
NASS: Optimizing Secure Inference via Neural
Architecture Search

Song Bian1 and Weiwen Jiang2 and Qing Lu2 and Yiyu Shi2 and Takashi Sato1

Abstract. Due to increasing privacy concerns, neural net-
work (NN) based secure inference (SI) schemes that simul-
taneously hide the client inputs and server models attract
major research interests. While existing works focused on de-
veloping secure protocols for NN-based SI, in this work, we
take a different approach. We propose NASS, an integrated
framework to search for tailored NN architectures designed
specifically for SI. In particular, we propose to model crypto-
graphic protocols as design elements with associated reward
functions. The characterized models are then adopted in a
joint optimization with predicted hyperparameters in identi-
fying the best NN architectures that balance prediction accu-
racy and execution efficiency. In the experiment, it is demon-
strated that we can achieve the best of both worlds by using
NASS, where the prediction accuracy can be improved from
81.6% to 84.6%, while the inference runtime is reduced by
2x and communication bandwidth by 1.9x on the CIFAR-10
dataset.

1 Introduction

With serious concerns growing over the security risks of prop-
erty stealing [15] and private information leakage [27] related
to machine learning as a service schemes, the study of the
security properties of both neural network (NN) training [20]
and inference [16] is becoming one of the most important fields
of study across the disciplines. In particular, a secure infer-
ence (SI) scheme refers to the situation where Bob as a client
wants to hide his inputs to Alice, the NN service provider.
Meanwhile, Alice also needs to protect her trained network
model, as such a trained model is extremely valuable due to
the costly dataset preparation and lengthy training processes.

While a number of protocols have been proposed for both
secure inference and training on neural networks [16,20,22,25],
the general approach of existing works is to find the equiv-
alent NN operations (e.g., matrix-vector product, activation
functions) in the secure domain (e.g., using garbled circuits
or homomorphic encryption), and instantiate the secure pro-
tocols accordingly. In other words, security is not an integral
part of the proposed protocol, but rather an added feature
with (in many cases, serious) performance penalties.

Recent advances in the secure machine learning field have
suggested the possibility of formulating the secure protocols

1 Kyoto University, Kyoto, Japan, email: paper@easter.kuee.kyoto-
u.ac.jp

2 University of Notre Dame, Indiana, USA, email:{wjiang2, qlu2,
yshi4}@nd.edu

as a design automation problem. For example, in [3], authors
proposed a framework that automatically instantiate param-
eters for homomorphic encryption (HE) schemes. Likewise, a
line of research efforts [7,14,16] have explored how to optimize
HE parameters and packing capabilities to improve the effi-
ciency of secure computations, especially for neural network
based protocols. In all of the existing works, secure primitives
are designed to maximize efficiency of a pre-defined neural
architecture (in fact, many of the existing works use the same
manually designed architecture).

We argue that the existing design techniques based on fixed
neural architectures lead to unsatisfactory solutions, as the
efficiency of SI (in terms of the inference time and network
bandwidth) are significantly affected by the architectures.
The performance non-linearity of cryptographic primitives are
demonstrated through Fig. 1, where the computational and
communication costs of SI are plotted with respect to quanti-
zation factors of some neural architecture. From Fig. 1, we can
see that for certain quantization intervals (e.g., 14-bit to 15-
bit), the inference time is doubled, while for other intervals
(e.g., from 2-bit up to 15 bits), the inference time remains
unchanged. This non-linear performance curve is primarily
due to the underlying primitive (in this case a packed homo-
morphic encryption (PAHE) scheme) that is constrained by
its cryptographic parameters. Our conclusion here is that, in
order to obtain better design trade-offs, a joint exploration
considering both secure primitives and neural architectures is
required to push forward the Pareto frontiers of the efficiency
and prediction accuracy of NN-based SI.

In this work, we propose NASS, a novel Neural Architecture
Search framework for Secure inference, where the optimiza-
tion of cryptographic primitives and NN prediction accuracy
are integrated. To the best of our knowledge, we are the first
to take a synthetic approach to improve both the accuracy and
the efficiency of SI on NN. In NASS, the process of finding the
best SI scheme is formulated as predicting the most reward-
ing neural architecture, where the reward is derived from the
accuracy and efficiency statistics. A system optimizer based
on reinforcement learning is used to take feedback from the
rewards to generate new architectures, acting as a neural ar-
chitecture search (NAS) engine. Our main contributions are
summarized as follows.

• Synthesizing Secure Architectures: To the best of our
knowledge, NASS represents the first work to search for
neural architectures optimized in secure applications with
multiple cryptographic building blocks. In NASS, crypto-
graphic primitives are modeled as design elements, and se-

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200288

1746



� �� �� �� ��
���	
���
����	��
������
�

���

����

����

����

����
��
��
��
��
��

�

��
��

��

��

��

��

��

 �

 �

!�

"
#�
$�
%�
�&
"
&

'�
�(
�)

�
��

Figure 1. The relationship between neural architectures and
the performance of secure inference, using a network with 1 Conv,
1 Relu, and 1 FC as example, where one more bit may double the

inference time.

cure computations with these elements become abstract op-
erators that can be automatically synthesized by the opti-
mization engines.

• Optimizing HE Parameters: While existing works have
already treated the instantiation of HE parameters as a
design problem and proposed some solutions [3], we point
out that these solutions are not adequate. In particular, we
identify an optimization dilemma in learning with errors
(LWE) based HE parameter instantiation, and observe that
this optimization problem is (computationally) rather dif-
ficult to solve, especially for NAS-based optimization with
fast turnaround time.

