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Abstract. Diagnosing diseases such as leukemia or anemia requires
reliable counts of blood cells. Hematologists usually label and count
microscopy images of blood cells manually. In many cases, however,
cells in different maturity states are difficult to distinguish, and in
combination with image noise and subjectivity, humans are prone
to make labeling mistakes. This results in labels that are often not
reproducible, which can directly affect the diagnoses. We introduce
TIMELY, a probabilistic model that combines pseudotime inference
methods with inhomogeneous hidden Markov trees, which addresses
this challenge of label inconsistency. We show first on simulation
data that TIMELY is able to identify and correct wrong labels with
higher precision and recall than baseline methods for labeling correc-
tion. We then apply our method to two real-world datasets of blood
cell data and show that TIMELY successfully finds inconsistent la-
bels, thereby improving the quality of human-generated labels.

1 INTRODUCTION

Manually labeling and counting cells based on morphology is an es-
sential component in diagnosing blood diseases such as leukemia or
anemia. Consequently, the quality of labels directly affects diagnoses
and patient outcomes. In many cases, however, cell types from the
same development line are difficult to distinguish, and in combina-
tion with image noise, lack of concentration, and subjectivity, hu-
mans are prone to make labeling mistakes. The labels are often in-
consistent and not reproducible, and for example, in an experiment
about classifying lymphocytes, ”31% of the morphologists were not
able to reproduce their previous classification” [33].

Existing approaches to improve labeling reproducibility and con-
sistency focus on automation via machine learning-based classifica-
tion, such as decision trees, support vector machines, or neural net-
works [3, 11, 15, 30, 32, 34]. However, training these algorithms re-
lies on manually generated, noisy labels, and propagating this noise
through training may result in biased predictions. To mitigate the ad-
verse effect of label noise on predictive power, different approaches
exist [10]: Algorithms can be applied that are relatively robust to la-
bel noise [1, 23, 29], filtering methods can be used to remove misla-
beled instances from the training set [26, 31, 35], or label noise can be
modeled explicitly [5, 17, 22]. For example, the algorithms k-nearest
neighbors (k-NN) and k-nearest centroid neighbors (k-NCN) [28]
find instances whose classes do not agree with the classes of their
neighbors [25, 27]. Alternative approaches find labeling errors based
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on confident learning [19, 20, 21], which estimates the joint distri-
bution between noisy labels and true labels to identify noisy labels
and improve training. While these algorithms are able to find noisy
or wrong labels, they do not provide suggestions on what the correct
labels should be. In addition, they are based on the premise of com-
plete automation, which, especially in the medical domain, is often
not feasible due to regulatory constraints requiring human oversight
and accountability.

In this work, we follow an orthogonal, human-centered approach:
Rather than taking the human (the hematologist performing the label-
ing task) out of the loop, we develop a human-centered interpretable
AI algorithm that comprises two stages. In the first stage, our algo-
rithm identifies those labels that are inconsistent with the morphol-
ogy of the cells in an unsupervised manner, i. e., without training on
noisy labels. In the second stage, an alternative, consistent label is
suggested to the hematologist performing the labeling task, based on
the labels of the cells in the direct neighborhood of the cell in ques-
tion. We ensure interpretability of the method by explicitly incorpo-
rating prior knowledge on the biological system and an expert-driven
error model into the state space model.

More specifically, pseudotime inference with Markov models for
labeling consistency (TIMELY) combines pseudotime inference al-
gorithms with inhomogenenous hidden Markov trees, which is an
extension of hidden Markov models. Hidden Markov trees are used
since blood stem and progenitor cells differentiate into more mature
cell types during their development process, where blood cell lin-
eages can branch into functionally distinct lineages. The differentia-
tion process itself is commonly described as a stochastic process fol-
lowing the Markov assumption, where cells can either remain in the
present type or differentiate into a child cell type [2]. Hidden Markov
trees reflect this differentiation process and can be used to model the
true, unobservable cell types (i.e. true labels) together with the noisy,
observed expert labels. Given a set of cell images and noisy labels,
we establish an intrinsic ordering of the cells based on pseudotime
inference methods. The ordered cells are used as input for the hidden
Markov tree. We extend standard hidden Markov trees to the inho-
mogeneous case, propose parametric transition matrices and derive
an efficient inference scheme. Finally, we identify inconsistent la-
bels and propose alternative, consistent labels to the practitioner. An
overview of TIMELY is shown in Figure 1.

