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Abstract. Multi-modal multi-label (MMML) learning provides an
important framework to learn complex objects with diverse repre-
sentations and annotations. Most existing multi-modal multi-label
learning approaches focus on exploiting shared information of all
modalities, but neglect specific information of each modality. Be-
sides, how to effectively utilize relationship among modalities is
also a challenging issue. In this paper, we propose a novel MMML
learning approach called Common and Discriminative Semantic Pur-
suit (CoDiSP), which learns low-dimensional common representa-
tion with all modalities, and extracts discriminative information of
each modality by enforcing orthogonal constraint. Meanwhile, the
common representation is used as a new modality and added to the
specific modal sequence. Furthermore, CoDiSP learns deep models
with adaptive depth and exploits label correlations simultaneously
based on the extracted modal sequence. Finally, extensive experi-
ments on several benchmark MMML datasets show superior perfor-
mance of CoDiSP compared with other state-of-the-art approaches.

1 INTRODUCTION

On the one hand, multi-modal learning has attracted much atten-
tion with the rapid development of data collection technology, where
data collected from diverse sources can be represented with multi-
ple modal features. In contrast to single modal learning, multi-modal
learning mainly exploits the consistent and complementary proper-
ties among different modalities and improves the learning perfor-
mance [26]. The major challenge of multi-modal problem is how to
jointly model heterogeneous modalities in a mutually beneficial way.

On the other hand, multi-label learning [33] has been an impor-
tant and practical research topic, since one instance may have multi-
ple annotations. As a fundamental framework handling objects with
multiple annotations, multi-label learning has been widely applied in
many real-world applications, such as image annotation [24], docu-
ment categorization [14], information retrieval [6] and bioinformat-
ics [31]. A challenging issue for multi-label learning is the exploita-
tion of label correlations [5].

In real-world applications, data are often represented with mul-
tiple modalities and associated with multiple labels simultaneously.
Multi-modal multi-label (MMML) [29] learning provides a learn-
ing framework for modeling such complex objects. Existing MMML
learning approaches mainly focus on exploiting shared information
among all modalities to eliminate noise and redundancy, which map
each modality into a shared subspace. However, it is usually done
in an independent way, which neglects communication among dif-
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ferent modalities. To overcome the above challenges, we present a
novel end-to-end multi-modal multi-label neural network framework
named Common and Discriminative Semantic Pursuit (CoDiSP), to
exploit relationship among different modalities and label correlations
with the help of extracted common and specific modal features. The
main contributions of this paper are summarized as follows:

• A novel MMML learning approach called Common and Discrim-
inative Semantic Pursuit (CoDiSP) is proposed, which can exploit
common and discriminative information, and make full use of
inter-relationship among different modalities.

• Without pre-determining the modal order for prediction, our ap-
proach is able to sequentially learn the modal dependency and la-
bel correlations with the extracted modal sequence.

• Experiments on benchmark datasets demonstrate that CoDiSP
performs favorably against state-of-the-art approaches. Besides,
we conduct extensive experiments to analyze common semantic,
modal dependency and convergence of CoDiSP.

The remainder of this paper is organized as follows. Section 2
briefly reviews some related work of multi-modal multi-label learn-
ing. Section 3 presents technical details of the proposed approach.
Section 4 reports detailed results of comparative experiments. Fi-
nally, Section 5 gives the conclusion.

2 RELATED WORK

In this section, we will briefly review some state-of-the-art ap-
proaches in both multi-modal and multi-label learning.

For multi-label learning, each instance is associated with multi-
ple interdependent labels and the goal is to exploit various types of
label correlations. In terms of the order of label correlations, these
approaches can be divided into three strategies. For first-order ap-
proach, Binary Relevance (BR) [1] takes each label independently,
which neglects the relationship among labels. For second-order ap-
proach, Calibrated Label Ranking (CLR) [4] considers the pair-
wise relationships between labels. For high-order approach, Classi-
fier Chains (CC) [16] addresses connections among random subsets
of labels. So far, many approaches have been developed to improve
the performance of multi-label learning by exploring various types of
label correlations [11] [35]. For example, a boosting approach [10]
exploits label correlations with a hypothesis reuse mechanism. How-
ever most of the existing approaches take label correlations as prior
knowledge [9], which may not correctly characterize the real rela-
tionships among labels and final predictions are not explicitly corre-
lated. To tackle this problem, CAMEL [3] learns the high-order label
correlations via sparse reconstruction in the label space.
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Figure 1. The overall flowchart of the proposed CoDiSP approach. Firstly, for i-th instance Xi = [X1
i ,X

