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Abstract. In many settings, as for example wind farms, multiple
machines are instantiated to perform the same task, which is called
a fleet. The recent advances with respect to the Internet of Things
allow control devices and/or machines to connect through cloud-
based architectures in order to share information about their status
and environment. Such an infrastructure allows seamless data shar-
ing between fleet members, which could greatly improve the sample-
efficiency of reinforcement learning techniques. However in practice,
these machines, while almost identical in design, have small discrep-
ancies due to production errors or degradation, preventing control al-
gorithms to simply aggregate and employ all fleet data. We propose
a novel reinforcement learning method that learns to transfer knowl-
edge between similar fleet members and creates member-specific dy-
namical models for control. Our algorithm uses Gaussian processes
to establish cross-member covariances. This is significantly different
from standard transfer learning methods, as the focus is not on shar-
ing information over tasks, but rather over system specifications. We
demonstrate our approach on two benchmarks and a realistic wind
farm setting. Our method significantly outperforms two baseline ap-
proaches, namely individual learning and joint learning where all
samples are aggregated, in terms of the median and variance of the
results.

1 INTRODUCTION

Reinforcement Learning (RL) is a framework for optimizing con-
trol policies through trial-and-error [35]. A learning agent operates
within an environment and optimizes its actions based on gathered
experiences. As state-of-the-art techniques typically require a large
amount of experiences, a key challenge in RL is to increase sample-
efficiency, such that RL techniques become viable in real-life appli-
cations [40].

In this work, our objective is to improve sample efficiency in the
context of a fleer®, i.e., a set of machines instantiated to perform the
same task and managed as a single system. Fleets are prominent in
many industrial applications, such as wind farms [23, 37] and au-
tonomous vehicles [11], because fleets are cheaper to maintain and
operate. To this end, we present a method that aggregates the expe-
riences of the distinct fleet members, in contrast to the experiences
of a single machine. The time is right for such a method, as the re-
cent advances in the Internet of Things allow fleet members to share
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data from modern wireless sensors using a cloud-based architecture,
rapidly providing a complete overview of the problem [16].

As fleet members carry out the same task, they typically share the
same design. In reality, fleet members differ slightly in terms of dy-
namics, for example due to production errors or degradation [34].
Thus, naively aggregating data over all members can be detrimental
to the learning process. Therefore, information should only be shared
between fleet members that are sufficiently similar.

We propose a new RL method for fleet control where knowledge
transfer over dynamics models of similar devices is possible without
compromising the specificity of an individual’s model. More specif-
ically, we create a Bayesian RL method that uses a Gaussian process
(GP) to model the dynamics for a single member and aims to estimate
correlations with other members using a novel sparse coregionaliza-
tion method.

GPs are Bayesian models known to successfully capture complex
non-linear surfaces using only a limited amount of data. They have
previously been used in the context of RL [30, 9, 6] and are popu-
lar when high sample-efficiency is necessary. Coregionalization was
originally introduced in geostatistics to generate valid covariance
matrices for modeling multivariate data sets [14]. It has later been
used in the context of multi-task learning to describe correlations be-
tween a set of tasks [4].

In this work, we develop a fleet-wide policy iteration method based
on coregionalized GPs. We start by positioning our research within
the literature (see Section 2) and provide background on GPs (Sec-
tion 3) and RL (Section 4). Then, we describe the Bayesian fleet
transition model and explain how a fleet member can access its spe-
cific predictive statistics (Section 5). Next, we analyze the sample
efficiency and performance of our method on fleet-variants of well-
known benchmark settings, namely, the continuous mountain car and
the underactuated cart-pole (Section 6). Additionally, we demon-
strate the practical benefits of our method on a state-of-the-art wind
farm simulator (Section 6.3). Finally, we discuss the results and iden-
tify future work (Section 7).

2 RELATED WORK

The type of learning we consider in our work is related to multi-
task (or inductive transfer) reinforcement learning [28], where a set
of control tasks is jointly learned, leveraging potential similarities
between them. In contrast to our setting, most work on multi-task
RL considers different task parameters, while the system specifica-
tions remain the same [17, 22, 36, 38, 20, 21, 7]. Specifically, [22]
and [38] construct a Bayesian (hierarchical) structure of tasks, where
the task parameters are assumed to be drawn from a set of priors
shared among similar tasks. Recent work has focussed on MDPs for
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which the system specifications are different, but the reward function
remains the same [8, 19, 32]. Typically, a latent embedding of the
system specifications is learned in order to share information among
various machines.