The manuscript is structured as follows. In Section 2, we first de-
scribe how we establish an intrinsic ordering of the cells using pseu-
dotime inference algorithms. We then briefly review hidden Markov
trees and introduce an inhomogeneous extension with parametric
transition matrices. Our method TIMELY, which combines both, is
then described in detail. In Section 3, we demonstrate, based on ex-
tensive simulations, that our modeling approach is able to identify
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Figure 1. Overview of TIMELY. Given cell images and noisy labels, we use a neural network to learn meaningful feature vectors. Using a
pseudotime inference algorithm, we order these vectors along a trajectory and estimate the pseudotimes. The corresponding labels are sorted

accordingly and serve as the observations in a hidden Markov tree. The parameters of the hidden Markov tree are learned, and the hidden
labels and transition borders are inferred. Last, we retrieve the images with inconsistent labels along with the proposed labels from the model.

and correct noisy labels with higher precision and recall than state-
of-the-art methods for identifying noisy labels. Finally, we apply our
algorithm to two real-world datasets of white blood cells with noisy
labels in Section 4 and demonstrate that our method is able to iden-
tify inconsistent labels and suggest alternative, consistent labels to
practitioners in an interpretable manner. We validate these suggested
new labels by reclassification via a domain expert.

2 METHODS

2.1 Pseudotime inference

The pseudotime of a cell describes the developmental progress of the
cell along a dynamic process such as cell differentiation. The greater
the pseudotime of a cell, the more mature is the cell. By using pseu-
dotime inference algorithms, we can create a pseudotemporal order-
ing for all cells in a population. Pseudotime inference algorithms are
usually applied on single-cell gene expression similarity measure-
ments [13], where adjacent cells have higher expression similarity.
We can apply these algorithms to medical images by interpreting the
pixels of a cell image as information about the cell, similar to gene
expression data, to obtain an ordering of the cells along trajectories.

There is a multitude of pseudotime inference methods to date,
which differ in the requirement of existing prior information, scal-
ability, and type of topology [24]. Most pseudotime inference meth-
ods consist of two parts. The first part is the calculation of a low-
dimensional representation from the given expression data of the
cells, and the second part is the ordering of the cells along an in-
ferred trajectory.

Here, we use the algorithms SCORPIUS [6] and STREAM [7].
SCORPIUS shows very good performance for linear datasets [24],
while STREAM is well-suited for datasets with tree-like topologies.

In brief, given the expression profiles of the cells, SCORPIUS
obtains a low-dimensional representation using multi-dimensional
scaling (MDS). Next, SCORPIUS applies k-means clustering and
sets the initial trajectory by connecting the cluster centers. The final
trajectory results from an iterative refinement through the principal
curves algorithm [14]. The pseudotime is calculated by projecting
the low-dimensional representations onto the trajectory.

Similarly, STREAM first determines relevant features and then
performs dimensionality reduction using modified locally linear em-
bedding (MLLE). In the new embedding, an implementation of elas-
tic principal graphs (ElPiGraph) [4] is used to infer the trajectory
and branching points. ElPiGraph approximates datasets with com-
plex topologies by minimizing the elastic energy of the embedding
and applying graph transformations. The cells are then projected onto
the resulting tree according to their pseudotimes and their assigned
branches.

2.2 Hidden Markov trees

Hidden Markov trees are used to describe the differentiation process
of the cells, which is a stochastic process following the Markov as-
sumption [2]. There is one root cell type, and all other cell types
develop from it and can be mapped onto a tree-like topology reflect-
ing their respective progeny. Assume that we know the topology of
the dataset, i. e., we know the shape of the Markov tree.

Definition 1 A tree Z̄1 is a Markov tree if for each leaf, the directed
path connecting the root and the leaf is a Markov chain.

A hidden Markov tree is an extension of a Markov tree, and it is
used for applications where the Markov property does not hold or
where the states can only be observed indirectly. The model consists
of observed variables and hidden variables, where only the hidden
variables follow the Markov property. The present observed variable
depends on the present hidden state, but neither on previous observed
states nor on previous hidden states.

Define Z̄1 := (Z1, . . . , ZT ) and X̄1 := (X1, . . . , XT ) for T ∈ N

to be the hidden tree and the observed tree, respectively. The roots
of the trees are Z1 and X1, and both trees have the same indexing
structure.