2
i , · · · ,XP

i ] with P modalities, we concatenate
all modalities as raw common modality X0

i . Secondly, CoDiSP enforces orthogonal constraint to exploit common information Ci and modal-specific
discriminative information {Sm

i }pm=1. Meanwhile, Ci is added to the specific modal sequence as a new modal, and then input the new modal sequence
{Ci,S

1
i ,S

1
i , · · · ,SP

i } to LSTM structure in order. At t-th step, we stack all previous hidden output as Ht
i = [h0

i ,h
1
i , · · · ,ht

i], and exploit label correlation
R based on current modal features. Finally, we make label prediction with stacked output Ht

i , label correlation matrix R and prediction at (t− 1)-th step.

For multi-modal learning, the goal is to improve performance with
heterogeneous modalities or reduce the sample complexity with ac-
cumulated multi-modal data [27]. Directed Acyclic Graph (DAG)
[20] models an adaptive modalities acquisition system, which learns
decision rules that adaptively select modalities for each example as
necessary to make a confident prediction. Nevertheless, DAG needs
to list all permutations of modal sequence in the training phase. Dis-
criminative Modal Pursuit (DMP) [28] approach is proposed to learn
a serialized modal extraction decision methods, which can balance
the classification performance and modal feature extraction cost.

What’s more, there have been some researches for multi-modal
multi-label learning. [2] proposes a new classification framework us-
ing the multi-label correlation information to address the problem
of simultaneously combining multiple feature modalities and maxi-
mum margin classification. [8] performs joint label specific feature
selection and take the label correlation matrix as prior knowledge for
model training. Considering that label heterogeneity and feature het-
erogeneity often co-exist, [25] proposes a novel graph-based model
for Learning with both Label and Feature heterogeneity (L2F), which
imposes the modal consistency by requiring that modal-based classi-
fiers generate similar predictions on the same examples. Multi-Label

Co-Training (MLCT) [23] introduces a predictive reliability mea-
sure to select samples, and applies label-wise filtering to confidently
communicate labels of selected samples among co-training classi-
fiers. To sufficiently consider the complementary information among
multiple modals, LSA-MML [30] is proposed to seek a predictive
common representation of multiple modals and the corresponding
projection model between the common representation and labels. To
further fully extract the complementarity and correlation information
effectively, SMISFL [21] jointly learns multiple modal-individual
transformations and one sharable transformation. [35] aims to reamin
concensus on mutli-modal latent spaces by Hilbert-Schmidt indepen-
dence criterion during the mapping procedure. However, there is no
communication among various modalities. Hence, SIMM [22] is pro-
posed to leverage shared subspace exploitation and view-specific in-
formation extraction. Nevertheless, previous approaches rarely con-
sider the label correlation. CS3G approach [29] handles types of
interactions between multiple labels, while no interaction between
features from different modalities in the model training phase. To
make each modality interacts and further reduce modal extraction
cost, Multi-modal Classifier Chains (MCC) [34] extends Classifier
Chains to exploit label correlations with partial modalities.
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3 METHODOLOGY

This section mainly gives the detail description of Common and Dis-
criminative Semantic Pursuit (CoDiSP) approach after a preliminary
notation explanation.

3.1 Notation

Formally, let X = R
d1 ×· · ·×R

dm ×· · ·×R
dP be the feature space

of P modalities, where dm(1 ≤ m ≤ P ) is the dimensionality of
the m-th modal. Let Y = {yk}Lk=1 be the label space with L labels.
Given the training dataset with N data samples D = {(Xi,Yi)}Ni=1,
where Xi = [X1

i ,X
2
i , · · · ,XP

i ] ∈ X is the feature vector and
Yi ⊆ Y is the label vector of the i-th instance Xi. The task of multi-
modal multi-label learning is to learn a function F : X → 2Y from
D, which can assign a set of proper labels for the unseen instance.

3.2 CoDiSP approach

We introduce Common and Discriminative Semantic Pursuit
(CoDiSP) approach in detail. As illustrated in Fig. 1, CoDiSP ap-
proach contains 4 major components: feature mapping layer, orthog-
onal layer, LSTM inference layer and label prediction layer.

