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Towards Lossless Binary Convolutional Neural Networks
Using Piecewise Approximation

Baozhou Zhu ! and Zaid Al-Ars 2 and Wei Pan 3

Abstract. Binary Convolutional Neural Networks (CNNs) can sig-
nificantly reduce the number of arithmetic operations and the size of
memory storage, which makes the deployment of CNNs on mobile or
embedded systems more promising. However, the accuracy degrada-
tion of single and multiple binary CNNs is unacceptable for modern
architectures and large scale datasets like ImageNet. In this paper,
we proposed a Piecewise Approximation (PA) scheme for multiple
binary CNNs which lessens accuracy loss by approximating full pre-
cision weights and activations efficiently, and maintains parallelism
of bitwise operations to guarantee efficiency. Unlike previous ap-
proaches, the proposed PA scheme segments piece-wisely the full
precision weights and activations, and approximates each piece with
a scaling coefficient. Our implementation on ResNet with different
depths on ImageNet can reduce both Top-1 and Top-5 classification
accuracy gap compared with full precision to approximately 1.0%.
Benefited from the binarization of the downsampling layer, our pro-
posed PA-ResNet50 requires less memory usage and two times Flops
than single binary CNNs with 4 weights and 5 activations bases. The
PA scheme can also generalize to other architectures like DenseNet
and MobileNet with similar approximation power as ResNet which
is promising for other tasks using binary convolutions. The code and
pretrained models will be publicly available.

1 Introduction

CNNs have emerged as one of the most influential neural network ar-
chitectures to tackle large scale machine learning problems in image
recognition, natural language processing, and audio analysis [9, 13].
At the same time, their deployment on mobile devices and embedded
systems are gaining more and more attention due to the increasing
interest from industry and academia [12, 28]. However, the limited
storage and computation resources provided by these platforms are
an obstacle that is being addressed by numerous researchers work-
ing to reduce the complexity of CNNs [10, 35, 17, 30]. Fixed-point
CNNs [24, 1, 36, 34, 37, 6] achieve even no accuracy loss with a
suitable selection of bit-width, but the multiplication and the over-
flow processing of addition require considerable overhead. Binary
CNNs have been demonstrated as a promising technique to make the
deployment of CNNss feasible [3, 32, 4, 21]. In single binary CNNgs,
full precision weights and activations are binarized into 1 bit, so the
multiplication and addition of the convolution are transformed into
simple bitwise operations, resulting in significant storage and com-
putation requirements reduction [25]. The accuracy degradation of
the recently enhanced single binary CNN [23] is still high (12.9%

L Delft University of Technology, The Netherlands,email:b.zhu-1@tudelft.nl
2 Delft University of Technology,The Netherlands,email:z.al-ars @tudelft.n
3 Delft University of Technology, The Netherlands,email:wei.pan @tudelft.nl

Top-1 and 9.7% Top-5 accuracy degradation for ResNet18 on Ima-
geNet) since much information has been discarded during binariza-
tion. ABC-Net [20] is the first multiple binary CNN, which shows en-
couraging result (around 5% Top-1 and Top-5 accuracy degradation
for ResNet on ImageNet). [7, 8, 31, 19] calculate a series of binary
values and their corresponding scaling coefficients through minimiz-
ing the residual error recursively, but they can not be paralleled. [39]
propose Group-Net to explore structure approximation, and it is a
complimentary approximation to value approximation. Multiple bi-
nary CNNs can be considered as a moderate way of quantization, that
is much more accurate than single binary CNNs and more efficient
than fix-point CNNs. But, there is still a considerable gap between
full precision implementations and multiple binary CNNs, despite
the fact that an unlimited number of weights and activation bases can
be used.

To further reduce the gap between the full precision and multiple
binary CNNs, we proposed Piece-wise Approximation (PA) scheme
in this paper. Our main contributions are summarized as follows.

e PA scheme segments the whole range of the full precision weights
and activations into many pieces and uses a scaling coefficient
to approximate each of them, which can maintain parallelism of
bitwise operation and lessen accuracy loss.

e With less overhead, our scheme achieves much higher accuracy
than ABC-Net, which indicates that it provides a better approxi-
mation for multiple binary CNNs. Benefited from the binarization
of the downsampling layer, our proposed PAResNet50 requires
less memory usage and two times Flops than Bi-Real Net with
4 weights and 5 activations bases, which shows its potential effi-
ciency advantage over single binary CNNs with a deeper network.

e With the increase of the number of the weight and activation bases,
our proposed PA scheme achieves the highest classification accu-
racy for ResNet on ImageNet among all state-of-the-art single and
multiple binary CNNs.

