”. DeepXplore for instance systemat-
ically evaluates deep learning architectures, using a neuron coverage
metric to measure the number of rules that are exercised by a set of
network inputs, thereby identifying erroneous behaviours [19]. Alter-
natively, saliency maps can be computed to identify salient features
within network inputs, using either gradient or perturbation-based
saliency methods [6]. In Section 6 we use saliency maps to verify that
3D-ConvNets are identifying anomalies within the vials. However,
unlike Greydanus et al. [6] we replace sub-regions in the input frames
with a realistic anomaly free content to find the regions with the
biggest impact on the prediction. We create the replacement anomaly
free content with Generative Adversarial Networks (GANs) [5].

3.5 Generative Adversarial Networks

Goodfellow et al. [5] proposed GANs for capturing the distribution
of a dataset. GANs consist of two adversarial networks: a generative
model G and a discriminator D. The networks play a game where D
is trained to distinguish dataset samples from those originating from
G, while G learns to maximize the probability of fooling D. The dis-
criminator’s loss is used to guide the optimization of G. GANs have
been used to capture the distribution of a number of dataset types,
including images [16], videos [16, 27], text [4], 3D models [28] and
even pharmaceutical drugs [12]. Furthermore GANs deliver impres-
sive results when tasked with completing an image with a masked
area. Iizuka et al. [10] trained an image completion network tasked
with fooling two discriminators: a local discriminator focusing on
the output produced for the masked area, and a global discriminator
that processed the entire image. The resulting generator is capable of
removing objects within an image, replacing the extraction area with
realistic content. We want to achieve a similar outcome within our
vial samples in order to predict the location of the anomalies within
our vials, which we discuss in more detail in Section 6.

3.6 Self-Training

Self-training was introduced by David Yarowsky [30] as a method for
word-sense disambiguation, where an initial classifier is trained us-
ing only a small set of labelled samples. The learned rules are used to
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(a) Reflection (b) Bubbles

(c) Dust Particles (d) Dust Particle

Figure 1: Yellow arrows point to anomalies within the liquid
vaccines, red arrows point to the labelled entity.

assign labels to unlabelled samples, allowing a fresh classifier to be
trained using a larger dataset. This bootstrapping approach is useful
for tasks where gathering large amounts of labelled data is infeasi-
ble due to the cost associated with hand-labelling samples [1]. How-
ever, automatic labelling requires considerations regarding reducing
the impact of noisy labels resulting from mis-classification [29]. A
multi-classifier voting system with a defined level of strictness can
reduce the number of noisy labels [21]. For our current task we also
have an insufficient number of labelled samples, despite investing a
considerable amount of time into the dataset construction process de-
scribed below. In Section 7 we use self-training to address this issue.

4 Dataset Construction

In this section we describe how we recorded and labelled our dataset.
Equipment: The HAL Allergy Group provided the 160 vials of
product type P02U40 that we used for recording our dataset, and
financed an AlliedVision MANTA G-235B POE monochrome net-
work camera and a CCS TH2-51/51-SW Compact homogeneous
LED back-light. We implemented an Arduino controlled Automated
Vial Rotator (AVR) to ensure that the recordings are standardised.
Using a Brushless Motor Emax MT2213 935Kv our AVR is capable
of inducing a swirl inside a vial to stir up the contents. Inspections of
upright standing containers have been shown to have poor detection
rates [20]. We therefore added a servo for adjusting the inspection
angle to increase the recorded surface area. This addition allows us
to take full advantage of the LED back-light to narrow the camera’s
aperture sufficiently and increase the depth of focus. While our cur-
rent AVR is not intended for a pharmaceutical production workflow

(for which efficient conveyor belt solutions already exists), it does
provided a means through which to record a dataset in the setting of
our research institution. We provide photos of our AVR in Figure 2.

