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Abstract. Capsule networks (CapsNets) are capable of modeling
visual hierarchical relationships, which is achieved by the “routing-
by-agreement” mechanism. This paper proposes a pairwise agree-
ment mechanism to build capsules, inspired by the feature interac-
tions of factorization machines (FMs). The proposed method has a
much lower computation complexity. We further proposed a new
CapsNet architecture that combines the strengths of residual net-
works in representing low-level visual features and CapsNets in mod-
eling the relationships of parts to wholes. We conduct comprehensive
experiments to compare the routing algorithms, including dynamic
routing, EM routing, and our proposed FM agreement, based on both
architectures of original CapsNet and our proposed one, and the re-
sults show that our method achieves both excellent performance and
efficiency under a variety of situations.

1 INTRODUCTION

Encoding entities by vectors is widely practiced in the deep mod-
els, especially the domains like Natural Language Processing (NLP)
and recommendation system. However, this idea is not often used in
computer vision tasks such as image classification, and the CapsNets
are representative in terms of “vector-wise”, which encode objects by
collections of neurons called capsules. It is introduced to address the
problem of information loss, such as position, size, rotation, scale,
which is caused by pooling layers [8]. A capsule represents an ob-
ject and is often composed of a pose vector/matrix and an activation,
where the pose vector/matrix encodes the instantiation parameters of
this object. This design aims to disentangle the pose from the evi-
dence of its existence. When the viewing condition changes, the in-
stantiation parameters change, but the capsule still stays active. Such
a property is called equivariance and invariance [8, 26], and can be
used to build visual hierarchical relationships between capsules of
different layers with a characteristic of assigning parts to wholes.

1.1 Routing-by-Agreement Mechanism

Sabour et al. [26] introduce dynamic routing to achieve visual hier-
archical relationships in CapsNets. It iteratively routes information
from lower-level capsules to upper-level ones by a mechanism called
“routing-by-agreement”, and this is the critical idea of dynamic rout-
ing in CapsNets. Hinton et al. [8] take an example to explain the
“agreement”:
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Figure 1. Illustration of the mechanism of routing-by-agreement. We show
how the child capsules agree on “House” instead of “Sailboat”.

If, for example, A represents a mouth and B represents a nose,
they can each make a prediction for the pose of the face. If
these predictions agree, the mouth and nose must be in the right
spatial relationship to form a face.

Figure 1 shows an intuitive description to illustrate the mecha-
nism of routing-by-agreement, where each capsule is a vector, and
the inner product between them denotes how much they agree with
each other. The child capsules make an agreement that “House” is
the right prediction instead of “Sailboat”. Here comes the core prob-
lem of how to compute the “agreement” from these prediction vec-
tors (produced by the child capsules in the lower-layer). The original
paper [26] implements this by iteratively computing the vectors’ in-
ner product (agreement) between prediction vectors and their corre-
sponding parent capsules in the upper-layer. The more the prediction
vectors agree (in terms of vectors’ inner product) with a parent cap-
sule, the parent capsule gets a larger activation. The vector length of
this parent capsule encodes how strong the child capsules agree with
it. However, this implementation has limited performance and an ex-
pensive cost both in terms of memory and computation [13, 17, 23],
especially with multiple routing iterations. The CapsNet proposed
by Sabour et al. [26] works well with the MNIST [14] dataset but
is not on par with traditional CNNs on more complex datasets such
as CIFAR10 [12]. The convolutional CapsNet with EM routing [25]
achieves an impressive performance on smallNORB [15] dataset,
which demonstrates the capability of modeling viewpoints invari-
ance. However, there are not enough experiments on other kinds of
datasets. Moreover, it suffers from a much higher cost of memory
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and computation than the CapsNet in [26]. These problems largely
limit the practice of CapsNets to be applied to more challenge tasks.