• A Thorough Architectural Search for SI: By conduct-
ing extensive architectural search, it is demonstrated that
the performance of SI can be reduced while improving the
prediction accuracy. We achieve a prediction accuracy of
84.6% on the CIFAR-10 dataset, while reducing 2x com-
putational time and 1.9x network bandwidth, compared to
the best known SI scheme [16] with a prediction accuracy
of only 81.6%.

The rest of this paper is organized as follows. First, in Sec-
tion 2, basics on PAHE, secure inference, and NAS are dis-
cussed. Second, the NASS framework is outlined in Sections 3
and 4, where we detail how security and parameter analyses
can be systematically performed, along with the design of
reward functions for the integration with the NAS engine.
Next, the output architectures of NASS along with perfor-
mance statistics are demonstrated in Section 5. Finally, our
work is summarized in Section 6.

2 Preliminaries

2.1 Cryptographic Building Blocks

In this work, we mainly consider the optimization involving
two types of cryptographic primitives, packed additive ho-
momorphic encryption (PAHE) based on the ring learning
with error (RLWE) problem [4–6, 10], and garbled circuits
(GC) [34]. In what follows, we provide a high-level abstrac-
tion of each individual primitive.

PAHE: A PAHE is a cryptosystem, where the encryption
(Enc) and decryption (Dec) functions act as group (addi-

tive) homomorphisms between the plaintext and ciphertext
spaces. Except for the normal Enc and Dec, a PAHE scheme
is equipped with the following three abstract operators. We
use [x] to denote the encrypted ciphertext of x ∈ Z

n, and
n ∈ Z here is some lattice dimension.

• Homomorphic addition (�): for x,y ∈ Z
n, Dec([x]� [y]) =

x+ y.
• Homomorphic Hadamard product (�): for x,y ∈ Z

n,
Dec([x] � y) = x ◦ y, where ◦ is the element-wise multi-
plication operator.

• Homomorphic rotation (rot): for x ∈ Z
n,

let x = (x0, x1, · · · , xn−1), rot([x], k) =
(xk, xk+1, · · · , xn−1, x0, · · · , xk−1) for k ∈ {0, · · · , n− 1}.
GC: GC can be considered as a more general form of HE. In

particular, the circuit garbler, Alice, “encrypts” some function
f along with her input x to Bob, the circuit evaluator. Bob
evaluates f(x, y) using his encrypted input y that is received
from Alice obliviously, and obtains the encrypted outputs.
Alice and Bob jointly “decrypt” the output of the function
f(x, y) and one of the two parties learn the result.

2.2 Homomorphic Evaluation Errors in
RLWE-based PAHE

In this work, we omit details on the implementation of RLWE-
based PAHE schemes, such as BFV [4, 10], BGV [5], and
CKKS [6]. However, for all of the above RLWE-based PAHE
schemes (and most RLWE-based cryptosystems), the cipher-
text output from the encryption function of the cryptosystem
bares some intrinsic errors, which can be thought of an addi-
tive components to the ciphertext, i.e.,

c = c+ e, (1)

where c is the “errorless” ciphertext, and e the error (both
are vectors in Z

n for some lattice dimension n). It is obvi-
ous that when we add two ciphertexts, c0 � c1, the error is
also additively increased (i.e., esum = e0 + e1). Similarly, ho-
momorphic Hadamard product and rotation operations also
increases the errors. Therefore, each level of homomorphic
evaluation increases the error contained in the ciphertext, and
when the size of the error become too large (i.e., too many
levels of homomorphic evaluations), some ciphertexts will not
be correctly deciphered. We emphasize the point that not all
ciphertexts become undecipherable as the size of the error is
randomly distributed, and this probabilistic behavior can be
utilized to improve the efficiency of SI schemes.

2.3 Secure Neural Network Inference

While a number of pioneer works have already established
the concept of secure inference and training with neural net-
works [20, 22, 25], it was not until recently that such proto-
cols carried practical significance. For example, in [20], an
inference with a single CIFAR-10 image takes more than 500
seconds to complete. Using the same neural architecture, the
performance was improved to less than 13 seconds in one of
the most recent arts on SI, Gazelle [16]. Unfortunately, 13
seconds per image inference is obviously still unsatisfactory,
especially given the large amount of data exchange in real-
world applications. Therefore, we adopt the Gazelle protocol

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search 1747



Bob (client)

Alice (server)

input image (u) decrypt from [v]

……

HE
Conv

ReLU
HE
FC secure CNN

Inference

[u]

[v]

GC

memory

Figure 2. An example of the architecture in Gazelle with one
Conv layers, one non-linear layers and one FC layer.

in this work, and take a system-level approach to improve its
efficiency.

An overview of the Gazelle protocol is outlined in Fig. 2,
where Alice wants to classify some input (e.g., image), and
Bob holds the weights. The Gazelle protocol classifies all NN
operations into two types of layers: i) linear layers, where the
computations are efficiently carried out by PAHE-based cryp-
tographic primitives, and ii) non-linear layers, where inter-
active protocols such as multiplication triples [2] or GC are
employed.

Threat Model: The threat model in Gazelle and this work
is that both Bob and Alice are semi-honest, in the sense that
both parties follow the described protocol (e.g., encryption
and decryption procedures in PAHE, GC), but want to learn
as much information as possible from the other party. In par-
ticular, Alice wishes to gain knowledge on the trained model
from Bob, and Bob is curious about the encrypted inputs from
Alice.