3.2.1 Feature mapping layer

Considering the dimensionality of different modalities is heteroge-
neous which is difficult to input to the network, we are supposed to
map the original modal feature vectors to the same dimension.

Common modality mapping Aiming at exploiting common sub-
space representation of all modalities, we concatenate all modalities
in Xi to formalize a new single modal X0

i = [X1
i ,X

2
i , · · · ,XP

i ] ∈
R

dall , where dall = d1 + d2 + · · · + dP . And then we add a dense
layer to transform the original common modality to d dimension
common vector according to Eq. 1.

Ci = ReLU(X0
i U0 + b0) (1)

where U0 ∈ R
dall×d is weight vector, b0 ∈ R

1×d is bias vector.

Specific modality mapping Each modality in the original feature
vector Xi can be used to extract specific information. And then we
add a dense layer to transform the m-th original specific modality
Xm

i with dm dimension to d dimension Sm
i by Eq. 2.

Sm
i = ReLU(Xm

i Um + bm),m = 1, · · · , P (2)

where Um ∈ R
dm×d is weight vector, bm ∈ R

1×d is bias vector.
As a result, for the i-th instance Xi, feature mapping layer is used

to map common and specific modal feature vector into the same d
dimension modal feature vector Ci and {Sm

i }Pm=1, respectively.

3.2.2 Orthogonal layer

Different modalities often includes two main different information:
common information shared among all the modalities, and discrim-
inative information of its own specific modality. Therefore, we will
introduce our CoDiSP approach based on the following two parts.

Common semantic pursuit For traditional single modal multi-
label learning approach, concatenating all modalities can obtain bet-
ter performance than those of the best single modal. As a result, we
seek a predictive common representation from concatenated modali-
ties. Furthermore, the corresponding prediction model between com-
mon representation and multiple labels can be represented by Eq. 3.

f(Ci) = σ(CiWC + bC) (3)

where WC ∈ R
d×L is weight vector, bC ∈ R

1×L is the bias vector.
And thus, the common loss function implied in the common fea-

tures prediction model can be represented as:

Lcomm = −
Nb∑
i=1

L∑
k=1

(
Y k
i logZk

i + (1− Y k
i )log(1− Zk

i )
)

(4)

where Y k
i is the ground-truth of Xi on the k-th label. Y k

i = 1 if
k-th label is the relevance label, 0 otherwise. Zk

i = f(Ci) is the
prediction with the common modal vector Ci, which is extracted
from original modal feature vector Xi. And Nb is batch size.

Discriminative semantic pursuit Complementary information
among different modalities is of great importance. In order to jointly
enhance communication between common modality X0

i and other
specific modality {Xm

i }Pm=1, we need to extract specific modal fea-
tures from {Sm

i }Pm=1, which eliminate the shared information with
common information. We penalize the independence between com-
mon modal vector Ci and each specific modal vector {Sm

i }Pm=1

with orthogonal loss function:

Lorth =

Nb∑
i=1

P∑
m=1

‖CT
i Sm

i ‖22 (5)

where ‖ · ‖2 is the L2-norm. Lorth encourages Sm
i extracted from

the original m-th modal vector Xm
i to be as discriminative from Ci

as possible.

3.2.3 LSTM inference layer

After preparing common modal features Ci and discriminative
modal features {Sm

i }Pm=1, which are all in the same d dimension,
we input {Ci,S

1
i , · · · ,SP

i } to the network in order. LSTM infer-
ence layer has 3 gates as well as 2 states [7]: input gate, forget gate,
output gate, cell state and hidden state. At t-th step, the hidden fea-
tures of Xi in LSTM structure can be represented as ht

i ∈ R
dh . To

better exploit relationship among different modalities, we stack all
the previous hidden outputs as Ht

i = [h0
i ,h

1
i , · · · ,ht

i] ∈ R
(t+1)dh ,

where dh is the dimension of the hidden layer. All the parameters in
LSTM structure are denoted as Ψ.

3.2.4 Label prediction layer

It is well-known that exploiting label correlations is crucially impor-
tant in multi-label learning and each modality contains its own spe-
cific contribution to the multi-label prediction. In this paper, CoDiSP
models label correlations with extracted modal information stored in
the memory of LSTM layer.