2 Related work

In this Section, we describe the forward propagation and backprop-
agation of typical schemes to quantize CNNs. In addition, the ad-
vantages and disadvantages of these quantized CNNs are discussed
concerning efficiency and accuracy.

2.1 Single Binary Convolutional Neural Networks

In single binary convolutional neural networks [3, 32, 4, 29, 21],
weights and activations are constrained to a single value +1 or —1.
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The deterministic binarization function is described as follows.

b { +1,$T20

1 -1,2"<0 M

where z° is the binarized variable, and x" is the real-valued vari-
able. During the backpropagation, the “Straight-Through Estimator”
(STE) method [2] is adapted to calculate the derivatives of the bina-
rization functions as follows, where C' is the loss function.

o0 _ 00
dxr ~ Oxb
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Single binary CNNs is the most efficient quantization scheme
among all the quantization schemes described in this paper. But, its
accuracy degradation is too high to be deployed in practice.

2.2 Ternary Convolutional Neural Networks

In ternary convolutional neural networks [18, 38, 33, 11], ternary
weights are used to reduce the accuracy loss of single binary CNNs
by introducing O as the third quantized value, as follows.

zP x> A
=< 0:]z" <A 3)
-z < —A

where z” and z" are the positive and negative scaling coefficients,
respectively, and A is a threshold to determine the ternarized variable
«*. During the backpropagation, the STE method is still applied.

Although the introduction of 0 improves the accuracy of single
binary CNNG, it is still unacceptable to be deployed especially while
training advanced CNNs on large scale dataset.

2.3 Fixed-point Convolutional Neural Networks

In fixed-point convolutional neural network [37, 34, 6, 15], weights,
activations, and gradients are quantized using fixed-point numbers of
different bit-widths. Taking the weights as an example, the quantiza-
tion works as follows.

tanh(z")
2max([tanh(z")|)

2f
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where quantize; function quantizes the real-valued number x"
to the f-bit fixed-point number . During the backpropagation, the
STE method still works.

With a configuration of different bit-widths for the weights, acti-
vations, and gradients, the accuracy degradation of DoReFa-Net can
be preserved and controlled. But, fixed-point multipliers result in the
most substantial overhead among that of all the quantization schemes
in this paper.

2.4 Multiple Binary Convolutional Neural
Networks

In multiple binary convolutional neural networks [20, 7, 8, 31, 19,
39], a combination of multiple binary bases is adopted to approxi-
mate full precision weights and activations. Following is the weights
approximation using linear combination.

P
x = Z€iDi ©)
i=1

where ¢; is a trainable scaling coefficient and D; is a binary (—1 and
+1) weight base. During the backpropagation, STE method is still
used.

The adoption of multiple binary bases in ABC-Net can lessen ac-
curacy loss compared to single binary CNNs and maintain efficiency
by using parallel bitwise operations compared to fix-point CNNs.
Unfortunately, there is still a considerable gap between ABC-Net and
full precision although as many as needed weight and activation bi-
nary bases can be used.

3 Piecewise approximation scheme

In this section, the PA scheme for multiple binary CNNs is illustrated,
including the approximations of weights and activations. Also, the
training algorithm and the inference architecture of PA-Net are clar-
ified.

w
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Figure 1: A sample of the forward propagation and backpropagation
of weights approximation

3.1 Weights approximation

Since approximating weights channel-wise needs much more com-
putational resources during training, we approximated weights as a
whole in this paper.