1.2 “Agreement” in FMs

The prediction of click-through rate (CTR) is to estimate the proba-
bility a user clicks on an item in recommendation systems, and it is
critical to learn feature interactions behind user click behaviors, such
as app category and time-stamp. Rendle and Steffen [24] introduced
Factorization Machines (FMs) to capture feature interactions auto-
matically and showed promising results on input features which are
sparse and of enormous dimension. FMs model feature interactions
as the inner product of latent vectors, which is at “vector-wise” level
instead of “bit-wise”, this is somewhat corresponding to the capsules
in CapsNets. FMs usually consider only order-2 feature interactions
in practice. Each feature is embedded into a latent factor vector, and
the pairwise feature interactions are modeled as the inner products
of latent vectors. This is further reformulated by Rendle and Stef-
fen [24] to make its computation more efficient.

Inspired by FMs, we find that the way it models the pairwise fea-
ture interactions can also be used to model the agreements (in terms
of pairwise vector inner product) of prediction vectors in CapsNets.
The sum of these agreements (each pair of prediction vectors) mea-
sures how much the prediction vectors agree with each other. The
more they agree with each other, the more the corresponding parent
capsule gets activated. An FM algorithm gets much more efficient
since it does not need to iteratively compute the parent capsule and
its agreements with the prediction vectors. Our contributions include:

• We propose an efficient routing-by-agreement algorithm called
FM agreement, which is inspired by the idea of modeling feature
interactions in FMs, which outperforms the original dynamic rout-
ing and EM routing with a much lower computation complexity.

• We further propose a novel CapsNet architecture that contains
residual network blocks and capsule layers, and this architecture
turns out to successfully combines both strengths of CapsNets and
ResNets.

• We conduct several experiments on benchmark datasets. The re-
sults demonstrate that our approaches achieve better performance
and efficiency than baselines while retaining the properties of Cap-
sNets.

2 RELATED WORK

The concept of capsules was firstly introduced by Hinton et al. [8]
to address the representational limitations. Sabour et al. [26] pro-
posed CapsNet with dynamic routing algorithm, which achieved a
state-of-the-art result on MNIST dataset. Hinton et al. [25] proposed
a new iterative routing procedure based on the EM algorithm, which
achieved an impressive result on smallNORB dataset. After that, the
idea of the capsule was applied to many specific tasks to improve per-
formance [3, 13, 36]. Many efforts [1, 17, 21, 31] have been made
to seek better capsule architectures. Shahroudnejad et al. [27] fo-
cused on investigating the potential explainability properties of Cap-
sNets. Lenssen et al. [16] proposed “Group-Equivariant-Capsule” to
introduce guaranteed equivariance and invariance properties to the
CapsNets. It interestingly applied the idea of Lie groups, but with
limitations that only a few realizations are applicable in a deep neu-
ral network architecture. Recently, Rajasegaran et al. [23] explored
CapsNets by “going deeper” and proposed DeepCaps, which aimed
at improving the performance of the CapsNets for more complex im-
age datasets. It achieved some improvement on the CIFAR10 dataset

compared to the work of Sabour et al. [26], but which was still very
limited when compared to the traditional CNNs such as ResNets [5].

Rendle et al. [24] introduced Factorization Machines (FMs) to
model feature interactions automatically, it achieved great success
in the problem of click-through rate (CTR). Many new architectures
related to the idea of FMs have been proposed in recent years, the
representative works include FNN [35], PNN [22], DeepCross [28],
NFM [7], DCN [32], DeepFM [4], and xDeepFM [18].

Different from the above works, we are the first to introduce
the idea of pairwise feature interactions in FMs as a routing-by-
agreement mechanism to improve the CapsNets, which aims to pro-
vide better performance and efficiency for CapsNets. Our work also
explores the capsule architectures, which is related to the work
in [23] that explores how to construct deeper CapsNets. However, our
work has some differences to the work in [23]: 1) Our work focuses
on combining the advantages of CNNs and CapsNets, to achieve
better performance and retain the properties of CapsNets, while the
work in [23] only construct CapsNets by stack multiple capsule lay-
ers; 2) Our work further designs a new routing-by-agreement algo-
rithm.