(a) (b)

Figure 2: Photos of the Automated Vial Rotator

Motion Blur: One of the challenges regarding tuning the camera
prior to recording the vials, was to find a depth of field that provides
a sharp focus for all the particles within the suspensions. This means
that the aperture size has to be narrowed to enable a sufficiently deep
depth of field. A smaller aperture requires longer shutter speeds in
order for sufficient light to reach the camera’s sensor. Despite in-
creasing the light emitted by our strobe to the maximum setting, we
are only able to record using 25 fps, and as a result the initial 20 – 40
frames from each recording suffer from motion blur (Examples are
provided in Figure 3). Therefore, due to particles’ increased velocity
after the vial is rotated using the motor, even good particles appear
elongated during the initial frames of each recording.

(a) (b)

Figure 3: Two examples of frames suffering from motion blur.
Arrows point to anomalies within the vials.

Recording process: Prior to recording our dataset the vials were
split into three categories based on the difficulty in manually locat-
ing anomalies: 66 Anomaly Free (AF), 43 Easy Rejects (ER) and
51 Challenging Rejects (CR). From each category 20 vials were set
aside for recording an evaluation set. We recorded 2k training and
1k evaluation videos per category. We were uncertain of the impact
repeated exposure to the AVR’s forces would have on the integrity
of each vial’s content. Therefore, each vial was visually inspected
prior to being recorded, to ensure it still belonged to the designated
category. Upon completing the recording process we applied a pre-
processing script to our recordings, using background subtraction to
establish the active region with regards to floating particles within
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each frame. This allowed us to discard static particle free areas of
each recording. We subsequently down-sampled and cropped each
sample’s 160 frames to a 100× 100 pixel region based on the upper
left most active pixel coordinate.
Labelling: We conducted an initial trial run upon completing the
steps outlined above, with limited success. We believe there are two
reasons why the 3D-ConvNets struggle to learn to detect anomalies
directly from the 160-frame sequences:

1. despite our efforts dust particles frequently attached themselves
to the vials, representing a potential confounding factor given the
limited sample size;

2. we hypothesize that the 3D-ConvNets are sensitive towards the
velocity of the particles in the liquid, i.e., excluding samples suf-
fering from motion blur will improve the classification accuracy.

To test this hypothesis we hand-labelled 14,000 training samples
( 1
2

AF, the other 1
2

ER & CR) consisting of 20-frame sequences,
plus an additional 6000 samples from our evaluation recordings
( 1
3

ER, 1
3

CR, 1
3

AF). Extracting 20-frame sequences from 160-
frame recordings allows frames belonging to the same vial to be
distributed across both positive (containing anomalies) and negative
(anomaly-free) labels when the anomaly is only visible within a sub-
set of frames. We assign one video level label – positive or negative
– to each 20-frame sequence extracted from the 160-frame record-
ing. Each 20-frame sequence is treated as an independent sample,
where an anomaly appearing in 1 out 20 frames is a sufficient condi-
tion to label the 20-frame sequence as positive. This additional step
reduces the likelihood of the networks learning to classify based on
confounding factors such as dust particles, bubbles within the liquid
and reflections. However, we note that in practice the classifications
from each 20-frame sample extracted from a recording could be ag-
gregated, with one 20-frame sample receiving a positive classifica-
tion being sufficient to reject a vial.

5 Evaluation of 3D-ConvNets

Upon completing the manual labelling process we train ten randomly
initialized 3D-ConvNets on our dataset. Each network receives sam-
ples consisting of 100×100×20 pixel values as inputs. The networks
consist of four 3D convolutional layers with 32, 64, 64 and 128 fil-
ters, a fully-connected layer with 1024 nodes and finally a Sigmoid
output layer. Adam [14] is used to minimize the cross entropy loss
Hy′(y) = −∑2

i=1 y
′
ilog(yi), where yi represents the prediction, y′

i

the true data label, and there are two classes, i = 1, 2.
We achieve a mean prediction accuracy of 85% across the ten

trained networks. However, a closer look at the accuracy and loss
conditioned on the frame-range during which the sample was ex-
tracted reveals interesting insights. We observe that due to motion
blur predictions made for frames extracted between time-steps 0 and
20 are generally poor (78.6%). Meanwhile, for positive samples (ER
& CR) the highest accuracy / lowest loss is observed between time-
steps 40 to 100, with 89.6% accuracy for ER and 82.2% for CR. For
negative (anomaly free) samples we observe an increase in correct
classifications and lower losses in frames with less movement. How-
ever, 88.7% is the highest percentage of correct predictions across all
evaluation sets, achieved between frames 80 and 100. Therefore, suf-
ficient motion is required to distinguish anomalies from confounding
factors. These findings support our hypothesis from Section 4, that
classification accuracy is dependent on the velocity of the particles.
Therefore, our models are able to more accurately classify samples

not suffering from motion blur, where mis-classification can occur
as a result of good particles appearing elongated. We illustrate the
average loss scores for frame ranges in Table 3 in Section 7, where
we compare the performance of our initial classifiers with those op-
timised via self-training.