Definition 2 Let X̄1 and Z̄1 be two trees, where X̄1 is the observed
tree and Z̄1 is the hidden tree. The pair (Z̄1, X̄1) is a hidden Markov
tree (HMT) if

• Z̄1 is a Markov tree, and
• the distribution of the observed variable Xt depends only on the

hidden variable Zt for all t ∈ {1, . . . , T}.

For the application on cell image labels, the variable Xt corre-
sponds to the noisy (observed) expert label, and Zt represents the
true (unobservable) label of the image, which may be different from
the expert label. The sequence of images is sorted by increasing pseu-
dotime, which has been calculated before by a suitable pseudotime
inference algorithm. Let K be the number of cell types and T be the
number of images in the dataset.

Definition 3 The hidden Markov tree (Z̄1, X̄1) is governed by the
parameters π ∈ [0, 1]K , A(t) ∈ [0, 1]K×K , and B ∈ [0, 1]K×K .
For 2 ≤ t ≤ T , 1 ≤ k, k̃ ≤ K, we define

πk := P(Z1 = k), (1)

A
(t)
kl := P(Zt = l | Zp(t) = k), (2)

Bkk̃ := P(Xt = k̃ | Zt = k), (3)

where p(t) denotes the parent of node t. We call π the start prob-
abilities, A(t) the transition matrix at node t, and B the emission
matrix. If the transition matrix A(t) is independent of t, the model is
called homogeneous; otherwise, the model is called inhomogeneous.
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The transition matrix A(t) describes the probability of staying in
the present cell type or changing to a child cell type. The emission
matrix B represents the expert labeling error model, where Bkk̃ is
the probability that the expert predicts label k̃ when the true cell type
of the cell in the image is k.

A hidden Markov model (HMM) is a special case of an HMT,
where the underlying topology is a chain. Figure 2 shows a visual-
ization of an HMM for our application.

Time-dependent transition matrices We use the following in-
formation to set up the parametric transition matrices. We know the
topology of the dataset, and following the Markov assumption of
blood cell differentiation [2], it is only possible for a cell to stay in
the same cell type or to transition to one of the child cell types (see
Figure 4 for a topology example). There is no way to skip one cell
type or to go back to a previous cell type. Once one of the end stages
is reached, there are no transitions anymore.

Standard homogeneous HMMs/HMTs are based on the assump-
tion that the transition between states is independent of t, which
would correspond to cells sampled uniformly across the development
trajectory. However, in practice, this sampling (i. e., the labeled cells)
are from arbitrary points on the development trajectory, which is re-
flected by large variation in pseudotime difference between neigh-
boring cells. This difference directly affects the probability of a cell
to transition to a different cell type. The larger the pseudotime dif-
ference between two cells, the greater is the likelihood for a transi-
tion (and the lower is the likelihood to remain in the same cell type).
Consequently, the entries of the transition matrix at node t should not
only depend on the cell type of the previous cell, but also on the pseu-
dotime difference between the present cell and the previous cell. To
model the dependency of the transition matrix on the pseudotime, we
extend the algorithms for HMMs and HMTs to the inhomogeneous
case and derive appropriate parametric transition matrices.

Define yt ∈ R≥0 as the pseudotime difference between node t−1
and node t, after they have been ordered by increasing pseudotime.
To find reasonable entries for the transition matrices, we rewrite the
transition probabilities at node t:

A
(t)
kl = P(Zt = l|Zt−1 = k, yt) (4)

=
P(Zt = l, Zt−1 = k, yt)

P(Zt−1 = k, yt)
(5)

=
P(Zt−1 = k)P(Zt = l|Zt−1 = k)P(yt|Zt = l, Zt−1 = k)

P(Zt−1 = k)P(yt|Zt−1 = k)
(6)

=
P(Zt = l|Zt−1 = k)P(yt|Zt = l, Zt−1 = k)

P(yt|Zt−1 = k)
. (7)

Define P(Zt = l | Zt−1 = k) =: pkl ∈ [0, 1] to be the transi-
tion probability from cell type k to cell type l. Let pkl be a constant
independent of t, with condition

∑K
l=1 pkl = 1 for all k.

For the probability P(yt | Zt = l, Zt−1 = k), we know that the
support of yt is [0,∞). Since we have no more information about the
distribution of the pseudotime difference, we use the maximum en-
tropy probability distribution. The least informative distribution for a
random variable with support [0,∞) and mean 1/λ is the exponen-
tial distribution with rate λ. Let the rate λ be dependent on the cell
types k and l.