2.4 Neural Architecture Search

Recently, Neural Architecture Search (NAS) has been consis-
tently breaking the accuracy records in a variety of machine
learning applications, such as image classification [36], image
segmentation [19], video action recognition [23], and many
more. NAS attracts major attentions mainly because it suc-
cessfully eliminates the needs of human expertise and labor
time in identifying high-accuracy neural architectures.

A typical NAS, such as that in [36], is composed of a
controller and a trainer. The controller will iteratively pre-
dict (i.e., generate) neural architecture parameters, referred
to as child networks. The child networks will be trained from
scratch by the trainer on a held-out dataset to obtain the pre-
diction accuracy. Then, the accuracy will be feedback to up-
date the controller. Finally, after the number of child networks
predicted by the controller exceed a predefined threshold, the
search process will be terminated. The searched architecture
with the highest accuracy is identified to be the output of the
NAS engine.

Existing works have demonstrated that the automatically
searched neural architectures can achieve close accuracy to
the best human-invented architectures [36, 37]. In addition,
we also identify multi-objective NAS techniques proposed un-
der the context of field-programmable gate array (FPGA) and
mobile platforms [9,12,13,21,29,32,33,35]. However, without

proper security performance measures, the identified archi-
tectures can have over-complex structures that render them
useless in real-world cryptographic applications. In addition,
as demonstrated in Fig. 1, cryptographic primitives gener-
ally have complicated performance trade-offs, and no existing
works have demonstrated that a multi-objective NAS engine
is able to learn such complex behaviors. Therefore, the main
motivation of the NASS framework is to find accurate and
efficient neural architectures for secure inference schemes.

3 NASS Framework

3.1 Problem Formulation and Challenges

In this paper, we aim to identify the most efficient secure neu-
ral network inference via neural architecture search. The prob-
lem is informally defined as follows: Given a specific dataset
and a set of secure inference protocols, our objective is to au-
tomatically generate a quantized neural network architecture
and the parameters for each of the cryptographic primitives,
such that the reward of the resultant neural network after
training can be maximized. Here, we define the reward to be
a function of the prediction accuracy and performance statis-
tics, including the inference time and network bandwidth.

To solve the above problem, several challenges need to be
addressed from both the neural architecture search perspec-
tive and the secure protocol perspective. We list two main
challenges as follows.

Challenge 1: There are missing links among neural architec-
tural optimizations, quantization optimizations, and crypto-
graphic protocol optimizations, resulting in the non-optimal
solutions from existing works. This is based on our obser-
vation that all of the above optimizations are tightly cross-
coupled; that is, the optimization in one direction (e.g., bet-
ter prediction accuracy) can have positive or negative impact
on the other directions (e.g., larger quantization level and
higher secure inference time). Therefore, a framework that
can jointly optimize neural architectures, quantizations, and
performances of cryptographic primitives, is needed. In this
work, we derive the NASS framework (Section 3.2 and 3.3) to
fill the gap.

Challenge 2: To the best of our knowledge, there exists
no efficient performance estimator for secure inference (SI)
involving multiple cryptographic primitives. Since the NAS
engine generates a large amount of intermediate architectures
iteratively, without an automatic performance estimator, it is
impossible to evaluate the performance statistics of such net-
works adopted in SI. In this paper, we make the contribution
of developing efficient estimator engines (Section 4).

3.2 Overview of NASS

Fig. 3 illustrates an overview of the proposed NASS Frame-
work with four components: ➀ ParmGen, ➁ Machine Learn-
ing (ML) Estimators, ➂ Cryptographic Estimators, and ➃
Controller. Specifically, component ➀ parameterizes the ar-
chitecture and quantization, which identifies a unique neural
architecture for the subsequent computations. Upon receiv-
ing the input architecture from component ➀, Component ➁
trains and evaluates its accuracy, and component ➂ optimizes
the cryptographic primitives to estimates its performance. Fi-
nally, component ➃ will control the optimization flow. All of

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search1748



Controller
e.g., reinforcement learning
or evolutionary algorithm

Architecture
Parameters

Quantization
Parameters

SW={0,1}

trainer

Accuracy
Evaluator

weights

parameterizer
(PIE)

Performance
Evaluator

(PCE)

Cryptographic
Estimators

ML
Estimators

reward: R(A,T,B) Accuracy: A
Inference Time: T
Bandwidth: B

(n,p,q)
ParmGen

4

1

2 3

Figure 3. An overview on the proposed NASS framework.

the components collaboratively explore the parameter spaces
of neural architecture, quantization, and cryptographic prim-
itives to jointly optimize the accuracy, time, and bandwidth.

The NASS framework works in three steps. First, the con-
troller generates a prediction on a quantized neural archi-
tecture (called child network), which will be formulated as
LayerParms. Second, the child network will be evaluated by
ML Estimators to generate prediction accuracy (A), and op-
timized in Cryptographic Estimators to provide the inference
time (T), and bandwidth (B) feedback. Lastly, a reward sig-
nal is generated in terms of A, T, B, to update the controller.
Details of each component will be introduced in Section 3.3.

In practice, the lengthy training process dominates the
search time. In NASS, we add a switch SW before the archi-
tecture parameter (AP) subcomponent to dramatically reduce
the number of training processes. This is based on the obser-
vation that the quality of quantization parameters for the
same architectures can be evaluated using the same trained
(floating-point) weights. If the switch is on (SW = 1), we
will train the architecture from scratch to generate weights
and obtain accuracy statistics in terms of quantization. Oth-
erwise (SW = 0), we reuse the weights and apply the new
quantization parameters to obtain the accuracy.