Our work is different as it concerns fleet settings in which we as-
sume that the system specifications are nearly identical except for de-
graded parts or small design discrepancies. This means that a more
targeted approach is possible. Rather than having a single latent em-
bedding from which all members originate, a more directed peer-
to-peer transfer method can be obtained through correlations. Such
direct transfer is sample-efficient, as estimating the fleet-wide corre-
lations for a given target is limited to learning a set of parameters
linear in the size of the fleet.

Fleet settings are inherently multi-agent systems. While multi-
agent reinforcement learning deals with control and coordination and
control in multi-agent systems [5], it focuses on coordination prob-
lems, rather than information exchange between agents.

3 GAUSSIAN PROCESS

Gaussian processes (GPs) [31] are an extension of multivariate nor-
mal distributions. Similar to the latter, a GP describes a set of nor-
mally distributed random variables that are potentially correlated,
i.e., knowledge about one variable gives information about another.
However, the difference with multivariate normal distributions is that
a GP is defined over arbitrary sets of annotated random variables. In
aregression context, these random variables are the outputs of an un-
known function, and their annotations are the inputs to that function.
Formally, assuming a zero-mean GP prior, i.e.,

f(x) ~GP (0,k(x,x")), o

and any arbitrary set of inputs X, we can model the associated latent
function values f as

f]X ~N(0,K) @3]

where K;; = k(x;,X;) is the covariance between variables f; and
f;. When regressing over a training set (X, y«), we can compute the
posterior statistics of (f | X, X, y«) to obtain the predictive outputs
f for inputs X. For the zero-mean GP described in Equation 2, we
have:

E [f ‘ X? Xln Ytr] = KX,XtrC)_(:,X"le
VI X, X, yu] = Kx,x — KX,X"C;([},X"KX,,,X 3)
Cxyxe = Kxy xo + 071,

where Kx x, is a matrix containing the pair-wise covariances be-
tween sets X and X, according to the covariance kernel and o2 is
observational noise.

The choice of covariance kernel k(-, -) is important, as it defines
the various characteristics about how the model should generalize
from the training set. We use the squared exponential (SE) kernel,
defined as:

< (g — x})?
ke (x,x') = exp (- > d%zd> 4
d

d=1

where 0°F contains the hyperparameters lg, which denotes the
length scale along dimension d and characterizes the smoothness of
the unknown function. This kernel has several properties, including
continuity, differentiability and stationarity, rendering it a popular
choice for general modeling purposes.

4 REINFORCEMENT LEARNING

Consider the Markov decision process (MDP) M = (S, A, 7,v, R)
[29]. S and A are state and action spaces, respectively. The transition
function 7 (s, a) returns the state s’ when executing action a in state
s. The reward function R : S, A, S — R returns the immediate
reward. The discount factor v € [0, 1) determines the importance of
future rewards. Additionally, consider a policy 7 : S — A, which
defines how an agent behaves given a particular state.

We specify the reward function as a square-exponential® centered
around a goal state with width o, i.e.,

R(s,a,s’) = %

, 2
L IIs” — Sgoul|[,
——exp| ———F——= .

/2mo% 20%
The transition function is unknown. Thus, we define the outputs of
the transition function as samples from GPs, i.e.,

7e(s,a) ~ GP (0,k5%% ) | ©)

for each output feature e.

The expected long-term reward when following a policy 7 is de-
fined by a value function V™. This function can be written recursively
as the sum of the expected immediate reward and future reward, i.e.,

VT(s)=E [R(s,w(s), s)+4V7(s) | s’ =7(s, 7('(5))] .

This is the sum of all possible long-term rewards weighted by their
probability of occurrence when executing a policy 7. The goal of an
agent is then to find the optimal policy 7* : S — A which maxi-
mizes this expression.

The expectation in Equation 7 typically has no closed-form ex-
pression for arbitrary continuous reward and transition functions. In
order to approximate the value function, we use the Gaussian Process
Reinforcement Learning (GPRL) method [30], which is a policy it-
eration method that iteratively evaluates a policy 7 on a discrete set
of states and improves it until convergence.