Then, for each possible transition in the cell lineage tree, the entry
in the transition matrix after normalization has the form

A
(t)
kl =

pkl · λkl exp(−λkl · yt)∑K
i=1 pki · λki exp(−λki · yt)

(8)

for pki ∈ [0, 1] and λki > 0.
The parameters in (8) are learned using the generalized EM algo-

rithm [18] since the corresponding objective function is intractable.
The generalized Viterbi algorithm [9] then computes the most prob-
able hidden variables argmaxZ1:T

P(Z1:T | X1:T ).

Figure 2. Hidden Markov model for our application. A hidden
Markov model can be visualized as a graph, where the nodes

represent the random variables and the edges the transitions and
emissions. The expert labels serve as the observations and are
ordered by pseudotime. The task is to find the true cell types.

2.3 Our algorithm: TIMELY

TIMELY combines pseudotime inference methods with inhomoge-
nenous HMTs. The pseudotime inference algorithm establishes an
intrinsic ordering of the cells based on morphology, and the HMT
then finds inconsistent labels and proposes correct labels of the cells
corresponding to the true cell types.

The input of TIMELY is a set of images together with noisy expert
labels. First, we use a convolutional neural network to learn meaning-
ful feature representations of the cell images that are consistent with
the morphology of the cells. The convolutional network consists of
three convolutional layers with 32 filters each, where the filter size
is 3× 3. After each convolutional layer, there is a max-pooling layer
with pooling size 2× 2. A bottleneck of 50 units, which provide the
resulting feature vectors, is followed by two dense layers with 30
hidden units each and an output layer. As an alternative, we also ex-
plored unsupervised methods such as autoencoders to learn feature
representations of the images so that the training is not affected by
noisy labels; this yielded qualitatively similar findings (results not
shown).

Next, a suitable pseudotime inference method is applied to calcu-
late the pseudotimes, and the cells are ordered increasingly according
to the pseudotime. We use either SCORPIUS or STREAM, depend-
ing on the topology of the data. The sorted expert labels serve as the
observed information in the HMT, and the hidden labels are the true
cell types to be determined. We can use our background information
about the dataset to fix the start probabilities π and the emission ma-
trix B, while the parameters of the transition matrices are learned by
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the generalized EM algorithm. Through the generalized Viterbi al-
gorithm, we find the most probable true labels and the estimated cell
type borders, which are unique due to the Markov assumption [2].
Any inconsistencies between the true labels and the expert labels are
potential mistakes by the expert (Figure 3). Hematologists can recon-
sider the affected images and, if necessary, correct the labels of the
cells. The method is summarized in Algorithm 1. We implemented
TIMELY in Python, and the library SciPy is used for maximizing the
objective function in the generalized EM algorithm5.

Figure 3. Inconsistent label. The transition borders between the
classes are derived through the generalized Viterbi algorithm. An

image classification where the true label and the expert label do not
coincide may be an error of the expert.

Algorithm 1 TIMELY
Input: Images and noisy expert labels.
Output: Images with inconsistent labels and proposed labels.

1: Use background information about the dataset to define the
topology of the HMT, the start probabilities π, and the emission
matrix B.

2: Learn feature representations of the images using a convolutional
neural network.

3: Choose a suitable pseudotime inference algorithm and calculate
the pseudotimes of the feature vectors.

4: Sort the corresponding expert labels by increasing pseudotime.
5: Set up an HMT, where the sorted expert labels are the observed

information.
6: Learn the parameters in the transition matrices A(t) using the

generalized EM algorithm.
7: Apply the generalized Viterbi algorithm to infer the most proba-

ble true labels.
8: Identify images with inconsistent labels by comparing the true

labels with the expert labels.

3 COMPARISON TO BASELINES

3.1 Baseline methods

We compare TIMELY to three baseline methods. As discussed in
Section 1, most algorithms are either robust to noise, find and remove
noisy labels, or model label noise explicitly, but they do not propose
new labels.

5 The source code for the implementation can be found on
https://github.com/liu-yushan/label-consistency.

The algorithms k-nearest neighbors (k-NN) and k-nearest centroid
neighbors (k-NCN) [28] find neighbors for each instance for a given
distance measure. A commonly used distance measure for k-NN is
the Euclidean distance, while for k-NCN, we add instances to the set
of nearest neighbors for which the centroid of the new set is nearest to
the considered instance. The label of the considered instance is then
obtained by a majority vote. If the majority vote yields a different
label than the initial label of the instance, or if there is a tie, the
instance might be incorrectly labeled. To compare our method with
other methods that also propose corrections, we extend these two
methods with generalized editing [16], i. e., we choose numbers k
and k′ with (k + 1)/2 ≤ k′ ≤ k for k-NN and k-NCN. For each
instance, if there are at least k′ nearest neighbors from a different
cell type, the cell type of the instance is changed to that type. Unlike
in [16], we do not delete any samples. For both methods, we choose
the numbers k = 3 and k′ = 2, which are common values in the
literature [25, 27].