At the t-th step, we add a fully connected structure between hidden
layer and label prediction layer, which makes label prediction with
stacked hidden outputs Ht

i . The final label prediction is composed of
the prediction of the current modality and the prediction of modality
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Algorithm 1 Training algorithm for CoDiSP approach
Input:

D ={(Xi,Yi)}Ni=1: Training dataset;
Nb: batch size

Output:

F P : classifier trained with extracted modal sequence
1: Concatenate all modalities of i-th instance Xi as X0

i =
[X1

i ,X
2
i , · · · ,XP

i ], i = 1, · · · , N
2: repeat

3: Randomly select Nb instances from D without replacement
4: for i = 1 : Nb do

5: Map raw common modal X0
i ∈ R

d1+···+dP to Ci ∈ R
d

6: Map each specific raw modality Xm
i ∈ R

dm to Sm
i ∈ R

d

with the same dimension, m = 1, · · · , P
7: for t = 0 : P do

8: if t = 0 then

9: Input common modal features Ci to LSTM cell
10: else

11: Input discriminative modal features St
i to LSTM cell

12: end if

13: Stack hidden output Ht
i = [h0

i ,h
1
i , · · · ,ht

i]
14: Compute label prediction F t(Ht

i ) with Eq. 6
15: Compute label loss function Li,t

pred with Eq. 7
16: end for

17: end for

18: Compute common loss function Lcomm with Eq. 4
19: Compute orthogonal loss function Lorth with Eq. 5
20: Compute overall loss function L with Eq. 8
21: Compute the derivative ∂L

∂Θ

22: Update parameters in Θ
23: until converge
24: return F P

used in the last step. And then we predict multiple labels at t-th step
according to a nonlinear softmax function according to Eq. 6.

F t(Ht
i ) =

⎧⎨
⎩

σ(Ht
iW

t
L + btL) t = 0

σ(Ht
iW

t
L + F t−1(Ht−1

i )R+ btL) t > 0
(6)

where W t
L ∈ R

((t+1)dh)×L denotes the fully connected weights be-
tween Ht

i and label prediction layer, btL ∈ R
1×L is the bias vector.

• Ht
iW

t
L is similar to BR, which predicts each label independently.

• F t−1(Ht−1
i )RT is the prediction of other labels, in which

F t−1(Ht−1
i ) ∈ R

1×L denotes label prediction at the (t − 1)-th
step. Meanwhile, we learn label correlations matrix R ∈ R

L×L,
where L is the number of labels. The k-th row and j-th column
of R represents the contribution of the k-th label prediction in
(t− 1)-th step to j-th label, which is denoted as Rkj .

Furthermore, we design binary cross-entropy loss function for fi-
nal label prediction at t-th step by Eq. 7.

Li,t
pred = −

L∑
k=1

(
Y k
i logŶ k,t

i + (1− Y k
i )log(1− Ŷ k,t

i )
)

(7)

where Ŷ k,t
i the prediction of Xi on the k-th label at t-th step, pre-

dicted by F t in Eq. 6.

Above all, we combine common loss, orthogonal loss and label
loss function together to compute the overall loss function L:

L = (

Nb∑
i=1

P∑
t=0

Li,t
pred) + αLorth + βLcomm (8)

where α and β control the trade-off among different loss terms.
Θ = [U0, b0,Um, bm,WC , bC ,Ψ,R,W t

L, b
t
L] denotes all the

parameters need to be updated in CoDiSP, where m = 1, · · · , P ,
t = 0, · · · , P . Then we adopt popular optimization algorithm Adam
[13] to update parameters in Θ simultaneously. The pseudo code of
CoDiSP in the training phase is presented in Algorithm 1.

4 EXPERIMENTS

4.1 Dataset description

We employ 8 benchmark multi-modal multi-label datasets for per-
formance evaluation, the details are summarized in Table 1.

Table 1. Characteristic of the benchmark multi-modal multi-label datasets.
#N , #P and #L denote the number of instances, modalities and labels in
each dataset, respectively. #D shows the dimensionality of each modality.