3 METHOD

For the CapsNet in [26], each child capsule is denoted by a vector
ui, and it first computes a “prediction vector” ûj|i for each possible
parent capsule by multiplying a weight matrix Wij :

ûj|i = Wijui. (1)

Given these ûj|i, an agreement mechanism is performed to com-
pute the parent capsules ûj in the upper-layer, which is the crucial
point we investigate in this paper. One way to achieve agreement is
dynamic routing [26], where the ûj is computed iteratively from a
weighted average of prediction vectors ûj|i, and the agreements are
computed by vector inner product between ûj and each ûj|i:

aij =
〈
ûj|i, ûj

〉
. (2)

These agreements are used to compute the coupling coefficients cij
for ûj|i in the next iteration. Here the coupling coefficients cij mea-
sure how much the ûj and ûj|i agree, or how much a child capsule
ûi coupled to a parent one ûj .

When certain parent capsule ûj couples much to multiple child
capsules ui, this parent capsule becomes activated. The main prob-
lem of this dynamic routing algorithm is its expensive cost, both in
terms of memory and computation [13, 17, 23]. Moreover, it is of
limited performance compared with traditional CNNs like Residual
networks [5].

3.1 Agreement Mechanism in FMs

Given feature vectors {vi}ni=1 with a size of n, the FMs [24] model
the pairwise feature interactions as:

y :=
n∑

i=1

n∑
j=i+1

〈vi,vj〉xixj , (3)

where 〈·, ·〉 is the inner product of two vectors of size k: 〈vi,vj〉 :=∑k
f=1 vi,f · vj,f . Here vi describes the i-th variable with k factors.

k ∈ N
+
0 is a hyperparameter that defines the dimensionality of the

factorization, which is also corresponding to the number of neurons

L. Zhao et al. / An Efficient Agreement Mechanism in CapsNets by Pairwise Product 1723



in a capsule of this paper. 〈vi,vj〉 models the interaction between the
i-th and j-th variable. xi and xj are binary, which denote whether the
corresponding vi, vj are activated. So y is the sum of the pairwise
interactions of the activated vectors. The computational complexity
of Formula 3 is O(kn2) since all the pairwise interactions have to
be computed. For relieving the computation problem, the pairwise
interactions can be reformulated as [24]:

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj

=
1

2

k∑
f=1

((
n∑

i=1

vi,fxi

)2

−
n∑

i=1

v2i,fx
2
i

) (4)

This equation has a computation complexity of O(kn), which is lin-
ear in both k and n.

3.2 Pairwise Agreement in Capsules

Given a bunch of prediction vectors
[
ûj|0, . . . , ûj|n,

]
, we propose

to model the “agreement” between capsules following the idea of
pairwise interactions as FMs do. The original FM algorithm com-
putes the pairwise interactions by inner product as: âj|i1,i2 =〈
ûj|i1 , ûj|i2

〉
, which only models the magnitude of the agreements.

Here, we propose to use the element-wise product as: âj|i1,i2 =
ûj|i1�ûj|i2 . Such a method not only can derive the magnitude of the
agreements by summing over each element of âj|i1,i2 , but also can
represent the orientation. Specifically, we first compute the pairwise
interactions of capsules as:

ŝj =
n∑

i1=1

n∑
i2=i1+1

ûj|i1 � ûj|i2

=
1

2

(
n∑

i=1

ûj|i �
n∑

i=1

ûj|i −
n∑

i=1

ûj|i � ûj|i

) (5)

where ûj|i =
[
ûj|i,1, . . . ûj|i,k

]
, ŝj = [ŝj,1, . . . ŝj,k], and n denotes

the number of prediction vectors along the dimension i. Then the
activation of the output capsule ûj (the “agreement” of capsules ui

on ûj) can be formulated as:

âj =
k∑

f=1

ŝj,f (6)