We also compare TIMELY to cleanlab [19, 20], which is based
on confident learning [21] and finds labeling errors. It estimates the
noise rates by calculating the joint distribution between noisy and
uncorrupted labels and then prunes inconsistent samples.

3.2 Simulation data

Since expert labels from real-world datasets are often noisy, we do
not know the ground truth labels of the images. For comparing our
algorithm to other methods in finding inconsistent labels, we simu-
late three datasets with different noise levels that mimic the cell dif-
ferentiation setting. Each dataset consists of 250 samples from five
cell types, where the underlying topology is a chain. The process of
simulating the datasets is the following:

1. Sample X ∈ R
2×250, where X is normally distributed.

2. Sort the columns of X by increasing X1j , 1 ≤ j ≤ 250.
3. Define the corresponding ground truth labels Y ∈ R

250, where
the entries Y50(i−1)+1:50i are i for i ∈ {1, . . . 5}.

4. Apply mapping P to project X to a higher-dimensional space:
X̃ = PX ∈ R

k×250. We choose k = 50 to be consistent with
our real-world datasets.

5. Add noise level l ∈ {10, 20, 30} to the ground truth labels Y by
randomly changing l% of the entries in Y to different labels. The
steps 1 to 4 are repeated for each noise level.

The idea is that the samples have a low-dimensional ordering, corre-
sponding to the pseudotemporal ordering, which can be retrieved by
dimensionality reduction of the higher-dimensional feature vectors.

3.3 Simulation results

The results of the comparison is shown in Table 1. The methods
k-NN+edit and k-NCN+edit modify the labels during application,
while k-NN, k-NCN, and cleanlab only find possible labeling er-
rors. TIMELY finds labeling errors and proposes new labels without
changing them directly.

We compare the proposed labels with the ground truth labels to
calculate the accuracy. The selected items are the instances that the
algorithm marked as labeling errors. While TIMELY finds errors in a
magnitude that is similar to the noise level, the other methods mostly
find too many errors, without increasing the recall. Only in one case,
k-NCN has a higher recall than TIMELY. Our method has the highest
accuracy, precision, recall, and F1 score in all the other cases.
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Editing in k-NN and k-NCN often improves the F1 score com-
pared to the versions without editing. However, edition of labels dur-
ing application influences the classification of subsequent samples so
that the accuracy drops if there are too many false positives.

4 APPLICATION TO REAL-WORLD
DATASETS

We apply TIMELY to two image datasets of stained white blood
cells. All images were generated from a digital microscope (Cellavi-
sion, Siemens Healthineers AG) and labeled by an expert. Due to the
challenges in manual labeling outlined in Section 1, the labels are
noisy and partly incorrect. For the preparation of the images, a thin
blood film is wedged on a glass slide and stained. The digital micro-
scope then locates the blood cells and creates corresponding images.
Our datasets contain images from several patients. TIMELY is ap-
plied on the whole dataset to first find an ordering of all images, then
it suggests a label for each image. For a new patient, images from the
same developmental tree can be mapped onto the already calculated
tree, and consistent labels can be read off the tree directly by making
use of the already computed transition borders.

4.1 Cell lineage line

Dataset The first dataset consists of 1000 cell images that con-
tain five cell types of the development line granulopoiesis. The topol-
ogy is a linear chain, and there are 200 images labeled by an expert
as belonging to each of the cell types promyelocyte (PMY), mye-
locyte (MY), metamyelocyte (MMY), band neutrophil (BNE), and
segmented neutrophil (SNE). Figure 4 shows the differentiation hier-
archy; example images in this order are shown in Figure 5.

Figure 4. Blood cell lineage in the datasets. The two real-world
datasets contain ten cell types.

Figure 5. Example images. The images show the five cell types
promyelocyte, myelocyte, metamyelocyte, band neutrophil, and

segmented neutrophil.

Parameters in HMM We use our background knowledge about
the dataset to fix the start probabilities π and the emission matrix B.
The dataset has five cell types, and we know that the root type in the
development process is PMY. So we can fix the start probabilities to
be

π :=
(
0.9 0.025 0.025 0.025 0.025

)T
. (9)

The first cell should be in the first cell type with high probability and
in the other cell types with low probability.