The switch can be controlled by using a predefined function.
In this work, we demonstrate the exploration procedure using
the following function:

SW =

{
1 Eps mod SWN = 0
0 Otherwise

(2)

where Eps is the episode index given to each of the child net-
works predicted by the controller, SWN is a scalar to indicate
the number of child network with the same architecture but
different quantization to be explored.

3.3 NASS Framework Details

➀ ParmGen. The ParmGen block generates layer parame-
ters for the subsequent computations. A neural architecture
consists of a set of layers. According to the linearity of func-
tion for each layer, there are two types of layers: linear layer
(e.g., convolution, fully connection), and non-linear layer (e.g.,
ReLU, pooling). Each layer can be specified as a set of param-
eters. Note that different types of layers have different param-
eters. We denote LayerParmsL and LayerParmsNL to represent
parameters of linear layers and non-linear layers, respectively.

For linear layers, a set of layer parameter is denoted as
LayerParmsL = {ni, no, fw, fh, li, lf , ci, co}, where ni and no

represent the dimensions of feature maps (i.e., input data);
fw and fh represent the dimensions of filters (i.e., weights),
li and lf indicate the data and weight quantizers; ci and co
stand for the number of input and output channels.

For non-linear layers, they do not contain weights, and
therefore, there is no parameters for filter quantizations and
dimensions. In addition, the number of channels will not
be changed, and we only record the input channel number
ci in layer parameter LayerParmsNL. In consequence, we de-
note parameter sets for non-linear layers as LayerParmsNL =
{ni, no, li, lo, ci}.

A neural architecture can be represented by a collec-
tion of parameters for all layers, i.e., NetworkParms =
{LayerParmsL,k, LayerParmsNL,k} where k = 0, 1, · · · repre-

sents the kth layer.
➁ Machine Learning (ML) Estimator. A machine

learning estimator is composed of a trainer and an accuracy
evaluator. According to the status of switch before AP in ➀,
the ML estimator will take different actions. When the switch
is on (i.e., SW = 1), a new architecture will flow into the ML
estimator, and it will be trained from scratch using floating
points. Then, the accuracy evaluator will quantize the weights
from the trainer according to the given quantization parame-
ters to obtain the accuracy of the quantized neural network.
When the switch is off (i.e., SW = 0), it indicates that the
previous predicted architecture is applied with new quantiza-
tion parameters. In this case, the ML estimator will not train
the architecture. The weights from in the previous iteration
are reused with new quantization parameters to obtain the
prediction accuracy on the training dataset.

➂ Cryptographic Estimator. A cryptographic estima-
tor contains two sub-components: the parameter instantia-
tion engine (PIE) and the performance characterization en-
gine (PCE). These engines take input from LayerParms, and
collaboratively instantiate parameters for the cryptographic
parameters while evaluating their performance. In particu-
lar, the outputs of PIE are the cryptographic parameters. For
example, for RLWE-based PAHE schemes (e.g., used for ho-
momorphic matrix-vector product in linear layers and multi-
plication triples for square activation), the cryptographic pa-
rameters are (n, q, p). During performance characterization,
PCE consults with PAHE and GC libraries to produce char-
acterized scores for a single round of secure inference using
the architecture specified in NetworkParms. Details on the im-
plementations of PIE and PCE will be discussed in Section 4.
Kindly note that, for some cryptographic protocols (e.g., GC
used in implementing ReLU), the cryptographic parameters
can be directly determined in terms of LayerParmsNL without
using a PIE.

➃ Controller. The controller is a core component in the
NASS framework. According to the output of the ML estima-
tor (➁) and the cryptographic estimator (➂), the controller
predicts a new NetworkParms which supposedly has higher ac-
curacy, lower latency, and lower bandwidth requirement com-
pared to the architecture predicted in the previous iteration.

The controller can be implemented by different techniques,
such as the reinforcement learning or the evolutionary algo-
rithms. However, in both cases, the key element for the con-
troller design is the reward function. In this work, we employ

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search 1749



the reinforcement learning method in the controller whose in-
teractions with the environment are modeled as a Markov
decision process (MDP). The reward function is formulated
as follows.

R(A, T,B) = A+A · ξ(T,B), (3)

where A is the prediction accuracy, and ξ(T,B) is the perfor-
mance score reported by the cryptographic estimators. The
detailed definition of ξ can be found in Eq. (8). After calcu-
lating the reward, we follow the Monte Carlo policy gradient
algorithm [30] to update the controller:

�J(θ) = 1

m

m∑
k=1

t∑
τ=1

γt−τ�θ log πθ(aτ |a(τ−1):1)(Rk − b) (4)

where m is the batch size and t is the total number of steps
in each episode. The rewards are discounted at every step by
an exponential factor γ and the baseline b is the exponential
moving average of the rewards.

4 Estimators for Cryptographic Primitives

While CHET [7] realizes the importance of establishing an
abstraction layer for the NN designer to hide specific HE im-
plementation details, they did not think of the cryptographic
primitives as design elements that carry distinct performance
trade-offs (actually, CHET only focused on compiling a sin-
gle FHE primitive). As observed in Fig. 2, Gazelle instantiate
different protocols according to the specific NN layers. Hence,
in this section, we describe how to construct estimators that
model cryptographic primitives as delay elements with com-
municational costs, analogous to the FPGA components mod-
eled in the FNAS [11] framework.

4.1 Constructing PIE for PAHE

In this work, we use the widely-adopted BFV [10] cryptosys-
tem as the example PAHE scheme, but our method applies
broadly to all RLWE-based PAHE cryptosystems. In BFV,
three parameters are required to instantiate the cryptosys-
tem, (n, p, q), where n is the lattice dimension, p the plaintext
modulus, and q the ciphertext modulus.