During the policy evaluation step, GPRL computes the values of
a finite, but dense, vector of support points supp = (s(V)V;. We
use Latin hypercube sampling [24] to generate this vector, such that
the state space is sufficiently covered. The values of these points can
be computed analytically when the transition model and value func-
tion are described by a GP, and the reward function is bell-shaped.
Formally, given a policy 7, a reward function centered around Sgoa
with width ¢%, and an initial GP over the value function, the support
values vypp have the recursive form:

Vsupp = T + ’YPVsupp

! 1 (T ()~ )
= ——— — = (Sgoal — C Sgoal —
r PEee] exp( 5 (Seo = p1”) (S0t — 1)
c® =5 1 %1,
3)

with the statistics of the transition model,

u(i) =E [s' s =7 (sm,w (S“)))]
»@ = var [s/ ‘ s =71 (S(i),ﬁ (sm))] ,

3 The reward function can be learned using a GP without jeopardizing the
analytical benefits of our method. However, as our work focuses on learn-
ing over multiple transition models, we assume a known reward function
centered around a prespecified goal state.
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and P a matrix that depends on the transition model and the value
function. The equation for the support values can be rewritten as a
closed-form expression:

Vapp = (I —vP) " 'r. (10)

We refer the reader to the work of Rasmussen and Kuss [30] for more
information about the exact form of the matrix P.

During the policy improvement step, a new GP is fitted over the
value function V'(+) using the support values to generalize over the
state space. This function is used to optimize 7:

m(s) < argmax,E [R(s,a,s’) + yV"( | s'=7(s,a)]. (D
An expression similar to the one presented in Equation 8 can be ob-
tained for arbitrary actions using the vector of support states. This ex-
pression can be maximized using standard stochastic optimizers for
continuous action spaces or enumeration for discrete action spaces.

Throughout this manuscript, we only deal with deterministic tran-
sition models, and we thus set the observational noise o of the GP
to 10™8 to ensure numerical stability. Other hyperparameters are op-
timized using evidence maximization on the training set [31].

5 COREGIONALIZATION OVER MULTIPLE
TRANSITION MODELS

To transfer knowledge between fleet members, we leverage the sta-
tistical properties of GPs. Specifically, we assert that fleet members
should only share information when they are correlated. This means
that, for a given state-action pair, there exists a linear transformation
between the outputs of the members’ transition models. Intuitively,
the GP’s covariance kernel allows to generalize in the regression
model by correlating unobserved outputs to observed ones. Core-
gionalization extends this concept to the outputs of different GPs,
suggesting that information from one process can be generalized to
another. The main contribution in this work is the introduction of
coregionalization to capture similarities between multiple transition
models in order to decide whether and how knowledge should be
transferred.
Formally, we define a fleet MDP as:

Mp = (S,A,TF v, R), with

12
TF = {Tm},{,\le. ( )

Compared to the definition in Section 4, all properties are the same,
except that T'F is now a set of M transition models, one for each
fleet member m.

Consider a single member from the fleet, which we refer to as
the target and the rest of the fleet as the sources. We denote the tar-
get’s index as t, and the index of a source as s. In order to achieve
knowledge transfer from the sources to the target, we must define
a medium through which sources can communicate. Specifically, for
inputs x = [s, a], we consider this model for the transition functions:

Z (0 sgs

s#t
Vs #t:
Ts(X) = ws,s9s(X) + asls(x).

X) + ol (x)
(13)

The transition function of the target is a linear combination of M — 1
global functions g5 shared with every source s, and member-specific

local functions (i.e., [; for the target and ls for the sources) to
model the member’s specific behavior. This ensures that all sources
can exchange information with the target without compromising the
specifics of a member’s dynamics. The parameters w;, s, ws, s, o and
as weigh the contribution of the different components in the transi-
tion functions. For example, when source s has relevant information
for the target ¢, the parameter wy s should be high in order to transfer
knowledge through function gs. In contrast, when the sources have
no relevant information for the target, the parameter w;, s should be
zero in order to model independence between the source and the tar-
get.

We define the unknown components gs, [s and [; as independent
samples from a zero-mean GP with covariance kernel kj SEE (see
Equation 6). This entails that each of the transition functions is a
linear combination of GP-distributed random variables, and is thus
also a GP-distributed random variable [31]. The mean functions of
the transition models will be zero, due to the linearity of expectation
property and the fact that all components have a mean of zero. More-
over, as the components are independently sampled, covariance can
only exist within a single component, which is defined through the
kernel k3 fE The resulting cross-covariance equations for the transi-
tion functions are as follows:

Cov [r(x), e(x)] = | D wi, +af | kioy (x,x")
s#t

Cov [TS(X), TS(X/)} (ws s+ as) kGSE (X X/)

Cov [Tt( ) S(X/)] wt sWs .s)k:GSE(X X)

Cov [7s(x), 7o (x')] =0,

(14)

where 5,5’ # tand s # s'.