The real-valued weights are W € RPXWX¢inXcout where h, w,
Cin and coy ¢ represent the height and width of a filter, the number of
input and output channels, respectively. In the forward propagation of
PA scheme, these are estimated by W, which is a piecewise function
composed of the following M + 1 pieces.

a1 X By, Wj € [—o0, u1]
a; X By, W; € [ui_l,ui],i € [2,%]
0.0 x Bw,W; € [u%,u%_,_l]
a; X Bw,Wj S [ui,ui+1],
i€ [ +1,M—1]
ay X Bw,W; € [uM,-I—OO]

(6)

where u; and «; are the endpoint and scaling coefficient of the
pieces, respectively. W is a scalar and a single weight of the ten-
sor W. W; € [—o0,u1] refers to the ™ weight of the tensor W
which is in the range of [—oo, u1]. Bw is a tensor with all the val-
ues equal to 1.0 and has the same shape as W. Since the distribution
of the weights is close to Gaussian, all the endpoints of the weights
are fixed using mean (W) and std(W), which refer to the mean and
standard deviation of the full precision weights, respectively. The M
endpoints are almost uniformly sampled from —2.0 x std(W) to
2.0 x std(W) except those near 0.0. To set the endpoints of the
weights properly, we attempted some different settings, where the
performance difference is negligible. Taking M = 8 as an example,
we directly recommend the endpoints set as listed in Table 1.
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Table 1: Endpoints of the weights with M = §

Variables u1 us us Uq
Values (x std(W)) | —1.5 | —1.0 | —0.5 | —0.25
Variables us ug w7 us
Values (x std(W)) | 0.25 | 0.5 1.0 1.5

Except for the (% + 1)-th piece, the mean of all the full precision
weights of every piece serves as the optimal estimation of its scaling
coefficient.

a1 = reducemean(W), W; € [—oo,u1]

o; = reducemean(W), W; € [u;i—1,wi,i € [2, %

a; = reducemean(W), Wj € [ui, wit1], @)
€M +1,M-1]

ay = reducemean(W), W; € [un, +o9]

During the backpropagation, the relationship between W and W
has to be established, and the whole range of the weights is seg-
mented into M pieces.

Aw (a2 — ar), Wj € [—00, 51]

Aw (i1 — a;), Wy € [si-1, si],
i€ 2,4 —1]
@: Aw(o.ofa%),WjE[s%_l,S%] ®)
ow Aw(a%_‘_l *0.0),Wj S [S%,S%+l]

Aw (@ip1 — aq), Wy € [sq, siqa],
ie[X+1,M -2
Aw (o —anv—1), Wy € [sp—1,+09]

where s; is the endpoint of the pieces. A\w is a hyper-parameter,
which is different when a different number of weight pieces is used.
The endpoint s; can be determined simply as follows

si = (Wit1 +u)/2.0,5 € [1, M — 1] ©)

The forward propagation while W; € [u;—1, ui+1] and backprop-
agation while W; € [s;—1, s;] are presented in Figure 1, where a
linear function with slope Aw (a; — «;—1) is used to approximate
the piecewise function during the backpropagation.

3.2 Activations approximation

A
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Figure 2: A sample of the forward propagation and backpropagation
of activations approximation

To utilize bitwise operation for convolution, activations should be
binarized as well. However, the distribution of the activations will
vary in the inference stage which motivates us to apply batch nor-
malization [14]. Batch normalization is applied before the approxi-
mation of the activations to force them to have zero mean and unit
standard deviation.

The real-valued input activations are A € R"*"X®X¢in where n,
h, w and ¢;,, refer to batch size, height, width and number of chan-
nels, respectively. In the forward propagation of PA scheme, these
are estimated by A, which is a piecewise function composed of the
following N + 1 pieces.

0.0 x Ba,Aj € [—OO,Ul]
ﬁi X BA,A]' S [vi,viﬂ],i S [].,N— 1] (10)
BN X Ba, Aj € [un, +o0]

A~ A=

where v; and (3; are the endpoint and scaling coefficient of the pieces,
respectively. A; € [v;,v;41] refers to the activations of matrix A
which are in the closed range of [v;, v;11]. Ba is a tensor with all the
values equal to 1.0 and has the same shape as A. Both the endpoint
v; and the scaling coefficient 3; are trainable to learn the statisti-
cal features of the full precision activations. The bounded activation
function is omitted since the endpoints are initialized with positive
values.

During the backpropagation, the relationship between A and A has
to be established, and the whole range of the activations is segmented
into N + 2 pieces.