4.1.1 The Feedback Loop

In the Gazelle protocol, since each linear layer is evaluated in-
dependently (decryptions are performed after only one layer of
homomorphic evaluation), parameters can be minimized. For
example, in our experiments, n = (2048, 4096, 8192), and q
ranges from 60 to 180 bits. Therefore, even one bit of loose er-
ror margin can easily result in 1.5x to 2x performance penalty
on 64-bit machines, due to the requirement of extra integer
slots (e.g., from 61-bit q to 62-bit q).

In Gazelle, as long as the dimensions and quantizers are the
same, the parameters do not scale with the number of layers
in the NN. Therefore, parameter minimization needs to be
carried out for every NN layer with varying quantization and
filter dimensions. The main difficulty for per-layer parameter
minimization lies in the feedback loop between PCE and PIE.
The dilemma is that, in order for PIE to instantiate parame-
ters that ensure correct decryption, the error size (explained

Performance 
Characterization

Engine (PCE)

Parameter
Instantiation
Engine (PIE)

Generate 
p from 

quantizers

Generate 
minimum

q from p,n 
Regenerate

n

Estimate
Security Level

Estimate 
Decryption
Failure Rate

Estimate
Performance

Statistics

Regenerate
q

n0 , p

(n , p , q)

Fail Fail

Success Success

n0 , li , lf 

Inference Time
and Bandwidth

LayerParm L

Figure 4. The PIE-PCE co-optimization procedures for
characterizing the performance cost of a linear layer.

in Section 2.2) needs to be estimated by PCE. Meanwhile,
PCE needs instantiated PAHE parameters from PIE to per-
form error analysis, thereby forms the loop. Iterating through
all possible parameter combinations with error calculations
for each NN layer creates significant computational burden
in the NASS optimization process. In addition, generating
large primes can also be time consuming, as BFV requires
additional constraints on the relationship of p, q and n to
enable the batching technique [28], which is essential to the
efficiency of SI. In particular, both p and q need to satisfy
p ≡ q ≡ 1(mod n), where q can be a large integer (e.g., 120
bits).

4.1.2 Instantiating the Parameters

An overview of the joint parameter optimization procedure is
illustrated in Fig. 4.

➀ Initialization: To start the optimization process, inputs
are first fed to PIE. The inputs include n0, the initial lattice
dimension, and (li, lf ), the respect quantizers for NN inputs
and filters. Here, n0 is an arbitrary number, and can be set as
the smallest n that grants some security levels for extremely
small q (e.g., n0 = 1024, which is secure for q ≤ 232). li
and lf is used to determine the plaintext modulus p. In order
to carry out a successful inference, we need that p ≥ li +
lf + �log2(fh · fw)� and p ≡ 1(mod n0). After generating the
plaintext modulus p, along with n0 and other parameters in
LayerParmsL (e.g., the input dimensions ni, no and the filter
dimension fh and fw), we can calculate a working ciphertext
modulus q. Note that this estimation can be loose, but will
be tightened in PCE through optimization iterations.

➁ Optimization Loop: Upon receiving parameters from
PIE, PCE performs two important evaluations: i) security
level estimation, and ii) decryption failure rate estimation.
Failure in meeting either of the conditions results in an im-
mediate rejection. First, in i), The security levels are con-
sulted with the community standard established in [1]. When
the security standard is not met, we regenerate the lattice di-
mension n and retry the security analysis. Next, in ii), after
obtaining a valid n for the estimated q, a set of ciphertexts
are created to see if q is large enough for correct decryption. If
the decryption failure rate is too high, we regenerate a larger
q and re-evaluate the security of n with respect to the new
q. After deriving valid (n, p, q) that passes all the tests, the
parameters are fed into a PAHE library to characterize the
estimated amount of time and memory consumed by a single
layer to calculation.

➂ Output Statistics: Steps ➀ and ➁ described above
will be repeated for every layer in the input neural architec-

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search1750



ture, and all performance statistics are summed up to pro-
duce a final score to be used by the overall NASS framework
in searching for a better neural architecture for SI.

4.1.3 Generating a Valid Ciphertext Modulus

One last note on the ciphertext modulus q is that, as men-
tioned in Section 2.1, not all ciphertexts become undecipher-
able when q is small. The probability that a ciphertext be-
comes undecipherable is called the decryption failure rate.
Observe that different from [3], we do not need an expen-
sive simulation to ensure an asymptotically small (e.g., 2−40)
decryption failure probability, since NN-based SI mispredicts
much more often than 2−40. In most cases, a 0.1% accuracy
degradation is not noticeable for practical CNN applications.
Therefore, we can use the standard Monte-Carlo simulation
technique to ensure that q is large enough to ensure that
Pr[Enc(Dec(m)) 	= m] < δ, where δ ranges from 10−3 (1 de-
cryption failure in 1000 inferences) to 10−2 (1 in 100), de-
pending on the prediction accuracy requirement.

4.2 PCE: Performance Characterization

4.2.1 Characterizing Linear Layers

The main arithmetic computations in both Conv and FC in-
volve a set of inner products between some plaintext matrix
and ciphertext matrix (flatten as vectors) homomorphically.
To compute any homomorphic inner product, the pioneering
work in [16] proposes to align the weight matrix with the
rotating input ciphertext vector to minimize the number of
homomorphic operations. In general, the algorithm computes
the inner product between W ∈ Z

no×ni
p , a weight matrix, and

[u] ∈ Z
ni
q , the encrypted input vector as follows.