Name #N #P #L #D
Yeast 2417 2 14 [24, 79]

Emotions 593 3 6 [32, 32, 8]
MSRC 591 3 24 [500,1040,576]

ML2000 2000 3 5 [500,1040,576]
Taobao 2079 4 30 [500,48,81,24]
FCVID 4388 5 28 [400,400,400,400,400]
Scene 2407 6 6 [49, 49, 49, 49, 49, 49]
MSRA 15000 7 50 [256,225,64,144,75,128,7]

• Yeast [32] [22] has two modalities including the genetic expres-
sion (70 attributes) and the phylogenetic profile of a gene at-
tributes (24 attributes).

• Emotions [19] [34] is a publicly available multi-label dataset with
rhythmic attributes and timbre attributes.

• MSRC [17] is used for object class recognition. As for each image,
there are 3 types of modalities including: BoW, FV and HOG.

• ML2000 [32] is an image dataset and the modal features are ex-
tracted similarly to MSRC.

• Taobao [29] is used for shopping items classification. Description
images of items are crawled from a shopping website, and four
types of features, i.e., BoW, Gabor, HOG, HSVHist, are extracted
to construct 4 modalities of data. Corresponding categories path
of an item provides the label sets.

• FCVID [12] is the Fudan-Columbia Video Dataset [11], a subset
of 4388 videos with most frequent category names are tested. Each
video may come from more than one category and features can be
extracted in diverse ways. 5 types of features, namely HOF, HOG,
CNN, Trajectory and SIFT are extracted for each video, then PCA
is conducted to reduce the dimension of each modal to 400.

• Scene [1] [34] is public multi-label dataset with 6 modalities.
• MSRA is a subset of a salient object recognition dataset [15],

which contains 15000 instances from 50 categories, including 256
RGB color histogram features, 225 dimension block-wise color
moments, 64 HSV color histogram, 144 color correlogram, 75
distribution histogram, 128 wavelet features and 7 face features.
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Table 2. Comparison results (mean ± standard deviation) of CoDiSP with compared approaches on benchmark datasets. The best performance for each
criterion is bolded. ↑ / ↓ indicates the larger / smaller the better of the criterion.

Approaches
Hamming Loss ↓

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.193±0.007 0.218±0.014 0.059±0.009 0.089±0.011 0.032±0.001 0.018± 0.001 0.144±0.007 0.046±0.001
CAMEL(C) 0.189±0.007 0.207±0.025 0.106±0.020 0.098±0.011 0.033±0.002 0.020±0.001 0.076±0.006 0.045±0.001

DMP 0.199±0.007 0.196±0.013 0.067±0.008 0.103±0.010 0.053±0.002 0.027±0.002 0.106±0.007 0.046±0.001
CS3G 0.255±0.008 0.290±0.013 0.077±0.008 0.119±0.010 0.064±0.003 0.020±0.001 0.217±0.013 0.050±0.001
MCC 0.213±0.009 0.214±0.023 0.068±0.008 0.105±0.012 0.054±0.002 0.027±0.001 0.102±0.010 0.048±0.001

CoDiSP 0.189±0.009 0.173±0.025 0.050±0.008 0.086±0.011 0.027±0.002 0.012±0.001 0.064±0.009 0.046±0.001

Approaches
Ranking Loss ↓

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.162±0.011 0.176±0.023 0.033±0.009 0.063±0.011 0.151±0.014 0.027±0.006 0.158±0.018 0.159±0.010
CAMEL(C) 0.163±0.012 0.179±0.038 0.153±0.074 0.067±0.010 0.159±0.012 0.031±0.005 0.057±0.011 0.154±0.009

DMP 0.200±0.010 0.150±0.021 0.047±0.010 0.074±0.010 0.238±0.020 0.052±0.007 0.088±0.007 0.204±0.005
CS3G 0.211±0.012 0.225±0.018 0.043±0.010 0.092±0.013 0.171±0.009 0.027±0.003 0.289±0.030 0.140±0.007
MCC 0.224±0.016 0.178±0.029 0.054±0.011 0.082±0.011 0.235±0.016 0.052±0.005 0.101±0.011 0.195±0.005

CoDiSP 0.159±0.010 0.136±0.022 0.034±0.012 0.064±0.013 0.098±0.013 0.029±0.004 0.052±0.007 0.120±0.005

Approaches
Subset Accuracy ↑

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.173±0.022 0.248±0.034 0.322±0.058 0.655±0.040 0.150±0.020 0.534±0.030 0.300±0.033 0.057±0.010
CAMEL(C) 0.201±0.018 0.272±0.048 0.070±0.073 0.633±0.036 0.238±0.046 0.485±0.019 0.646±0.024 0.066±0.010