The constant emission matrix B is based on estimations of an ex-
pert who could realistically estimate the probability of labeling er-
rors. The emission matrix for the first dataset is shown in (10). The
more mature cell types band neutrophil and segmented neutrophil are
fairly easy for humans to differentiate, while the first three cell types,
especially myelocytes, are more difficult to label.

PMY MY MMY BNE SNE⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

PMY 0.7 0.25 0.04 0.005 0.005
MY 0.23 0.52 0.24 0.005 0.005
MMY 0.03 0.17 0.75 0.045 0.005
BNE 0.005 0.005 0.03 0.82 0.14
SNE 0.005 0.005 0.005 0.065 0.92

(10)

Pseudotime inference We use the algorithm SCORPIUS to com-
pute the pseudotimes. Before SCORPIUS is applied, we use diffu-
sion maps [8, 12] for dimensionality reduction, after which SCOR-
PIUS directly infers the trajectory without performing MDS.

Figure 6(a) shows the trajectory (black line) that is inferred by
SCORPIUS for the cell development line. Each cell is represented
by a point in the plot, which is colored according to its expert label.
The pseudotime is normalized to be between 0 and 1. The value 0
stands for the beginning of the development process, while the value
1 represents the end of the development process. In Figure 6(b), the
cells are grouped by cell type, and we see that with the development
of the cells, the pseudotime increases. For myelocytes, for example,
there are some cells with smaller pseudotimes; these might be in-
stances with wrong labels.

Visualization tool After parameter optimization, the HMM finds
unique transition borders between the cell types. We provide a visual-
ization tool for viewing the images, which is shown in Figure 7. The
images are ordered by the inferred pseudotime. Each image corre-
sponds to one point, which is highlighted in the color corresponding
to the expert label. The inferred transition borders from the HMM are
integrated, and the spaces between the borders are colored according
to the proposed cell types. Inconsistent classifications can be identi-
fied by mismatching colors. The expert can click on each point to see
the corresponding image and navigate to neighboring cells by click-
ing on the arrows, thereby getting an intuition why a specific cell was
marked as having an inconsistent label.

Inconsistent labels The amount of consistent labels, where the
hidden labels and expert labels coincide, is according to the HMM
72%, which means that there are 280 images with potentially wrong
labels.

The confusion matrix in Figure 8 shows that the consistency for
myelocytes and metamyelocytes is particularly low. Overall, the ten-
dency of the values are similar to the expert’s estimation of the emis-
sion matrix (10). Experiments showed that the results are quite robust
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Table 1. Comparison to baseline methods for simulation data. TIMELY outperforms all baseline methods in terms of accurately identifying
and correcting noisy labels.

Noise level Metric TIMELY k-NN k-NN+edit k-NCN k-NCN+edit cleanlab

10

Accuracy 0.984 - 0.920 - 0.944 -
Selected items 0.108 0.164 0.152 0.152 0.144 0.112

Precision 0.889 0.561 0.579 0.658 0.667 0.679
Recall 0.960 0.920 0.880 1.000 0.960 0.760
F1 score 0.923 0.697 0.698 0.794 0.787 0.717

20

Accuracy 0.992 - 0.932 - 0.820 -
Selected items 0.192 0.292 0.236 0.324 0.284 0.256

Precision 1.000 0.658 0.797 0.556 0.634 0.625
Recall 0.960 0.960 0.940 0.900 0.900 0.800
F1 score 0.980 0.781 0.863 0.687 0.744 0.702

30

Accuracy 0.972 - 0.792 - 0.712 -
Selected items 0.300 0.416 0.340 0.484 0.404 0.272

Precision 0.987 0.673 0.706 0.537 0.604 0.809
Recall 0.987 0.933 0.800 0.867 0.813 0.733
F1 score 0.987 0.782 0.750 0.663 0.693 0.769

(a) (b) (c)

Figure 6. Pseudotime inference. (a) Diffusion maps are used for dimensionality reduction of the feature vectors. The trajectory (black line) is
then inferred using SCORPIUS. (b) The cells are sorted by cell type. The pseudotimes, which are computed from the trajectory in (a),

correspond to the cells’ development progress. (c) STREAM calculates the pseudotimes of the cells, determines the branching points, and
draws the corresponding tree.

with respect to the emission matrix so that small changes in the esti-
mations will not affect the results significantly.