[t] =

no−1∑
i=0

wi � rot([u], i) (5)

= w0 � [u] + · · ·+wno−1 � rot([u], no − 1), (6)

[v] =

lg (n/no)∑
i=1

rot
(
[t],

n

2i

)
, (7)

where [v] holds the result vector v = Wu ∈ Z
no
p , wi’s are the

diagonally aligned columns of W with dimension wi ∈ Z
n
p ,

and lg (·) denotes log2 (·). In Eq. (6), we first rotate [u]
no times, each time multiplying it with the aligned vectors
wi ∈ {w0, · · · ,wno−1}. Each multiplication generates an in-
termediate ciphertext that holds only one entry in vi with
respect to wi. Summing these ciphertexts gives us a single
ciphertext that is packed with n/no partial sums in the corre-
sponding inner products, and packed results can be summed
up to obtain the final product [v].

It is noted that the performance non-linearity illustrated in
Fig. 1 lies critically in the way homomorphic inner products
are computed. Take a toy example where no ×ni = 10× 1024
and n = 1024. The input vector u ∈ Z

no can be tightly stored
into a single ciphertext [u] ∈ Z

n. Using the Gazelle algorithm,
we rotate the input ciphertext no = 10 times, and compute 10
homomorphic Hadamard products. However, suppose that the
input dimension is somehow 10×1025. Since the lattice dimen-
sion n can only be a power of 2, the ciphertext size becomes

Z
2048 in order to hold an input vector u ∈ Z

1025. All subse-
quent homomorphic evaluations require double the amount
of computations and bandwidths compared to n = 1024.
If the amount of accuracy improvement from ni = 1024 to
ni = 1025 is marginal (e.g., ≤ 0.01%), then this improvement
suggestion should be rejected.

The above example represents the precise procedure per-
formed in PCE, where all the information contained in
LayerParmsL jointly determines how packing can be performed
to maximize the protocol efficiency. The output of this proce-
dure is the inference time T and network bandwidth B. We
use a simple weighted sum to derive the performance score ξ,
where

ξ(T,B) = β · T + (1− β) ·B. (8)

One important implementation detail is that, instead of per-
forming the entire calculation using an actual PAHE imple-
mentation, only basic operations (�, � and rot) need to be
characterized. The actual runtime and bandwidth usage can
be scaled from the combinations of the basic operations. In
fact, this can be a critical performance improvement, as se-
cure inference is still quite slow for deep neural networks (10
to 100 seconds), and running PCE for full network character-
izations can be a performance bottleneck in the optimization
process.

4.2.2 PCE for Non-Linear Layers

Running PCE for interactive protocols such as multiplication
triples [2] and GC [34] is much simpler than linear layers, as
these non-linear functions (e.g., square and ReLU) are per-
formed on a per-element basis with fixed functionality. The
performance statistics can be characterized once, and used
throughout all layers when properly scaled.

5 Numerical Experiments and Parameter
Instantiations

5.1 Experiment Setup

In this work, we compare NASS with the performance statis-
tics of two best-performing recent works on secure inference,
namely, Gazelle [16] and XONN [24]. First, we point out that
the reported statistics are not entirely reliable in Gazelle. For
example, the architecture used for a single CIFAR-10 infer-
ence needs more than 120,000 ReLU calls, and Gazelle reports
551ms of runtime per 10,000 ReLU evaluations. Neverthe-
less, the total online inference time is less than three seconds.
Since the main focus of NASS is to improve the architec-
tural design of NNs, the performance of both Gazelle and the
derived architectures in this work are characterized by the
proposed performance estimator. We base our experiments on
three datasets, MNIST [18], fashion-MNIST [31], and CIFAR-
10 [17]. The characterization experiments are conducted with
a Intel i3-6100 3.7Ghz CPU, and the architectural search is
peformed using a NVIDIA P100 GPU. The adopted PAHE
library is SEAL version 3.3.0 [26], and GC protocols are im-
plemented using ABY [8].

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search 1751



� ��� ��� ��� ��� ���
�	�	
���������


�

�

�

�

�

�

��
�

�

��

�
��
�

�
��
�

���

���

���

���

���

���

�

��

��

Figure 5. The learning curves show that as the number of
episodes increase, both the reward and the inference time tend to

converge.

0.4

0.5

0.6

0.7

80% 81% 82% 83% 83.5%

Pe
rf

or
m

an
ce

 S
co

re

Accuracy

NAS

NASS

Figure 6. The proposed NASS can significantly push forward
Pareto frontier in terms of accuracy and score, compared with the
NAS without considering secure inference: each point indicates an

architecture with specific quantization parameters.

5.2 Architectural Optimization and the
Pareto Frontier

First, in Fig. 5, we use an example NASS run using the
CIFAR-10 dataset to show the effectiveness of the proposed
framework. We trained the NASS controller through a 500
episodes window, where the neural architecture is fixed to
have four convolution layers. As explained in Section 3.2, each
episode generates a child network, and the reward of the child
network is calculated in Eq. (3) using the prediction accuracy
and cryptographic performance scores. The results in Fig. 5
indicate that both the rewards (where accuracy dominates
the calculation, as described in Eq. (3)) and the secure in-
ference times converge to their optimized states as learning
episodes proceed. Furthermore, in Fig. 6, the best-performing
data points are gathered to plot the Pareto frontiers generated
by NASS. Here, the vertical axis is the estimated performance
score, and the horizontal axis denotes the prediction accu-
racy on the CIFAR-10 dataset. Two observations are made
here. First, the proposed NASS engine is able to learn the
extremely non-linear design space of CNN-based SI, and sec-
ond, the NASS framework pushes forward the Pareto frontier
for SI compared to existing works on both SI and NAS.