We define the pose vector as p̂j =
ŝj

‖ŝj‖ . The direction of p̂j encodes

the properties of an entity such as position, size, rotation, scale, etc.
We derive the partial of âj with respect to ûj|i,f :

∂âj

∂ûj|i,f
=

∂ŝj,f
∂ûj|i,f

=
1

2

(
∂
(∑n

i=1 ûj|i,f
)2

∂ûj|i,f
− ∂

∑n
i=1 û

2
j|i,f

∂ûj|i,f

)

=
n∑

i=1

ûj|i,f − ûj|i,f

(7)

In practice, we observe that the routing can result in activa-
tion/gradient explosion and the potential numeric problem, which is
mainly caused by the sum operation shown in Eqn.5 and 6. To avoid
it, we argue the key is to ensure the singular value of the Jacobian

Algorithm 1 FM Agreement

Input: prediction vectors Ûj =
(
ûj|1, . . . , ûj|n

)
Output: p̂j , âj

1: ûj|i ← L2Normalize(ûj|i) ∀i
2: ŝj ← 1

2n

(∑n
i=1 ûj|i �

∑n
i=1 ûj|i −

∑n
i=1 ûj|i � ûj|i

)
3: p̂j ← ŝj

‖ŝj‖
4: âj ← ∑k

f=1 ŝj,f

of ∂âj

∂ûj|i
to be near one. From Eqn. 7, we observe that the value of∑n

i=1 ûj|i,f makes the most contribution to the gradient. We thus
scale the ûj|i by dividing

√
n, which results in:

ŝj =
1

2n

(
n∑

i=1

ûj|i �
n∑

i=1

ûj|i −
n∑

i=1

ûj|i � ûj|i

)
(8)

We find Eqn. 8 well remedies the gradient explosion problem. Fur-
thermore, we apply L2 normalization to the ûj|i to make its length be
one before agreement routing operation. This process guarantees the
agreement value is computed by the direction of vectors and makes
the training more stable according to our experiments. We conclude
the above process in Algorithm 1, referred to as FM Agreement.

We use âj as the prediction of each category for the image classifi-
cation tasks, where âj indicates how much this category is activated.
In the subsequent experiments, we use the softmax cross entropy as
the loss function just like the models in [5, 9, 29, 30], for the tasks
which predict only one right category (e.g., the classification task
shown in Section 4.2, 4.3.1, 4.4). Considering the classification tasks
where the number of categories in the image is uncertain (e.g., the
experiments in Section 4.3.2), we use the “Margin Loss” [26]:

Lj =Tj max
(
0,m+ − âj

)2
+

λ (1− Tj)max
(
0, âj −m−)2 , (9)

where Tj = 1 if an object of class j is present. We set λ =
0.5,m+ = 0.9,m− = 0.1 by default. The λ is used to down-weight
the loss for absent classes.

3.3 Architecture of One Capsule Layer

To reduce the parameters, we compute the prediction vectors ûj|i as
the work in [25] does. The capsule described in this paper is rep-
resented as a vector of k dimensions. For adapting the method in
computing the prediction, we need to reshape it into a k

′ ×k
′

matrix
where k

′
should be equal to

√
k, and ensure the trainable weight ma-

trix Wij between capsule i in layer L and capsule j in layer L + 1

being also a k
′ × k

′
matrix [25]. By doing this, we get the “predic-

tion matrix” by multiplying the reshaped ui and Wij , then reshape
it into a k dimensions vector ûj|i which is used as the input of the
routing algorithm. One advantage of this operation is that we reduce
the parameters from k× k to

√
k×√

k, and there is no performance
degeneration, according to our experiments. We set k as 16 in the ex-
periments by default. Before the routing operation, we insert a batch
normalization layer [10] to normalize the prediction vectors, which
stabilize the training process. The transformation process can be con-
cluded in Algorithm 2.