0.0, A; € [—o0, to]
Aa X (B1—0.0), A, € [to, 1]
27 =93 A X (Bit1 — Bi), Aj € [ti, tiva], an
i=1,..,N—-1
0.0,Aj S [tN7+OO]

where ¢; is the endpoint of the pieces. A 4 is a hyper-parameter, which
is the same for all the layers in a given CNN and is different between
different CNNs with different depths as used this paper. The endpoint
t; can be determined as follows

ti = (’Ui —|—’U1'+1)/2.0,7: =1,...N—-1
=20x Vo — S1 (12)
tn =uN + Aa

where Aa is a hyper-parameter, which is the same for all the layers in
a given CNN and is different between different CNNs in this paper.
The forward propagation while A; € [v;_1,v;+1] and backpropa-
gation while A; € [t;—1,t;] are presented in Figure 2, where a linear
function with slope Aa(3; — Bi—1) is used to approximate the piece-
wise function during the backpropagation.
The scaling coefficient (3; is updated as follows

oC _ 9C 9A _
i 9AIBi

reduce,sum(

€Y, Aj € v, vig],i € [L,N—1]  (13)

>\\o >\\

),A; € [un,4o00],i =N

reduce.s um(
Similarly, the endpoint v; is updated as

oC  9C A
avi - 37281)1 -
Aa(B1 —0.0) X reduce_ sum(
Aj € [to,tl]
Bi-1) % reduce,sum(
Aj € [tiza, i

il
1 (14)

>\\
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A
7

Aa(Bi —

QJ

),
€ [2, N]
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Algorithm 1 Training a L-layer multiple binary CNN by PA scheme

Input: A mini-batch of inputs Ao and targets A*, weights W.
Learning rate 7, learning rate decay factor A\. The number of end-
points M, scaling coefficient c; and endpoint u; for weights, the
number of endpoints NN, scaling coefficient 3; and endpoint v;
for activations. PA is short for Piecewise Approximation scheme.

Output: Updated scaling coefficient (;, endpoint v;, weights W
and learning rate 7).

1. Computing the parameter gradients:
1.1. Forward path:

1: fork=1to L do

2: W(—PA(W,’UJZ',OQ,M)
33 A<« Conv(A,W)

4: ifk < L then

5: Z(—PA(A,’U“ﬂ“N)
6: endif

7: end for

1.2. Backward propagation:

8: fork = Lto1ldo

9: ifk < L then
10 (945 Gv;»98;) < Back_PA(gz, A, vi, Bi, N)
11:  endif

122 (g, gw) < Back_Conv(ga, A, W)
13:  gw < Back_PA(gw, W, ui, i, M)
14: end for

2. Accumulating the parameter gradients:
15: for k =1to L do
16: i < update(Bi, 1, gs;)
17: v; < update(vi,n, g, )
18: W <« update(W,n, gw)
190 n<+An
20: end for

3.3 Training algorithm

A sample of the training algorithm of PA-Net is presented as Algo-
rithm 1, where details like batch normalization and pooling layers
are omitted. SGD with momentum or ADAM [16] optimizer can be
used to update parameters. Since our PA scheme approximates full
precision weights and activations, using pre-trained models serves as
initialization.

3.4 Inference architecture

Regarding the inference implementation of PA-Net, the latency is
one of the most important metrics to be considered. Fortunately, the
piecewise approximated weights or activations can be viewed as a
linear combination of multiple binary bases (+1 and 0), which indi-
cates a parallel inference architecture.

In the forward propagation, the approximated weights are repre-
sented as follows.

M
W=> T (15)
i=1

where T is a binary weight base, given as

Bw,Wj S [—OO,Ul] i=1

0.0 x Bw,Wj ¢ [—OO,UI} T
Bw,W; € [Ui—lyui] = [2 M
0.0 x Bw,W; €& [ui—1,u;] T2

T, = Bw,W; € [us, wit1] (16)
0.0 x Bw,Wj ¢ [Ui,ui+1]
i€ [ +1,M-1]

=M

Bw,W; € [um, +00]
0.0 x Bw, W; & [un, +00]

Similarly, the approximated activations in the forward propagation
are expressed as follows.

N
A=) BVi (7
=1

where V; is a binary activation base, given as

{ Ba, A;j € [vi,viy1] i—1 . N—1
Vi = 0.0 x BA,A]' ¢ [Ui,vi+1] ’ T (18)
¢ BA,Aj S [’UN,+OO] i — N
0.0 x Ba, A; & [uw,+o0] 7"

Combined with the approximated weights, the forward propaga-
tion of the real-valued convolution can be approximated by comput-
ing M x N parallel bitwise convolutions. It is worth to notice that
a;; will be merged as one new scaling coefficient ¢, during the
inference stage so that we omit their multiplication.