From these statistics, we can reformulate the target’s transition
function as a sample from a GP with the following fleet-wide ker-
nel:

kg(ﬁ) ([XamL [xlvm/}) = kBSS{EE (X7 XI)Gm,m’

T
G:W+(a2) I (15)
W = ZWSWST

s#t

where w only has non-zero elements at indices ¢ and s, and m, m’
are the indices of two fleet members. The matrix W encodes rela-
tionships between the target and the sources, while o contains inde-
pendent terms for each member.
The decomposition of GG yields a valid covariance matrix, as it is
symmetric positive semidefinite, i.e.,
V2£0 : 2" Gz=Y |l2"will; + |27, > 0. (16)
s#t

The set ) contains now both the hyperparameters 65 of the SE
kernel and of the matrix G, i.e., w and . These parameters can be
optimized using the training set (Xf oyl ) of the entire fleet, anno-
tated with the indices of its members.

Note that the matrix G contains 3M — 2 parameters per target
(i.e., M in o and 2(M — 1) in W). Therefore, the computational
complexity is linear per target, and the method can be executed in
a distributed manner over the fleet. Moreover, because of the spar-
sity of the defined covariances (see Equation 14), it is possible to
significantly reduce the computational complexity of the matrix in-
version in Equation 3. Specifically, the computational complexity of
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3
the inversion operation can be reduced from O ((Z%ﬂ Nm) )

to O (Z%:I an), where N, is the number of samples of member

m. The derivation of this complexity can be found in the Supple-
mentary Information*. Both properties render the method scalable to
larger fleets.

Using the new fleet covariance kernel, we can describe a single
GP jointly over the outputs of all fleet members (Equation 2) and
compute the target’s posterior statistics (Equation 3) for regression.
Note that even though the new model uses the whole fleet data set,
the target can predict using its own transition function by computing
the posterior statistics using index ¢, i.e.,

| XY, XE v (17)

We can define such a model for each member in the fleet inde-
pendently by setting that member as the target, and thus construct
the set 77" by defining the transition model of each member m as a
fleet-wide GP:

Tm(Xx) ~ GP (0, kg(m) ([x, m], [x’, m'])) . (18)

GPRL can be used for policy iteration to learn the optimal value
function and policy. A high-level description of the complete fleet-
wide policy iteration method for a given target is provided in Algo-
rithm 1.

Algorithm 1: Fleet-Wide Policy Iteration

Input: Reward function R, set of support points sepp, fleet-wide

dynamics training data (X", y{'), target index ¢

Output: Learned policy 7 (s)

1 Initialize:

2 m(s) + random policy;

3 Vsupp <— Apply reward function R on sgypp;
4 Define V ~ GP (0, k@ng);

5 Fit V' using (Ssupp, Vsupp )3

6

7

Train fleet-wide transition model: (Section 4)
0 argmax p(yL | X, 0se,G);
0s5,G

8  Define r ~ GP(0,k)):

9 Fit 7 using (X, y&);

10 Policy iteration (GPRL): (Section 2)
1 while vy, not converged do
12 Vsupp < Policy evaluation using Seupp, R, 7, V and 7;
13 Fit V' using (Ssupp, Vsupp )3
14 7 <— Policy improvement using Sgpp, R, 7 and V;

15 end

6 EXPERIMENTS

First, we experimentally analyze our method on the well-known
mountain car [26] and cart-pole [2] benchmark problems. Next, we
apply our method on a state-of-the-art wind farm simulator [10] to
demonstrate our method’s real-world benefits on larger fleets.’

4 Supplementary Information: https://timo-verstraeten.

github.io/fwpi-experiments/supplement .pdf
5 The source code for the methods and experiments is publicly available (see
Section 9).
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Figure 1: Boxplot of the total sum of squared distances to the goal
state for the mountain car (a) and cart-pole (b) benchmarks during
200 time steps. The experiment is repeated 50 times for each bench-
mark.