Figure 2 presents the architecture of a capsule layer. A capsule
contains a pose vector/matrix and an activation, and there are differ-
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Algorithm 2 Matrix Transformation
Input: ui, Wij

Output: ûj|i
1: ui ← Reshape(ui) 1× k → √

k ×√
k

2: ûj|i ← ui ×Wij Matrix multiplication
3: ûj|i ← Reshape(ûj|i)

√
k ×√

k → 1× k

4: ûj|i ← BatchNormalization(ûj|i)

Figure 2. Illustration of one capsule layer. The prediction vectors of input
child capsules, corresponding to each parent capsule, are firstly computed,

and then transformed into the output parent capsules by a routing procedure.

ent ways to implement it [25, 26]. In the implementation of [26], the
activation is already encoded in the pose vector (because it’s defined
as the length of the pose vector), and the dynamic routing algorithm
only takes the pose vector as its inputs. While in the implementation
of [25], they are separated, and the EM routing algorithm takes both
pose matrix and activation as its inputs (in which the activation is
used in the “m-step”). To adapt our FM agreement to the multiple
capsule layers, we make the ŝj in Formula 8 as output capsules of
the current layer, which are also the input capsules of the next layer.

3.4 Combining with Traditional CNNs

The CapsNets are designed to be a new paradigm to address the prob-
lem, such as information loss in traditional neural network architec-
tures. According to the implementations of CapsNets in [25, 26], the
capsule layers are built upon a few CNN layers which are used to
learn lower level features, and these lower level features are further
used by capsule layers to learn parse trees and relationships of parts
to wholes [26]. Therefore, the quality of these lower level features
does affect the performance of upper capsule layers. Besides, cap-
sule layers are computation expensive, especially applied in lower
layers with a large spatial dimension [23]. Rajasegaran et al.reduce
the computation complexity in their deep capsule model by reduc-
ing the number of routing iterations in the lower layers. At the same
time, the performance is not affected as the features in the lower lay-
ers need not be complex in nature. We believe these lower layers can
be replaced by more efficient components. Traditional CNN architec-
tures like VGG [29], ResNet [5], GoogLeNet [30], DenseNet [9], and
their many variants have achieved huge success in many computer
vision tasks, by learning better visual representation. One straight-
forward idea is to combine the strengths of both traditional CNNs
and CapsNets.

Figure 3. The architecture of the proposed CapsNet. The input image is
first fed into the ResNet blocks to produce feature maps, and then

transformed into capsules by “PrimaryCaps” layer. These input capsules are
used by the following capsule layers to generate output capsules.

We design the architecture with both ResNet blocks and capsule
layers, and such an architecture can be used to investigate the per-
formance of networks and simultaneously explore the properties of
the capsule. We apply several ResNet-v2 [6] blocks as the backbone
and use a “PrimaryCaps layer” to connect the backbone and its above
capsule layers. Inside this PrimaryCaps layer, the tensor provided by
the backbone is first to be downsampled by a convolutional layer,
then normalized by a batch normalization layer. This tensor is fur-
ther grouped into capsules by reshaping (e.g., a tensor with shape
H × W × C is reshaped into H × W × C

′ × K, where H,W,C
indicates height, width, channel respectively, and K is the neuron
number in a capsule), and activated by a non-linear “squashing” [26]
function. We describe the complete architecture in Figure 3.

4 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness
of our method in image classification and maintaining the equivari-
ance and invariance.

We implement all the models by Tensorflow,4 and the experiments
include:

• We compare the classification accuracy and computation cost be-
tween different routing algorithms, based on the architecture de-
scribed in [26].

• We also validate the effectiveness of our proposed architecture
shown in Section 3.4, compared to the existing CapsNet archi-
tectures on several benchmark datasets.

4 The code is available at https://github.com/bhneo/FMRouting.
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(a) cropped-SVHN (b) Fashion-MNIST (c) CIFAR10

Figure 4. Comparison of FM agreement and dynamic routing without data augmentation.

(a) cropped-SVHN+random-crop (b) Fashion-MNIST+random-crop (c) CIFAR10+random-crop+random-flip

Figure 5. Comparison of FM agreement and dynamic routing with data augmentation.