M N
Conv(W, A) = Conv(W,A) = Com)(z a;Ts, Z/BJVJ)
i=1 j=1

M N MxN
=3 > a@iBiCono(T;, Vi) = Y ¢xConuv(T;, V;)
i=1 j=1 k=1

(19
Taking M = 3 and N = 3 as an example, both the weights and
activations use 3 bits to approximated their full precision counter-
part. A full precision convolution can be computed with 9 parallel
bitwise operations and 3 comparators, as shown in Figure 3, where
the latency cost is as small as that of single binary CNNs. On the left
is the structure of the activations approximation using binary activa-
tion bases Vi, Vo, and V3. On the right is the structure of the weights
approximation using binary weight bases 7%, 1%, and 73. Thus, we
implement the overall block structure of the convolution in the PA
scheme with 9 parallel bitwise operations. It is worth to notice that
computing the binary convolution blocks in this figure can be directly
completed by AND and popcount operations, and the binary convo-
lution blocks do not consist of Batch Normalization or Relu layer.

3.5 Efficiency analysis of different binary values

To the best of our knowledge, this is the first time to use binary values
+1 and 0 instead of binary values —1 and +1 for single or multiple
binary CNNs, and we present their efficiency analysis in terms of
costumed hardware FPGA/ASIC.

When binary convolutions are computed by bitwise operation with
binary values 0 and +1, the dot product of two bit-vectors z and y is
computed using bitwise operations as follows.

z -y = bitcount(AND(z, y)), z:, yi € {0, +1}V; (20)
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Figure 3: Parallel inference architecture of convolution in PA-Net

where bitcount counts the number of bits in a bit-vector.

Similarly, when binary convolutions are computed by bitwise op-
eration with binary values —1 and +1, the dot product of two bit-
vectors x and y is computed using bitwise operations as follows.

z-y= N — 2 x bitcount(XNOR(z, y)), z;, y; € {—1,+1}V;
2D

where N is the number of bits in a bit-vector.

Table 2: 2-input 7-nm CMOS gates propagation delay, area, and
power

Items Propagation delay [ps] | Active area [nm?2] | Power [nW]
XNOR | 10.87 2.90 x 103 1.23 x 102
AND 9.62 1.45 x 103 6.24 x 102

In Table 2, we present the area footprint, the input to output
propagation delay and the power consumption for 2-input Boolean
gates using a commercial 7-nm FinFET technology (supply voltage
Vbp = 0.7V). The active area and power consumption cost of an
XNOR gate are two times as large as those of an AND gate, which
indicates that the area and power consumption cost of a binary con-
volution with binary values —1 and +1 are two times as large as
those of a binary convolution with binary values 0 and +1 (except
for bitcount operation).

4 Experimental results on ImageNet dataset

We first trained and evaluated ResNet [9] using our proposed PA
scheme on ImageNet ILSVRC2012 classification dataset [27]. Then
we generalize our scheme to other CNN architectures such as
DenseNet and MobileNet. Finally, the computational complexity of
PA-Net is analyzed on CPUs and customized hardware.

We set the batch size of all our implementations to 64 due to the
limit on available time and resources, which slightly limits the ac-
curacy of the results. However, the accuracy is expected to increase
with a larger batch size.

4.1 Weights and activations approximations

Using the ResNetl8/group2/blockl/convl layer, we sampled full
precision weights and their approximations with M/ = 8. Their his-
tograms are shown in Figure 4a and 4b, respectively. Horizontal axis
and longitudinal axis represent the values and the number of values
of weights/activations, respectively. Similarly, the comparison of ac-
tivation histograms are shown in Figure 5, which are acquired from
the ResNet18/group2/blockl/conv2 layer and include the full preci-
sion activations in Figure 5a and their approximation with N = 5

in Figure 5b. As the comparisons show, the distributions of the ap-
proximated weights and activations are similar to those of the full
precision weights and activations, respectively, which means that PA
scheme provides an accurate way for multiple binary bases to ap-
proximate the distribution of their full precision counterparts.

i it

(a) Full precision weights

rrrr

Ak b

(b) Approximated weights

Figure 4: Distribution of full precision and approximated weights.