The predicted architectures laying on the Pareto frontier of
the tested datasets are summarized in Table 1. Two types of
architectures are selected here. Architectures with a suffix of
-Acc are the child networks that have better accuracy but (rel-
atively) worse performance, and -Per the reverse. The insight

Table 1. Selected Architectures from NASS

Architecture Accuracy Total Bandwidth No. Episode
Time (Search Time)

MNIST-Acc 98.6% 0.79 s 17MB 1000 (17 hrs.)
MNIST-Per 98.6% 0.79 s 17MB 1000 (17 hrs.)
Fashion-Acc 90.6% 1.67 s 50MB 2000 (32 hrs.)
Fashion-Per 90.4% 0.72 s 22MB 2000 (32 hrs.)
CIFAR-Acc 84.6% 8.0 s 944MB 1200 (60 hrs.)
CIFAR-Per 82.6% 5.1 s 582MB 1200 (60 hrs.)

here is that, for smaller (i.e., easier) datasets such as MNIST,
the search is almost exhaustive, where the best architecture
achieves highest prediction accuracy and cryptographic per-
formance. Nevertheless, for more complex datasets, the differ-
ences become increasingly large, where distinctive trade-offs
between neural architectures emerge. We emphasize that de-
pending on the application, all neural architectures on the
Pareto frontier are legitimate candidates. However, as also
shown in Fig. 6, in many cases, significant performance degra-
dation only results in marginal accuracy improvement, and
vise versa.

5.3 Comparison to Existing Works

Table 2. Comparison Between Gazelle and Architecture from
NASS

Gazelle Best Searched by NASS
Layer Dimension Quant. Layer Dimension Quant.
CR (64 × 3 × 3) 23 CR (24 × 5 × 3) (8, 8)
CR (64 × 3 × 3) 23 CR (48 × 3 × 5) (6, 7)
PL (2 × 2) 23 PL (2 × 2) (8, 8)
CR (64 × 3 × 3) 23 CR (48 × 5 × 7) (7, 6)
CR (64 × 3 × 3) 23 CR (36 × 3 × 3) (6, 5)
PL (2 × 2) 23 PL (2 × 2) (8, 8)
CR (64 × 3 × 3) 23 CR (24 × 7 × 1) (4, 6)
CR (64 × 3 × 3) 23
FC (1024 × 10) 23 FC (1024 × 10) (16, 16)

Accuracy: 81.6% Accuracy: 84.6%
Bandwidth: 1.815GBytes Bandwidth: 977MB

PAHE Time: 3.22 s PAHE Time: 1.62 s
GC Time: 13.2 s GC Time: 6.38 s
Total Time: 16.4 s Total Time: 8.0 s

We selected the CIFAR-Acc from Table 1 to compare the
NASS against the baseline architecture proposed in [20]. The
architectures are summarized in Table 2. Here, CR depicts a
convolution layer plus a ReLU layer, and PL is an average
pooling layer. Dimension indicates the filter dimension, and
the input dimension is (3×32×32) in the CIFAR-10 dataset.
The important observation here is that, by using architectural
search, we do not need to trade accuracy for performance.
The generated neural architecture requires only 5 convolution
layers rather than 6 (as used in the baseline architecture),
while improving the prediction accuracy from 81.6% to 84.6%.
The inference time and network bandwidth are reduced by 2x
and 1.9x, respectively. The reduction rate can be increased
to more than 3x when the same level of accuracy suffices,
as demonstrated by the CIFAR-Per architecture in Table 1.
Finally, we note that the very recent work [24] that achieves a
prediction accuracy of 85% requires more than 30 seconds to
carry out the inference, which translates to 4x time reduction
when compared to CIFAR-Acc.

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search1752



6 Conclusion

In this work, NASS is proposed to optimize neural network
architectures used in secure inference schemes. Models of
cryptographic primitives are created to automatically gener-
ate computational and communicational profiles. Rewards are
generated based on the calculated profiles and fed to a NAS
optimizer to search in the architectural space of convolutional
neural networks. Experiments show that security-centric de-
signs result in better inference speed and bandwidth foot-
print compared to manually tuned neural architectures, while
achieving better prediction accuracy.

Acknowledgment

This work was partially supported by JSPS KAKENHI
Grant No. 17H01713, 17J06952, Grant-in-aid for JSPS Fel-
low (DC1), National Science Foundation under Grant CNS-
1822099, and Edgecortix Inc.

REFERENCES

[1] Martin Albrecht et al., ‘Homomorphic encryption security
standard’, Technical report, HomomorphicEncryption.org,
Toronto, Canada, (November 2018).

[2] Donald Beaver, ‘Efficient multiparty protocols using circuit
randomization’, in Annual International Cryptology Confer-
ence, pp. 420–432. Springer, (1991).

[3] Song Bian et al., ‘Darl: Dynamic parameter adjustment for
lwe-based secure inference’, in Proc. of DATE, pp. 1739–1744.
IEEE, (2019).

[4] Zvika Brakerski, ‘Fully homomorphic encryption without
modulus switching from classical GapSVP’, in Advances in
Cryptology–CRYPTO 2012, 868–886, Springer, (2012).

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan,
‘(Leveled) fully homomorphic encryption without bootstrap-
ping’, ACM Transactions on Computation Theory (TOCT),
6(3), 13, (2014).

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song, ‘Homomorphic encryption for arithmetic of approxi-
mate numbers’, in International Conference on the Theory
and Application of Cryptology and Information Security, pp.
409–437. Springer, (2017).