• We investigate the ability of our proposed methods in maintaining
the equivariance on image reconstruction tasks.

• Comparison of different methods on the performance of view-
points invariance by experiments on smallNORB dataset.

4.1 Comparison between Routing Algorithms

In this section, we compare our pairwise agreement algorithm with
dynamic routing, based on the original CapsNet architecture [26]
without the decoder. We use 3 routing iterations for dynamic routing,
following [26], Experiments are conducted on 3 popular benchmark
datasets: cropped-SVHN [20], Fashion-MNIST [33], CIFAR10 [12].
We use Adam [11] optimizer (beta1=0.9, beta2=0.999, epsilon=1e-
7) with a learning rate of 0.001, batch size of 128. We do not use
weight decay to simplify the discussion.

We train the models for 50 epochs without any data augmenta-
tion. Figure 4 shows the training and test accuracy with respect to
the training epochs. We observe that our FM agreement has better
optimization efficiency compared to the dynamic routing, over the
three datasets. Besides, our FM agreement obtains significantly bet-
ter test accuracy than dynamic routing, which suggests its ability in
improving the generalization of models.

We also investigate the experiment with data augmentation and
run the experiments for 100 epochs. We use only random-crop on
cropped-SVHN and Fashion-MNIST, while both random-crop and
random-flip-left-right on CIFAR10. The results are shown in Figure
5. We also observe that our FM agreement obtains consistently bet-
ter training performance than dynamic routing. One interesting ob-

servation is that, compared to dynamic routing, FM agreement has
nearly the same test accuracy on cropped-SVHN, slightly better on
Fashion-MNIST, and much better on CIFAR10. Based on this obser-
vation, we conjecture original dynamic routing is not robust on com-
plex datasets with varied backgrounds, while our method is suitable
at more complex datasets.

Computational efficiency We also compare the per batch in-
ference time for models trained on CIFAR10 and Fashion-MNIST,
which have different model sizes caused by the input sizes (32x32x3
and 28x28x1). The time cost is computed on Nvidia GeForce GTX
1080ti GPU and Intel i7 CPU (3.5GHz). The results shown in Table
1 illustrate that the models using our FM agreement run faster than
the dynamic routing both on GPU and CPU.

Table 1. The per-batch inference time. Dynamic routing (x) means using
dynamic routing with x iterations.

Methods
CIFAR10 (ms) Fashion-MNIST (ms)

GPU CPU GPU CPU

Dynamic routing (1) 5.79 218.26 4.43 127.95

Dynamic routing (3) 8.89 274.58 7.61 157.69

FM agreement 5.22 203.34 3.60 125.39
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Table 2. Performance comparison with existing CapsNet architectures on
F-MNIST, CIFAR10 and SVHN. We report the classification accuracy with

a form of “mean±std”, computed on 3 random seeds.

Model
Accuracy (%)

F-MNIST CIFAR10 SVHN
Sabour et al. [26] 93.60 89.40 95.70
Hinton et al. [25] - 88.10 -

Nair et al. [19] 89.80 67.53 91.06
HitNet [2] 92.30 73.30 94.50

DeepCaps [23] 94.46 91.01 97.16
Ours 94.70±0.17 93.20±0.24 96.79±0.04

4.2 Performance on Proposed Architecture

In this experiment, we compare our proposed architecture described
in Figure 3 with the existing CapsNet architectures on cropped-
SVHN, Fashion-MNIST, CIFAR10. We use 25 ResNet blocks and
3 capsule layers (with 32, 16, 10 capsules, respectively). We follow
the experimental setup described in the CIFAR10 experiment of [5].
We run the experiments with 3 random seeds and report the perfor-
mance in Table 2.