Prr)
by

(a) Full precision activations (b) Approximated activations

Figure 5: Distribution of full precision and approximated activations.

4.2 Comparison with ABC-Net

Both PA-Net and ABC-Net can utilize parallel bitwise operation and
achieve higher accuracy than single binary CNNss, so the differences
between them need to be analyzed. The accuracy comparisons be-
tween PA-Net and ABC-Net are shown in Table 3.

Table 3 shows that PA-Net achieves higher accuracy than ABC-
Net while requiring less overhead, which strongly supports the idea
that PA-Net provides a better approximation than ABC-Net for both
the weights and activations. In addition, Table 3 shows the unique
advantage of PA-Net over ABC-Net since PA-Net can give higher
accuracy for multiple binary CNNs by increasing M and N. How-
ever, we also re-implemented ABC-Net and reproduced the results,
which shows that its accuracy remains unchanged (or even becomes
worse) as we keep increasing M and N more than 5.

For the weights approximation only (i.e., when N is full preci-
sion), PA-ResNet18 gives no Top-1 accuracy loss with M = 8. PA-
ResNet achieves higher accuracy with M = 4 and N = 5 than
ABC-ResNet with M = 5 and N = 5, which means that PA-ResNet
provides better approximation with less overhead. PA-ResNet with
M = 8 and N = 7 reduce the Top-5 accuracy gap around 1.0%.
But the accuracy of ABC-Net remains unchanged or even becomes
worse with the increase of M and N more than 5 based on our re-
implementation. PA-Net is expected to reach no accuracy loss with
the increase of M and N, which we have not attempted due to the
limitations of computational resources, training time, and the slow
increase trend of accuracy with the increase of M and N.

4.3 Generalization to other CNN architectures

To demonstrate the generalization of PA scheme, we applied it on
1.0 MobileNet-224 [12] and DenseNet121 [13]. The results are
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Table 3: Comparison with ABC-Net using ResNet as backbones

Model M N Top—1 Top—5 Top—1gap Top—5gap
ABC-ResNetl8 5 full precision  68.3% 87.9% 1.0% 1.3%
PA-ResNet18 4 full precision  68.4% 88.3% 0.9% 0.9%
PA-ResNet18 8 full precision  69.3% 88.9% 0.0% 0.3%
ABC-ResNetl8 5 5 65.0% 85.9% 4.3% 3.3%
PA-ResNet18 4 5 66.6% 87.1% 2.7% 2.1%
PA-ResNet18 8 7 68.1% 88.1% 1.2% 1.1%
ResNet18 full precision  full precision  69.3% 89.2% — —
ABC-ResNet34 5 5 68.4% 88.2% 4.9% 3.1%
PA-ResNet34 4 5 70.1% 89.2% 3.2% 2.1%
PA-ResNet34 8 7 71.5% 90.0% 1.8% 1.3%
ResNet34 full precision  full precision  73.3% 91.3% — —
ABC-ResNet50 5 5 70.1% 89.7% 6.0% 3.1%
PA-ResNet50 4 5 73.0% 91.0% 3.1% 1.8%
PA-ResNet50 8 7 74.3% 91.9% 1.8% 0.9%
ResNet50 full precision  full precision  76.1% 92.8% — —
Table 4: Generalization to DenseNet and MobileNet.
Model M N Top—1 Top—5 Top—1lgap Top—>5gap
PA-DenseNet121 8 6 72.3% 90.8% 2.7% 1.5%
DenseNet121 full precision  full precision  75.0% 92.3% — —
PA-1.0 MobileNet-224 8 7 69.0% 88.4% 1.6% 1.5%
1.0 MobileNet-224 full precision  full precision  70.6% 89.9% — —

shown in Table 4. Due to memory limitation, we implemented PA-
DenseNet121 with N = 6. Its Top-1 accuracy loss is 2.7%, which
is expected to decrease further with increasing IN. Top-1 accuracy
loss of PA-1.0 MobileNet-224 achieves 1.6% with N = 7. Point-
wise convolution is binarized while depthwise convolution is kept as
full precision convolution since they do not need significant compu-
tational resources.