DMP 0.151±0.022 0.284±0.058 0.291±0.033 0.617±0.031 0.218±0.017 0.520±0.033 0.531±0.032 0.053±0.005
CS3G 0.048±0.009 0.165±0.041 0.205±0.043 0.564±0.033 0.104±0.017 0.571±0.018 0.327±0.037 0.061±0.009
MCC 0.190±0.034 0.299±0.037 0.345±0.088 0.662±0.032 0.213±0.023 0.522±0.024 0.662±0.038 0.076±0.003

CoDiSP 0.222±0.030 0.403±0.069 0.470±0.058 0.745±0.034 0.527±0.040 0.783±0.026 0.777±0.030 0.148±0.010

Approaches
Macro F1 ↑

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.392±0.025 0.590±0.039 0.680±0.043 0.804±0.025 0.034±0.008 0.697±0.022 0.458±0.033 0.069±0.004
CAMEL(C) 0.458±0.020 0.615±0.058 0.208±0.041 0.781±0.023 0.182±0.028 0.659±0.017 0.772±0.021 0.079±0.002

DMP 0.322±0.012 0.628±0.032 0.643±0.045 0.781±0.020 0.231±0.015 0.660±0.023 0.689±0.020 0.054±0.002
CS3G 0.217±0.017 0.461±0.023 0.506±0.040 0.738±0.021 0.125±0.015 0.693±0.014 0.282±0.034 0.041±0.007
MCC 0.340±0.018 0.621±0.039 0.652±0.024 0.780±0.027 0.222±0.026 0.667±0.009 0.718±0.026 0.073±0.004

CoDiSP 0.472±0.022 0.714±0.043 0.755±0.047 0.828±0.021 0.398±0.028 0.834±0.020 0.830±0.022 0.194±0.013

Approaches
Example F1 ↑

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.618±0.014 0.534±0.039 0.805±0.032 0.769±0.031 0.054±0.012 0.551±0.031 0.341±0.035 0.232±0.010
CAMEL(C) 0.628±0.013 0.581±0.049 0.618±0.074 0.739±0.029 0.266±0.044 0.503±0.017 0.695±0.027 0.248±0.006

DMP 0.609±0.017 0.605±0.037 0.789±0.028 0.753±0.026 0.336±0.014 0.642±0.026 0.620±0.026 0.216±0.007
CS3G 0.549±0.011 0.538±0.028 0.729±0.024 0.697±0.029 0.323±0.025 0.673±0.022 0.366±0.036 0.273±0.011
MCC 0.585±0.025 0.624±0.043 0.798±0.024 0.787±0.022 0.333±0.026 0.647±0.019 0.713±0.029 0.266±0.005

CoDiSP 0.629±0.018 0.690±0.050 0.850±0.026 0.827±0.022 0.541±0.039 0.796±0.026 0.818±0.023 0.341±0.013

Approaches
Micro F1 ↑

Yeast Emotions MSRC ML2000 Taobao FCVID Scene MSRA

CAMEL(B) 0.642±0.012 0.607±0.038 0.814±0.029 0.806±0.024 0.101±0.023 0.695±0.024 0.457±0.037 0.329±0.014
CAMEL(C) 0.658±0.012 0.637±0.048 0.629±0.071 0.783±0.024 0.373±0.053 0.658±0.016 0.763±0.019 0.349±0.010

DMP 0.632±0.014 0.658±0.027 0.796±0.025 0.783±0.021 0.359±0.015 0.658±0.023 0.683±0.019 0.311±0.009
CS3G 0.566±0.011 0.574±0.031 0.744±0.026 0.744±0.021 0.332±0.026 0.720±0.015 0.372±0.036 0.324±0.018
MCC 0.615±0.021 0.653±0.041 0.799±0.023 0.784±0.024 0.354±0.021 0.663±0.014 0.709±0.027 0.359±0.006

CoDiSP 0.662±0.015 0.719±0.044 0.851±0.025 0.826±0.021 0.591±0.041 0.828±0.021 0.820±0.023 0.430±0.012
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Table 3. Comparison results (mean ± standard deviation) of CoDiSP-NC and CoDiSP, where CoDiSP-NC denotes the model using only discriminative
information {Sm}Pm=1 of each modality in the CoDiSP network. The best performance for each criterion is bolded. ↑ / ↓ indicates the larger / smaller the

better of the criterion.