From Table 2, we can find that our model outperforms the other
CapsNets on CIFAR10 with a significant margin, which further
demonstrates the advantage of our model on complicated datasets.
Our method also has slightly better performance on F-MNIST, while
slightly worse performance on cropped-SVHN, compared to the
state-of-the-art model DeepCaps [23]. Note that the parameters of
our model are less than 1M, while DeepCaps [23] are 7.22M. We
contribute to that our proposed architecture adequately leverages the
strength of ResNets [5] in accelerating training and improving the
generalization.

4.3 Reconstruction from the Pose Vector

One of the key ideas in CapsNets is providing both equivariance and
invariance properties. In this subsection, we investigate such proper-
ties by reconstructing the input image from the pose vector. Figure 6
describes the model architecture in this experiment, where we use the
architecture in Figure 3 to generate the output capsules. We use the
activations (âj in Formula 6) of these capsules to compute the mar-

gin loss (Formula 9). The pose vectors p̂j (Algorithm 1) of these
capsules are all masked out except for the correct one (which is from
the correct capsule indicated by the label during training, while from
the capsule with the largest activation during the test). We then feed
this vector into a decoder to reconstruct the input image. Here, we
build an efficient decoder with much fewer parameters by applying
deconvolutional [34] layers instead of fully-connected layers [26],
and only the correct p̂t ∈ R

1×k is fed into the decoder [23]. With
an additional reconstruction loss, the pose vector is encouraged to
learn the properties such as rotation, translation, scale, etc. We use
Adam [11] optimizer with the learning rate of 0.0001, and train the
model with a batch size of 128.

4.3.1 Aff-NIST

We replicate the experiment in section 5.2 of the original paper [26]
to evaluate the capability of our methods in terms of providing both
invariance and equivariance. We train our models on a padded and
translated MNIST training set, in which each example is an MNIST
digit placed randomly on a black background of 40 × 40 pixels.

Figure 6. The proposed model architecture which contains a decoder. The
capsules from the CapsNet are masked out except for the “correct” one, then

the decoder uses the “correct” capsule to reconstruct the input image.

We then test it on the aff-NIST5 dataset in which each example is
an MNIST digit with a random small affine transformation, i.e., the
models are never trained with affine transformations other than trans-
lation and any natural transformation seen in the standard MNIST.
Therefore, the results can indicate whether the models are robust on
affine transformations.

We train models based on our architecture but using different rout-
ing algorithms (dynamic routing, EM routing, FM agreement) in the
capsule layer and compare them on the test set of aff-NIST. We run
all the models 3 times and report their accuracy by “mean±std” in
Table 3. From the results, we can see that our method using the
FM agreement achieves the best accuracy. EM routing is vulnera-
ble to numeric problems in our architecture according to our obser-
vation, so its performance is much worse than dynamic routing and
FM agreement. Moreover, our model size is largely reduced, which
contains about 199K parameters in the decoder and about 196K in
the rest components. In contrast, the original CapsNet [26] contains
about 2.2M parameters in the decoder and 11.2M in the rest compo-
nents.

Table 3. Results on the test set of Aff-NIST.

Model Params Accuracy(%)

Sabour et al. [26] 13.40M 79.00

Hinton et al. [25] - 93.10

Ours (Dynamic Routing) 0.39K 92.06±0.71

Ours (EM Routing) 0.39K 78.29±2.04

Ours (FM agreement) 0.39K 93.85±0.29

5 http://www.cs.toronto.edu/˜tijmen/affNIST/
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Table 4. Sample reconstructions from the test set of Aff-NIST

expanded MNIST aff-NIST

Input

Output

Table 5. Sample reconstructions from the test set of Multi-MNIST. The
top row shows the input images with overlapped digits, and the bottom row

shows the reconstructed images with segmented digits generated by our
CapsNet.

R:(5,6) R:(2,1) R:(3,9) R:(9,0) R:P:(5,2) *R:(7,0)
L:(5,6) L:(2,1) L:(3,9) L:(9,0) L:(5,9) L:(7,8)

As illustrated in Table 4, the reconstructions from pose vectors
of expanded MNIST and aff-NIST successfully learned the crucial
details of the input images such as thickness, translation, rotation,
which demonstrates our methods can also provide equivariance for
the input. We believe it has the potential to build neural networks
with better interpretability.