4.4 Generalization to object detection

We choose SSD300 with the backbone network of ResNet50 as our
baseline. The training dataset is VOC2007 + 2012, while the testing
dataset is VOC2007 [5]. In the SSD300 model, we use the layers
from Conv1 to Conv5_x of the pre-trained ResNet50 as the backbone
network, apply residual blocks as the extra layers, and keep the num-
ber of feature maps the same as the original implementation [22]. All
the backbone layers except Convl are binarized, while all the convo-
lutional layers of the head network remain in full precision. We train
the full precision ResNet50 on the ImageNet classification dataset
as the backbone network, and then the full precision object detec-
tor SSD300 using the pre-trained ResNet50. Finally, we binarize and
finetune the pre-trained object detector SSD300 with the PA scheme.

Table 5: Performances of the full-precision SSD300 network and its
binary counterpart.

Detector | Backbone | Weights Activations mAP@0.5
SSD300 | ResNet50 | Full precision | Full precision | 74.35
SSD300 | ResNet50 | M =4 Full precision | 72.53
SSD300 | ResNet50 | M =4 N=5 58.60

Applying the PA scheme to the SSD300 network, we present the
results in Table 5. When only weights are binarized using the PA
scheme with M = 4, the binary SSD300 model achieves compara-
ble accuracy by 1.82 mAP reduction compared with its full preci-
sion baseline networks. When applying the PA scheme with binary

weights (M = 4) and binary activations (N = 5) for the SSD300
network, the binary SSD300 network shows an accuracy reduction
in 15.75 mAP, which outperforms the real-time full-precision Fast
YOLO [26] (52.7 mAP).

4.5 Comparisons with state-of-the-art methods

Table 6: Accuracy comparisons of ResNet18 with different quantized
methods.

Model w A Top—1 Top—5
Full Precision 32 32 69.3% 89.2%
BWN 1 32 60.8% 83.0%
XNOR-Net 1 1 51.2% 73.2%
Bi-Real Net 1 1 56.4% 79.5%
ABC-Net (M =5,N=5) 1 1 65.0% 85.9%
Group-Net (5 bases) 1 1 64.8% 85.7%
DoReFa-Net 2 2 62.6% 84.4%
SYQ 1 8 62.9% 84.6%
LQ-Net 2 2 64.9% 85.9%
PA-Net (M =8, N =T7) 1 1 68.1% 88.0%
PA-Net (M = 8) 1 32 69.3% 88.9%

The comparisons between PA-Net and recent developments are
shown in Table 6, where PA-Net adopts the configuration of M = 8
and N = 7. Regarding single binary models BWN, XNOR-Net [25]
and Bi-Real Net [23], and multiple parallel binary models ABC-
Net[20] and Group-Net[39], PA-Net outperforms them by much
higher accuracy. When it comes to the comparison with fix-point
quantization DoreFa-Net [37, 34, 6], fixed-point CNNs can achieve
the same or even higher performance with carefully customized bit-
widths than PA-Net. But the advantage of PA-Net is the parallelism
of inference architecture, which provides a much lower latency using
bitwise operation than fixed-point CNNs.
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Table 7: Memory usage and Flops calculation of Bi-Real Net, PA-Net, and full precision models.

Model Memory usage Memory saving  Flops Speedup
Bi-Real ResNetl8  33.6Mbit 11.14 x 1.67 x 105 10.86 x
ABC-ResNet18 77.1Mbit 4.85 x 6.74 x 108 2.70 x
PA-ResNet18 61.6Mbit 6.08 x 6.74 x 108 2.70 x
ResNet18 374.1Mbit — 1.81 x 10° —
Bi-Real ResNet34  43.7Mbit 15.97 x 1.81 x 108 18.99 x
ABC-ResNet34 106.3Mbit 6.56 x 1.27 x 10° 2.88 x
PA-ResNet34 85.0Mbit 8.20 x 1.27 x 109 2.88 x
ResNet34 697.3Mbit — 3.66 x 10° —
Bi-Real ResNet50 176.8Mbit 4.62 X 5.45 x 105 7.08 x
ABC-ResNet50 201.6Mbit 4.06 X 1.44 x 10°  2.68 x
PA-ResNet50 161.3Mbit 5.07 x 1.44 x 10°  2.68 x
ResNet50 817.8Mbit — 3.86 x 10° —

Table 8: Latency cost of Bi-Real Net, PA-Net, and full precision models. T'x Nor, Tpop> Tmul, TAND» Teom., Tuaa refer to the delay time of a
XNOR, popcount, multiplication, AND, comparison, and addition operation, respectively.