Datasets Approaches
Evaluation Metrics

Hamming Loss ↓ Ranking Loss ↓ Subset Accuracy ↑ Macro F1 ↑ Example F1 ↑ Micro F1 ↑

Yeast
CoDiSP-NC 0.195±0.008 0.164±0.009 0.214±0.025 0.461±0.016 0.617±0.015 0.649±0.013

CoDiSP 0.189±0.009 0.159±0.010 0.222±0.030 0.472±0.022 0.629±0.018 0.662±0.015

Emotions
CoDiSP-NC 0.174±0.021 0.136±0.019 0.393±0.065 0.707±0.038 0.664±0.039 0.710±0.040

CoDiSP 0.173±0.025 0.136±0.022 0.403±0.069 0.714±0.043 0.690±0.050 0.719±0.044

MSRC
CoDiSP-NC 0.055±0.012 0.033±0.012 0.455±0.063 0.735±0.066 0.838±0.039 0.840±0.037

CoDiSP 0.050±0.008 0.034±0.012 0.470±0.058 0.755±0.047 0.850±0.026 0.851±0.025

ML2000
CoDiSP-NC 0.091±0.012 0.072±0.013 0.731±0.032 0.816±0.022 0.815±0.024 0.813±0.022

CoDiSP 0.086±0.011 0.064±0.013 0.745±0.034 0.828±0.021 0.827±0.022 0.826±0.021

Taobao
CoDiSP-NC 0.029±0.002 0.113±0.015 0.471±0.034 0.346±0.028 0.473±0.035 0.540±0.041

CoDiSP 0.027±0.002 0.098±0.013 0.527±0.040 0.398±0.028 0.541±0.039 0.591±0.041

FCVID
CoDiSP-NC 0.015±0.001 0.052±0.007 0.708±0.024 0.780±0.014 0.718±0.021 0.777±0.015

CoDiSP 0.012±0.001 0.029±0.004 0.783±0.026 0.834±0.020 0.796±0.026 0.828±0.021

Scene
CoDiSP-NC 0.069±0.008 0.055±0.010 0.757±0.025 0.814±0.019 0.792±0.022 0.803±0.021

CoDiSP 0.064±0.009 0.052±0.007 0.777±0.030 0.830±0.022 0.818±0.023 0.820±0.023

MSRA
CoDiSP-NC 0.046±0.001 0.132±0.004 0.115±0.007 0.101±0.007 0.259±0.016 0.353±0.015

CoDiSP 0.046±0.001 0.120±0.005 0.148±0.010 0.194±0.013 0.341±0.013 0.430±0.012

4.2 Compared approaches

Considering CoDiSP is related to multi-modal multi-label learning,
the performance of CoDiSP is compared against 5 approaches, in-
cluding a state-of-the-art multi-label learning approach with two
types of feature inputs and 3 multi-modal multi-label approaches.

• CAMEL(B) & CAMEL(C): CAMEL [3] is a novel multi-label
learning approach that aims to explicitly account for the correlated
predictions of labels while training the desired model simultane-
ously. CAMEL(B) stands for the best performance obtained from
the best single modality. CAMEL(C) stands for concatenating all
the modalities as a single modal input.

• DMP [28]: A multi-modal learning approach, which predicts the
label information and decide the modalities to be extracted simul-
taneously. Here we treat each label independently with DMP.

• CS3G [29]: A multi-modal multi-label approach utilizes multi-
modal information in a privacy-preserving style to deal with multi-
label tasks, which treats each modality unequally and has the abil-
ity to extract the most useful modal features for final prediction.

• MCC [34]: A multi-modal multi-label approach that makes great
use of modalities, and can make a convince prediction with many
instead of all modalities.

4.3 Evaluation metrics

To evaluate the performance of CoDiSP compared with other multi-
modal multi-label learning approaches, we adopt 6 widely-used
multi-label evaluation metrics, including Hamming Loss, Ranking
Loss, Subset Accuracy, Macro F1, Example F1 and Micro F1 [33].
For Hamming Loss and Ranking Loss, smaller value indicates bet-
ter performance, while larger value of the other 4 evaluation metrics
means better performance. And all the employed evaluation metrics
vary within the interval [0, 1].