6 FC-GANs based Saliency Maps

To verify that the 3D-ConvNets are detecting the anomalies found
within the ER and CR evaluation sets we compute saliency maps
using Frame-Completion GANs (FC-GANs). In this section we first
discuss the implementation and training of the FC-GANs, before out-
lining our algorithm for computing the saliency maps. This is fol-
lowed by a qualitative analysis of our saliency maps. In Section 7 we
incorporate the FC-GANs-based saliency maps into a multi-classifier
voting system to automatically label additional training samples.

6.1 Frame-Completion GANs Training

As discussed in Section 3 we are using FC-GANs inspired by the
image completion GANs from [10] to compute our saliency maps.
We train the FC-GANs using only AF samples, meaning the filled in
region is unlikely to contain anomalies. The generator receives the
samples with masked frames as input. During training the location
and dimensions of the mask are randomly selected. The inputs are
subsequently processed by a fully convolutional network, trained to
complete the masked region.

6.2 Computing Saliency Maps

We compute our saliency maps by applying a sliding mask to an in-
put sample, using a trained FC-GANs generator to obtain completed
frames. At each location we compute the absolute difference from the
original prediction, allowing us to identify salient regions. Therefore,
given a trained classifier C and a generator G, we compute a saliency
map as follows for a sample X . First C will predict the probability
p that X contains an anomaly. Subsequently we compute a saliency
map S by sliding a h×w-pixel mask over the input frames, using G
to complete the blanked out region, feeding the completed frames to
C, and observing the absolute difference between the probability p′

and p. The difference is added to corresponding saliency map cells
that were masked within the input. Finally, a matrix M is maintained
to compute the number of times each cell within the saliency map is
updated, which is used to obtain the average saliency score for each
cell, as outlined in Algorithm 1.

Algorithm 1 Computing a saliency map

1: Input: Classifier C, Generator G, Mask h× w, Sample X
2: Init: Saliency map S, Counter matrix M , Stride η
3: p ← C(X)
4: for x = 1, x = x+ η, while x+ w < width(X) do

5: for y = 1, y = y + η, while y + h < height(X) do

6: Y = G((X[x : x+ w, y : y + h] = 0))
7: S[x : x+ w, y : y + h] += |C(Y )− p|
8: M [x : x+ w, y : y + h] += 1
9: end for

10: end for

11: Return S �M
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Time-step: 1 2 3 4 5 6 7 8 9 10

Ground

Truth:

FC-GANs

Example

Input:

FC-GANs

Example

Output:

Saliency:

Table 1: Row 1 depicts a 10 frame sequence with an aggregate floating in the top left corner. FC-GANs are used to obscure the aggregate in
frames 4 to 10 (Rows 2 and 3). By repeating this process and sliding the mask across the frames, we can compute the absolute differences in

predictions, and are thereby able to compute a saliency matrix, which we subsequently apply to the ground truth frames (row 4).

6.3 Saliency Map Evaluation

As depicted in Table 1, FC-GANs offer a means through which to
remove anomalies and replacing the masked area with the type of
suspensions one would expect in the evaluated product. Furthermore,
adding the saliency map as a separate color channel to the original
frames allows us to visualize the salient features within the input im-
ages and gain interesting insights, as depicted in Table 2. First we
observe that in frames with sufficient movement the classifier’s pre-
dictions appear to be based on the anomalies, which can be distin-
guished from reflections, dust particles and the edges of the vials.
Furthermore, via the saliency maps we can gain insights regarding
the trajectory of anomalies that travel large distances, and they allow
us to confirm that the classifiers are capable of distinguishing small
aggregates from proteins. Through the saliency maps we can verify
that 3D-ConvNets are able to identity anomalies of different shapes
and sizes irrespective of location4. Saliency maps are therefore a first
step towards providing a valuable tool to help visual inspectors inter-
pret decisions made by the classifiers.