The 280 inconsistent images were given to a domain expert for re-
classification. For 128 of these images (45.7%), the expert confirmed
the previous labels. For the remaining 152 cells, the expert either re-
labeled them as the cell types the HMM proposed, or she could not
give a label with high confidence, which means that up to 54.3%
of the inconsistent images might have wrong labels. Most of the re-
classifications affect the first three cell types in the development line,
where the changes in the morphology can be very subtle.

4.2 Cell lineage tree

Dataset The second dataset consists of 1821 cell images from ten
classes that are part of a development process with branching points.
There are 200 images labeled by an expert as belonging to each of
the cell types promyelocyte (PMY), myelocyte (MY), metamyelo-
cyte (MMY), band neutrophil (BNE), segmented neutrophil (SNE),
blast (BL), basophil (BA), eosinophil (EO), and lymphocyte (LY).

For the last class plasma cell (PC), there are only 21 images. Figure 4
shows the underlying lineage tree of the dataset, where we have four
end stages with no further transitions. Eosinophils and basophils also
have the precursors myelocyte, metamyelocyte, and band neutrophil.
However, these would have different staining colors as the precursors
of the segmented neutrophil. Because those cell types are quite rare
in the blood, they are not included in the dataset.

Parameters in HMT As we can see in Figure 4, the root cell
should be a blast cell so that the entry for blast is very high in π.
The constant emission matrix B is again based on discussions with
an expert and is a consistent extension of (10). The five additional cell
types should not be too difficult to differentiate from the cell types of
the first dataset because they are part of different development lines.
Only the blasts have some similarities to the promyelocytes, which
are descendants of the blasts. The end stages segmented neutrophil,
basophil, and eosinophil should be easy for experts to classify.
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Figure 7. Visualization tool for experts. The cells are sorted by
increasing pseudotime, and each cell type is differently colored.

Inconsistent classifications can be identified by mismatching colors.

Figure 8. Confusion matrix for the first dataset. The confusion
matrix shows some similarities to the emission matrix (10). Most

inconsistencies are in the cell types myelocyte and metamyelocyte.

Pseudotime inference We apply the algorithm STREAM for in-
ferring a reasonable tree for the dataset. Two of the three branching
points in Figure 6(c) match the branching points from the cell lineage
tree in Figure 4. However, the last one where the eosinophils branch
off from the metamyelocytes is different. Generally, the eosinophils
are far away from the other cell types in the feature space after dimen-
sionality reduction. The connection point to the remaining tree might
not be so accurate. Another reason could be that the precursor cells of
segmented neutrophils and eosinophils look alike. Eosinophils have
the same progenitor stages as the neutrophils that are only stained
in a different color. The algorithm might identify the metamyelocyte
also as a previous development stage of the eosinophil. The range of
the pseudotimes are still plausible for all cell types.

Inconsistent labels The percentage of consistent labels according
to the HMT is 69%, which means that there are 564 images with
potentially wrong labels. The blasts and promyelocytes seem to be
mixed up often, while basophils and eosinophils have high agreement
between hidden labels and expert labels, probably because of their
distinct staining colors. The agreement for lymphocytes is also very
high since cells from different development lines are usually easier
to differentiate.

The 564 inconsistent images were given to a domain expert for re-
classification. The expert confirmed for 341 images their previous la-
bels so that up to 40.1% of the inconsistent images might have wrong
labels. Most reclassifications affect promyelocytes, myelocytes, and
metamyelocytes, the first three cell types in the granulopoiesis line.
The cells are mostly reclassified as the progenitor of the cell type
that the experts have determined. Figure 9 shows five example im-
ages that the expert has reclassified with the proposed labels from
the HMT.

(a) (b) (c) (d) (e)

Figure 9. Examples of reclassifications. (a) BA → LY. (b) PC → LY.
(c) PC → BL. (d) PMY → BL. (e) MMY → BNE.

5 DISCUSSION

We have introduced TIMELY, a human-centred approach for increas-
ing labeling consistency in medical imaging for cell type classifi-
cation. TIMELY takes as input cell microscopy images along with
noisy expert labels, identifies inconsistent labels and suggests alter-
native, consistent labels based on a two-step procedure. In the first
step, TIMELY establishes an intrinsic order between cells using a
pseudotime inference algorithm. In the second step, TIMELY builds
a Markov model upon the ordered cells and their noisy labels. De-
pending on the complexity of the dataset’s topology, an HMM or an
HMT is used.