[7] Roshan Dathathri et al., ‘CHET: an optimizing compiler for
fully-homomorphic neural-network inferencing’, in Proc. of
PLDI, pp. 142–156. ACM, (2019).

[8] Daniel Demmler et al., ‘Aby-a framework for efficient mixed-
protocol secure two-party computation.’, in Proc. of NDSS,
(2015).

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, ‘Ef-
ficient multi-objective neural architecture search via lamarck-
ian evolution’, in International Conference on Learning Rep-
resentations, (2019).

[10] Junfeng Fan and Frederik Vercauteren, ‘Somewhat practi-
cal fully homomorphic encryption.’, IACR Cryptology ePrint
Archive, 2012, 144, (2012).

[11] Weiwen Jiang et al., ‘Accuracy vs. efficiency: Achieving
both through fpga-implementation aware neural architecture
search’, in Proc. of DAC, (2019).

[12] Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jing-
tong Hu, Xiaobo Sharon Hu, and Yiyu Shi, ‘Device-circuit-
architecture co-exploration for computing-in-memory neural
accelerators’, arXiv preprint arXiv:1911.00139, (2019).

[13] Weiwen Jiang, Lei Yang, Edwin Sha, Qingfeng Zhuge,
Shouzhen Gu, Yiyu Shi, and Jingtong Hu, ‘Hard-
ware/software co-exploration of neural architectures’, arXiv
preprint arXiv:1907.04650, (2019).

[14] Xiaoqian Jiang et al., ‘Secure outsourced matrix computa-
tion and application to neural networks’, in Proc. of ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 1209–1222. ACM, (2018).

[15] Mika Juuti et al., ‘Prada: protecting against dnn model steal-
ing attacks’, in Proc. of EuroS&P, pp. 512–527. IEEE, (2019).

[16] Chiraag Juvekar et al., ‘Gazelle: A low latency frame-
work for secure neural network inference’, arXiv preprint
arXiv:1801.05507, (2018).

[17] Alex Krizhevsky and Geoffrey Hinton, ‘Learning multiple lay-
ers of features from tiny images’, Technical report, Citeseer,
(2009).

[18] Yann LeCun, Corinna Cortes, and CJ Burges, ‘MNIST hand-
written digit database’, AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2, (2010).

[19] Chenxi Liu et al., ‘Auto-deeplab: Hierarchical neural archi-
tecture search for semantic image segmentation’, in Proc. of
CVPR, pp. 82–92, (2019).

[20] Jian Liu et al., ‘Oblivious neural network predictions via Min-
ioNN transformations’, in Proc. of ACM SIGSAC Conference
on Computer and Communications Security, pp. 619–631.
ACM, (2017).

[21] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong
Hu, ‘On neural architecture search for resource-constrained
hardware platforms’, arXiv preprint arXiv:1911.00105,
(2019).

[22] Payman Mohassel et al., ‘Secureml: A system for scalable
privacy-preserving machine learning’, in Proc. of Security and
Privacy (SP), pp. 19–38. IEEE, (2017).

[23] Wei Peng et al., ‘Video action recognition via neural architec-
ture searching’, in Proc. of ICIP, pp. 11–15. IEEE, (2019).

[24] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine,
Kristin E Lauter, and Farinaz Koushanfar, ‘Xonn: Xnor-based
oblivious deep neural network inference.’, IACR Cryptology
ePrint Archive, 2019, 171, (2019).

[25] Bita Darvish Rouhani et al., ‘Deepsecure: Scalable provably-
secure deep learning’, in Proc. of DAC, pp. 1–6. IEEE, (2018).

[26] Microsoft SEAL (release 3.3). https://github.com/
Microsoft/SEAL, 2019. Microsoft Research, Redmond, WA.

[27] Reza Shokri et al., ‘Membership inference attacks against ma-
chine learning models’, in Proc. of Security and Privacy (SP),
pp. 3–18. IEEE, (2017).

[28] Nigel P Smart and Frederik Vercauteren, ‘Fully homomor-
phic encryption with relatively small key and ciphertext sizes’,
in International Workshop on Public Key Cryptography, pp.
420–443. Springer, (2010).

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le, ‘Mnasnet:
Platform-aware neural architecture search for mobile’, in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2820–2828, (2019).

[30] Ronald J Williams, ‘Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning’, Machine
learning, 8(3-4), 229–256, (1992).

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning al-
gorithms, 2017.

[32] Lei Yang et al., ‘Co-exploring neural architecture and
network-on-chip design for real-time artificial intelligence’, in
Proc. of ASP-DAC, (2020).

[33] Lei Yang, Weichen Liu, Nan Guan, and Nikil Dutt, ‘Opti-
mal application mapping and scheduling for network-on-chips
with computation in stt-ram based router’, IEEE Transac-
tions on Computers, 68(8), 1174–1189, (2018).

[34] Andrew C Yao, ‘Protocols for secure computations’, in Foun-
dations of Computer Science, 1982. SFCS’08. 23rd Annual
Symposium on, pp. 160–164. IEEE, (1982).

[35] Xinyi Zhang, Weiwen Jiang, Yiyu Shi, and Jingtong Hu,
‘When neural architecture search meets hardware implemen-
tation: from hardware awareness to co-design’, in 2019 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 25–30. IEEE, (2019).

[36] Barret Zoph et al., ‘Neural architecture search with reinforce-
ment learning’, arXiv preprint arXiv:1611.01578, (2016).

[37] Barret Zoph et al., ‘Learning transferable architectures for
scalable image recognition’, arXiv preprint arXiv:1707.07012,
2(6), (2017).

S. Bian et al. / NASS: Optimizing Secure Inference via Neural Architecture Search 1753