7 Self-training

Despite being trained with the same dataset, upon plotting the pre-
dictions of each classifier for ER and CR evaluation samples in a
heatmap (Figure 4), we observe that the classifiers often disagree.
Therefore initializing each network using a unique seed value and
stochastic sampling are a sufficient condition for convergence upon
different optima. We observe that networks having different strengths
can enable the construction of a diverse dataset during automatic
labelling. We assign positive (containing anomalies) and negative
(anomaly-free) labels using strict and lenient voting conditions, re-
spectively, with the following intuition:

1. We observe a sample is likely to be anomaly free when classified
as negative under strict voting conditions, where a positive pre-
diction is triggered when a small subset of classifiers believe there
is an anomaly.

4 We provide a link to a video of our saliency maps: https://youtu.
be/S1IapmRl9H0

2. For positive vials we observe that false-positives can be minimized
under lenient voting conditions, where a subset of classifiers must
agree both on the likelihood of a sample containing an anomaly
and the location.

We use the FC-GANs based saliency maps to measure the agree-
ment between classifiers under lenient voting conditions. A positive
label is assigned to samples only when n > 1 classifiers predict with
above 0.8 certainty that a vial is positive, and with a median pair-
wise L2 distance between saliency maps that is less than 20.0. We
chose these values by applying the lenient voting condition to a set
of samples derived from anomaly free vials that were previously not
included in the training or evaluation sets. This allows us to keep the
number of false-positives to 4.5%, while assigning positive labels to
108, 944 (35.45% of) unlabelled samples. We subsequently use the
strict labelling condition to obtain an additional 108, 944 negative
samples. Prior to automatically assigning labels we exclude samples
from the less indicative frame ranges, only keeping sequences start-
ing at 40 ≤ t ≤ 100. We subsequently augment our dataset, adding
217, 888 self-training samples to our 14,000 hand-labelled samples,
and train an additional ten randomly initialized 3D-ConvNets.

Figure 4: The heatmap above illustrates that the classifiers often
disagree regarding a vial’s status, with darker areas indicating that

samples received a higher positive prediction.
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Time-step: 1 3 5 7 9 11 13 15 17 19

Example 1:

Example 2:

Example 3:

Example 4:

Table 2: For each example the red areas illustrate the saliency (bottom row) for the inputs (top row). Examples 1 & 2 depict the trajectory of
two aggregates. Example 3 shows the maps can be used to verify that classifications are not based on confounding factors such as reflections

(bottom left) and edges (upper left). In Example 4 we see the network can distinguish a small aggregate from a good particle.

All Anomaly Free (AF) Easy Rejects (ER) Challenging Rejects

Table 3: In the first row we depict the average accuracy achieved for each evaluation set. We observe that classifiers optimized with the
self-training dataset outperforms those trained with the smaller hand-labelled set. In the second row we provide a breakdown of the average

loss according to the frame range during which the evaluation sample was extracted.
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The ConvNets optimized with the self-training dataset signifi-
cantly outperform those using only hand-labelled samples, as evident
from the time-series plots depicted in the first row of Table 3. Further-
more, the frame range plots illustrating the mean cross entropy loss
in the second row show a decrease in error across all evaluation sets.
This translates to an increase in prediction accuracy for challeng-
ing rejects, achieving 85.1% between frame range 40 to 100. Fur-
thermore, the overall accuracy for evaluation sets of 88.7% between
frames 80 and 100 increases to 90.5%. Finally, we compute the AU-
ROC for both approaches using samples between frame ranges 40
and 120. Self-training achieves an AUROC of 0.96 for positive and
negative samples, compared to 0.94 and 0.93 when only using the
hand-labelled dataset (see Figure 5). This evidence supports that dis-
agreeing classifiers can be used under strict and lenient classification
conditions, to automatically label and add samples to a dataset while
providing sufficient sample variance for learning improved models.