4.4 Experimental results

4.4.1 Comparison with state-of-the-arts

For all these approaches, we report the best results of the optimal
parameters in terms of classification performance. Meanwhile, we
perform 10-fold cross validation (CV) and take the average value of
the results in the end. We set trade-off parameter α = 0.1, β =
100 and batch size Nb = 64. Furthermore, we drop out 40% modal
features at each step to avoid over-fitting [18].

Table 2 demonstrates the comparison results of different ap-
proaches on benchmark datasets. Based on the experimental results,
several observations are obtained as follows: 1) CoDiSP approach
achieves the best performance on all benchmark datasets com-
pared with other state-of-the-art approaches, which demonstrates the
highly competitive performance of our proposed approach in multi-
modal multi-label learning problem. 2) Concatenating all modalities
as a single modality may not always achieve better performance than
those of best single modal, which indicates the necessity of taking
both concatenated modalities and single modality into consideration.

4.4.2 Common Semantic Analysis

In order to validate the effectiveness of common information extrac-
tion, we keep the basic structure of our proposed CoDiSP model and
remove the common features C from the modal sequence, which is
denoted as CoDiSP-NC. As shown in Table 3, CoDiSP performs bet-
ter than CoDiSP-NC, which shows the significance of common infor-
mation exploitation of all the modalities, i.e., it is not good enough to
merely fuse semantic of specific modalities. Even though, CoDiSP-
NC performs better than other state-of-the-art approaches shown in
Table 2, which shows the effectiveness of exploiting discriminative
information from each specific modality.
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(a) MSRC with 3 modalities

(b) FCVID with 5 modalities

Figure 2. Performance of CAMEL, CAMEL(C) and CoDiSP with increase of the modality on the MSRC and FCVID dataset. With the emergence of new
modality, CAMEL adopts the new modality as input, while CAMEL(C) concatenates new modality with previous modalities as input.

(a) MSRC, Hamming&Ranking Loss (b) MSRC, F1&Subset Accuracy

(c) FCVID, Hamming&Ranking Loss (d) FCVID,F1&Subset Accuracy

Figure 3. Convergence analysis of CoDiSP approach on the MSRC and
FCVID dataset.

4.4.3 Modal dependency analysis

To further evaluate the effectiveness of CoDiSP in sequentially learn-
ing modal dependency without pre-determining the modal order,
we provide comparison for the state-of-the-art multi-label approach
CAMEL in terms of Hamming Loss, Subset Accuracy, Example F1
and Micro F1. Based on the comparison results in Fig. 2, we ob-
serve that: 1) CAMEL performs differently with different modali-
ties, so it is significant to exploit discriminative information of each
specific modality. 2) With the emergence of new modality, the per-
formance of CAMEL(C) is getting worse on MSRC dataset, while
the performance of CAMEL(C) is getting better on FCVID dataset.
In contrast, the curve of CoDiSP tends to be more stable. This phe-
nomenon shows that concatenating modalities is not a wise decision,

and extraction of the common features of all modalities with orthog-
onal constraint is effective.

4.4.4 Convergence analysis

We conduct convergence experiments to validate the convergence of
CoDiSP, due to the page limit, we only give the convergence results
on two datasets: MSRC and FCVID. As shown in Fig. 3, CoDiSP
approach can converge fast within a small number of epochs.

5 CONCLUSION

Rapid development of data collection techniques has spawned the
multi-modal multi-label learning, while the modalities extracted
from different channels are inconsistent. In this paper, a novel multi-
modal multi-label learning approach named Common and Discrim-
inative Semantic Pursuit (CoDiSP) is proposed to exploit consistent
and complementary information of multiple modalities, which en-
codes the commonality and discrimination of different modalities in
latent semantic space. And then, common information is added to the
specific modal sequence as a new modal. What’s more, CoDiSP ex-
plores modal relationship and hidden label correlations when input-
ing into the LSTM network with features of each modality in the new
modal sequence. Experiments on 8 benchmark datasets validate the
effectiveness of our proposed CoDiSP approach compared with other
state-of-the-art approaches. Furthermore, we conduct extensive ex-
periments to analyze common semantic pursuit, modal dependency
and convergence. In the future, how to transfer the learned model
between different domains is an interesting work.
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