Model Latency cost Speedup
Bi-Real Net cmhw X (TXNOR + Tpop) + Tmul ~ (Tmul + Tadd)/(TXNOR + Tpop)
PA-Net cinhw X (TAND + Tpop) + 5Tmul + 4Tadd + Teom ~ (Tmul + Tadd)/(TAND + Tpop)

Full precision models

cinhw X Ty + (cinhw — 1) X Thaa

4.6 Computational complexity analysis

In this part, we analyze and compare the computational complexity
of Bi-Real Net (Liu et al. 2018), PA-Net, and full precision models
on current CPUs in terms of computation and memory usage, and
on customized hardware (i.e., FPGA/ASIC) in terms of latency. Bi-
Real Net maintains high efficiency and achieves the state-of-the-art
accuracy as a single binary CNN. During this analysis, PA scheme
uses 4 bases for weights and 5 bases for activations approximation.

4.6.1 Computation and memory usage analysis

We analyze and compare the computational complexity of Bi-Real
Net [23], PA-Net and full precision models, and their memory saving
and speedup are shown in Table 7.

Unlike full precision models which require real-valued parameters
and operations, PA-Net and Bi-Real Net have binary and real-valued
parameters mixed, so their execution requires both bitwise and real-
valued operations. To compute the memory usage of PA-Net and Bi-
real Net, we use 32 bit times the number of real-valued parameters
and 1 bit times the number of binary values, which are summed to-
gether to get their total number bit. We use Flops as the main metrics
to measure the bitwise operations, the real-valued operations, and the
speedup of implementation. Since the current generation of CPUs
can compute bitwise AND and popcount operations in parallelism
of 64, the Flops to compute PA-Net and Bi-Real Net is equal to the
number of the real-valued multiplications, comparisons, and 1,/64 of
the number of the bitwise operations.

We follow the suggestion from [25, 23] to keep the weights and
activations of the first convolutional and the last fully connected layer
as real-valued. It is worthy to notice that we binarize all the 1 x 1
downsampling layer in PA-Net to further reduce the computational
complexity.

For ResNet18, ResNet34, and ResNet50, our PA scheme can re-
duce memory usage by more than 5 times and achieves a compu-
tation reduction of nearly 3 times, in comparison with the full pre-
cision counterpart. Compared with Bi-Real ResNet50, the compu-
tation reduction of our proposed PA-ResNet50 with 4 weights bases

and 5 activations bases is only two times smaller, and it even requires
less memory usage because of the binarization of the downsampling
layer.

Combining Table 3 and Table 7, we can conclude that PA-
Net can achieve better accuracy (1.6%, 1.7%, and 2.9% for
ResNet18, ResNet34, and ResNet50) while consuming fewer param-
eters (15.4Mbit, 21.3Mbit, and 40.33Mbit for ResNet18, ResNet34,
and ResNet50) and the same Flops compared to ABC-Net during the
inference stage.

4.6.2 Latency analysis

To be implemented on customized hardware (i.e., FPGA/ASIC), la-
tency cost is one of the most important metrics for real-time applica-
tions. As shown in Table 8, the latency cost of an individual convo-
lution in Bi-Real Net, PA-Net, and full precision models is analyzed,
where we assume that the convolution implementation is paralleled
thoroughly. Compared with full precision models, the latency cost of
PA-Net and Bi-Real Net is significantly reduced. T4 np is smaller
than T'x vor, and the latency cost of a convolution in PA-Net in-
creased only by 47,41 + 4T44d + Teom compared with that in Bi-
Real Net.

5 Conclusions

In this paper, we introduced the PA scheme for multiple binary
CNNs, which adopts piecewise functions for both the forward prop-
agation and backpropagation. Compared with state-of-the-art single
and multiple binary CNNs, our scheme provides a better approxima-
tion for both full precision weights and activations. We implemented
our scheme over several modern CNN architectures, such as ResNet,
DenseNet, and MobileNet, and tested on classification task using Im-
ageNet dataset. Results are competitive and almost close the accu-
racy gap compared with their full precision counterparts. Because of
the binarization of downsampling layer, our proposed PA-ResNet50
requires less memory usage and only two times Flops than Bi-Real
Net with 4 weights and 5 activations bases, which shows its potential
efficiency advantage over single binary CNNs with a deeper network.
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