(a) Positive Samples

(b) Negative Samples

Figure 5: AUROC Plots

8 Future Work

We have successfully demonstrated the potential of deep learning
for the automated inspection of opaque liquid vaccines and are cur-
rently working with HAL and other partners to develop this into a
commercial solution. As evident from our self-training experiment in
Section 7, the 3D-ConvNets can benefit from using a richer dataset
for optimization, ideally using samples derived from a diverse set
of vials via a multi-camera conveyor belt system. Other interesting
avenues for future research include:

• Robotics research suggests that additional sensory input obtained
from being able to manipulate an object via interactive perception
can lead to improved classification [2]. We are therefore investi-
gating the feasibility of handing over manual control of the vials
to an agent that can determine the inspection pose, regions of in-
terest and vial angle, while also being able to re-sample a vial if
sampling leads to an uncertain prediction. We note that human vi-
sual inspectors often use the option of re-examining a vial.

• In the interest of reducing training times and gathering multiple-
runs we down-sampled our frames during pre-processing. How-
ever, arguably some useful details are lost during this step, and
it would be reasonable to expect a further improvement in accu-
racy if the classifiers were to be trained using larger frames. An
increase in detail should help with the detection of smaller bound-
ary samples, where even human inspectors reach their limit.

• For the experiments outlined in Section 7 we trained a new set
of randomly initialized classifiers using our self-training dataset.
However, we observe that re-training a set of pre-trained networks
using a larger dataset could reduce the amount of time required
to achieve convergence. Indeed, limiting the amount of training
time that deep learning architectures require and reducing delays
to the production work flow is critical within an industrial set-
ting [22, 23]. Therefore, evaluating to what extent optimizing pre-
trained networks can enable a faster convergence in this context,
without having to compromise on accuracy, represents an impor-
tant avenue for future work in this area.

• Since this technology will be a component of a critical system
we shall look further into verification and interpretability, building
on our work for computing saliency maps to help interpret the
decisions made by classifiers.

• While this paper focuses on suspensions, we are currently look-
ing to obtain datasets to evaluate the general applicability of the
techniques discussed towards other formats, e.g., clear solutions.

9 Conclusion

We have provided evidence that deep learning can be used to auto-
mate the process of visually inspecting opaque liquid pharmaceutical
vaccines containing suspensions. While our work shows the bene-
fits of training classifiers using an augmented dataset obtained via a
novel self-training approach, we also provide a comparison against
human judgement, namely the ground truth labelling. Here it is worth
noting that despite deep learning being widely used in the fields of
computer vision and biological image processing, the trained net-
works rarely match human performance (which in our case would
mean 100% accuracy). However, while the performance and avail-
ability of human inspectors may vary, e.g., due to tiredness, sickness,
vacations, etc, automated systems can operate indefinitely while de-
livering consistent, competitive performance that almost matches hu-
mans.

To summarize our contributions:
1) We outline a process for recording a video dataset of liquid vaccine
samples containing suspension. We use a hand built automated vial
rotator (AVR) to standardise the recording of liquid vaccines supplied
by the HAL Allergy Group and obtain recordings for our dataset. To
improve the quality of our dataset we manually labelled 14,000 train-
ing and 6,000 evaluation samples, with each sample consisting of 20
frames of 100× 100 pixels.
2) Using this dataset we train ten randomly initialized 3D-ConvNets,
where upon computing the AUROC we observe scores of 0.94 and
0.93 for positive (anomaly containing) and negative (anomaly-free)
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samples, respectively.
3) We introduce an algorithm which uses Frame-Completion GANs
to identify salient regions within inputs, and subsequently use this
method to verify that the classifiers are learning to identify anoma-
lies within the vials.
4) Given the small size of our dataset, we use self-training, automat-
ically labelled 217, 888 20-frame samples. To reduce the likelihood
of noisy labels we use a voting system that also makes use of the
FC-GANs based saliency maps to determine when classifiers are in
agreement regarding an anomaly’s location. Classifiers trained with
the augmented dataset achieve AUROC scores of 0.96 for both posi-
tive and negative samples, improving on the benchmarks set by 3D-
ConvNets using our unaugmented dataset (See Table 3 and Figure 5).
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