We combine pseudotime estimations with interpretable HMTs to
establish a system that assists the annotating hematologist to gener-
ate more consistent cell classifications. By sorting the cells according
to the pseudotime, we enable the hematologist to consider each cell
in a neighborhood of cells that have a similar morphology, thereby
assisting him in making consistent decisions (Figure 7). In addition,
we transparently and explicitly encode domain knowledge in form of
differentiation hierarchies (Figure 4), start probabilities (9), and an
expert-driven emission matrix (10), reflecting prior experience on the
likelihood of labeling errors. Taken together, this allows the hematol-
ogist to develop an intuitive understanding on why specific cells are
suggested as being inconsistently labeled and helps a more readily
adoption in practice.

Manually labeling cells is also a time-consuming process, and our
method can be applied to reduce the time experts spend on this task.
Thus, once parameters of an HMT are optimized, new images from
the same developmental tree can be mapped onto the already calcu-
lated tree, and consistent labels can be read off the tree directly by
making use of the already computed transition borders.

Some modern digital microscopes have a functionality that auto-
matically suggests labels for cell images. An additional use case of
TIMELY is the application to such automatically generated labels
since they are often noisy, and in addition, the classification algo-
rithm does not include all possible cell types. These labels would then
serve as the observed information of the HMT, and only the incon-
sistent labels will be given to the expert for reclassification. Such a
system would be a further step towards an automated machine learn-
ing method that supports humans in a meaningful way.
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6 CONCLUSION

TIMELY is a probabilistic approach for improving the cell label-
ings of experts that combines pseudotime inference algorithms and
hidden Markov trees. Using pseudotime for ordering cells intrinsi-
cally leads to labels that are consistent with the morphology of the
cells. We incorporate necessary background information about the
data into an inhomogeneous hidden Markov tree, which makes use
of the pseudotemporal ordering. Our model does not only find noisy
labels like other filtering methods, but it also suggests alternative,
consistent labels. It is able to identify and correct noisy labels with
higher accuracy and precision than state-of-the-art methods for iden-
tifying noisy labels. Application on two real-world datasets and the
subsequent reclassification by an expert demonstrate that the label-
ings have indeed been improved by our algorithm.
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[28] José S. Sánchez, Filiberto Plá, and Francesc J. Ferri, ‘On the use of
neighbourhood-based non-parametric classifiers’, Pattern Recognition
Letters, 18(11-13), pp. 1179–1186, (1997).

[29] Pidaparthy S. Sastry, G. Dwarakanath Nagendra, and Naresh Man-
wani, ‘A team of continuous-action learning automata for noise-tolerant
learning of half-spaces’, IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 40(1), pp. 19–28, (2010).

[30] Aleksei Shpilman, Dmitry Boikiy, Marina Polyakova, Daniel Kudenko,
Anton Burakov, and Elena Nadezhdina, ‘Deep learning of cell classifi-
cation using microscope images of intracellular microtubule networks’,
in Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications, pp. 1–6, (2017).

[31] Jaree Thongkam, Guandong Xu, Yanchun Zhang, and Fuchun Huang,
‘Support vector machine for outlier detection in breast cancer surviv-
ability prediction’, in Advanced Web and Network Technologies, and
Applications, pp. 99–109, (2008).

[32] Razali Tomari, W. N. Wan Zakaria, M. Mahadi Abdul Jamil, Fari-
dah Mohd Nor, and Nik Farhan Nik Fuad, ‘Computer aided system for
red blood cell classification in blood smear image’, Procedia Computer
Science, 42, pp. 206–213, (2014).

[33] Wim van der Meer, Warry van Gelder, Ries de Keijzer, and Hans
Willems, ‘The divergent morphological classification of variant lym-
phocytes in blood smears’, Journal of Clinical Pathology, 60(7),
pp. 838–839, (2007).

[34] Leon L. Wheeless, Roy D. Robinson, Oleg P. Lapets, Christopher Cox,
Ana Rubio, Michael Weintraub, and Lennette J. Benjamin, ‘Classifi-
cation of red blood cells as normal, sickle, or other abnormal, using a
single image analysis feature’, Cytometry, 17(2), pp. 159–166, (1994).

[35] D. Randall Wilson and Tony R. Martinez, ‘Reduction techniques
for instance-based learning algorithms’, Machine Learning, 38(3),
pp. 257–286, (2000).

Y. Liu et al. / TIMELY: Improving Labeling Consistency in Medical Imaging for Cell Type Classification 1865