4.3.2 Multi-MNIST

We also replicate the experiment of multi-MNIST in [26]. The
dataset in this experiment is created by merging each sample with
a digit of other classes. All the samples are shifted up to four pixels
randomly in each direction, resulting in a 36x36 image. For each digit
image, we generate only 100 Multi-MNIST examples for the training
and also 100 for testing, resulting in 6M images for the training set
and 1M for the test set, which is a much smaller size compared to the
original paper [26].

We achieve a good result with an accuracy of 95.1% on the train-
ing set and 94.5% on the test set, which is similar to the result in
paper [26]. However, the model is much smaller (457K parameters)
compared to the original CapsNet (11.4M).

We display some reconstructed images in Table 5, which shows
the pose vectors generated by our model can segment the image into
the 2 original digits just like the CapsNet in [26], and we can see that
the reconstructions still preserve the styles and positions from origi-
nal inputs. The top image shows the input, and the lower one shows
the reconstructed digits overlayed in green and blue. L:(l1; l2) repre-
sents the label for the two digits in the image, P:(p1; p2) represents
the prediction for the two digits, and R:(r1; r2) represents the two
digits used for reconstruction. The penult column shows two exam-
ples with the wrong classification reconstructed from the prediction
(P), which confuses digit ‘9’ with digit ‘2’. The last column with the
(*) mark show the reconstruction from a digit that is neither the label
nor prediction. The other columns have correct classifications. These
results suggest that the model can find the best fit for all the input

digits, including the ones that do not exist.

Table 6. Results on the test set of smallNORB.

Model Iteration Accuracy(%)

Dynamic Routing 1 91.74±0.86

Dynamic Routing 2 92.73±0.62

Dynamic Routing 3 93.36±0.69

EM Routing 1 91.28±1.02

EM Routing 2 93.55±0.75

EM Routing 3 92.33±0.64

FM agreement - 93.60±0.53

4.4 Viewpoints Invariance on SmallNORB

The smallNORB dataset [15] has gray-level stereo images of 5
classes of toys with every individual toy is pictured at 18 different az-
imuths (0-340), 9 elevations, and 6 lighting conditions. It is designed
to be a pure shape recognition task without the context and color, so
it becomes an important benchmark to evaluate the performance of
viewpoints invariance. Hinton et al. [25] conducted experiments on
smallNORB, and their proposed CapsNet with EM routing achieved
impressive results.

Based on our proposed architecture in Figure 3, we train models
using different routing algorithms to make a fair comparison between
our proposed FM agreement and other routing algorithms. We train
the model with SGD with a batch size of 64, a momentum of 0.9, and
a weight decay of 0.0001. The training starts with a learning rate of
0.01 (which is divided by 2 for every 20 epochs) and is terminated
at epoch 120. We also run the experiments with 3 random seeds and
show the results with a form of “mean±std” in Table 6. We again
observe that our proposed FM agreement achieves the best accuracy,
compared to the dynamic routing and EM routing.

5 CONCLUSION

In this paper, we introduce an algorithm called FM agreement to im-
prove the routing procedure in CapsNets. FM agreement is inspired
by the FMs, which is widely used in the recommendation system.
We use FMs as a “routing-by-agreement” mechanism in the routing
procedure, and conduct experiments to compare its performance with
dynamic routing and EM routing. The experiments illustrate that our
method is of low complexity and outperforms the original dynamic
routing and EM routing on several datasets. We further propose a
new CapsNet architecture combining both capsule layers and ResNet
blocks, and experiments show it not only retains the strong discrim-
inative performance of ResNets but also inherent the capability of
CapsNets by providing both equivariance and invariance.

Our future work includes investigating the performance of our
CapsNet on more complicated datasets, and further exploring its
equivariance and invariance quantitatively. We believe this might be
a potential direction for building deep neural networks with better
robustness and interpretability.
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