In the first two benchmarks, we consider a fleet of 3 members.
The fleet consists of a target, a similar source member A and a sig-
nificantly different source member B. We sample the environments
of sources A and B sufficiently, such that the dynamics are well-
represented by the transition model of the respective fleet member.
However, we provide the target with only a limited amount of data
sampled from its own environment. This means that the target can-
not sufficiently estimate its transition model based on these samples,
making it challenging to find the optimal policy. Therefore, transfer-
ring knowledge from member A will assist the target in finding the
optimal policy. However, the dynamics in which member B operates
are different from the target’s dynamics, and sharing samples with
it would misinform the target’s transition model. Therefore, the ob-
jective of the target is to estimate a sufficiently accurate transition
model by estimating the correlations with all sources and use the
sources’ knowledge proportional to the estimated correlation. In the
wind farm control task, we consider a fleet of 8 members. Again, we
have a single target and sample the environments of the other fleet
members.
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Once the transition model is learned, we compute® the optimal
value function and policy using the GPRL method presented in Sec-
tion 4. We consider an off-line batch RL setting and provide the
learner with a random batch of transition samples. The discount fac-
tor y is set to 0.99 and the observational noise of the value GP is set
to 0.1.

In all experiments, we compare our method against two baselines,
i.e., learning with a single target type and learning with a joint target
type. The single target only uses its own samples to learn a transition
model, while the joint target considers all fleet data jointly, assuming
it is fully correlated with the sources. Specifically, we construct tran-
sition models that use the SE kernel described in Equation 4, fitted
only on the target’s own samples for the single target type, or using
all fleet samples for the joint target type. For the fleet target type,
we use our method to fit a transition model, using the fleet kernel
described in Equation 15, based on all fleet samples.

6.1 Mountain Car

To illustrate our method, we set up the continuous mountain car do-
main [25]. The car is positioned in a valley and its objective is to
reach the top of the right-most hill. However, the slope is too steep
for the car to simply accelerate to the top. Thus, it has to first drive
up the opposite side of the valley and then accelerate from there to
reach the top.

In this problem, a state s consists of the position of the car (in
[—1.2,0.6]) and the velocity of the car (in [—0.07,0.07]), while an
action is a force applied to either side of the car (in [—1, 1] times a
power parameter). The start and goal state are, respectively, given by

Ssart = [—0.5, 0] and sgou = [0.45, 0], i.e., the bottom and top of the
hill. The standard deviation of the reward function oy is set to 0.05.
We use 200 support points.

We consider a fleet of three mountain cars: a target with a power
of 1.5 - 10~2 units, source A with power 1072 and source B with
power 10™%. For each source, we provide a batch of 100 transitions
sampled uniformly random from its environment. We do the same
for the target, but only sample 20 times, resulting in a total of 220
samples. We run the experiment 50 times for the three target types:
single, joint and fleet.

We measure the performance of the methods by reporting the to-
tal sum of squared distances to the goal state during 200 time steps.’
The results are shown in Figure 1a. We observe that the joint target
(i.e., learning from the full data set without the fleet kernel) rarely
reaches the goal. This is because the target uses the data of source
B, which has a low power parameter and is incapable of reaching
the goal. Therefore, the target does not expect to reach the goal and
is often remaining at the bottom of the hill during runs. The single
target (i.e., learning from own experiences) can sometimes achieve
good results, but is unable to accurately represent its dynamics, due
to the limited amount of data it can learn from. Because of the un-
certainty in the transition model, the car is often incapable of finding
a suitable policy. The fleet target consistently achieves good results,
as the target is able to figure out which source is most useful to share
data with through the fleet kernel.

In Figure 2, we plot the resulting GP of the value function during
the best performant run for each of the target types. We can see that
that the region with highest value matches the goal state for the fleet
target, while the single and joint targets misidentify this region. The

6 We use the GPy library for all GP functionality [15].
7 The success rates of solving the task for each of the target types are reported
in the Supplementary Information.

average standard deviation over the surface of the value GPs is 115
for the fleet target, 590 for the joint target and 3906 for the single
target. This indicates that insufficient data is available to the single
target to accurately represent the value function. In contrast, the fleet
target has a low standard deviation, which means that it is sufficiently
confident about its value function.

Next, we plot the correlation matrices learned by the fleet target,
averaged over all runs. Given the optimized cross-covariance matrix
G from Equation 15, we can compute the correlation matrix:

corr(G) = (diag(G)) ™ *°G (diag(G))~"°. (19)

The element-wise means of these matrices over all runs are given
in Figure 3. The fleet target successfully identifies source A to be
similar, while assigning a notably lower correlation value to source
B.

6.2 Cart-Pole

In the cart-pole domain, the goal is to keep a pole balanced on top
of a controllable cart. Cart-pole is an underactuated system, as the
system has more degrees of freedom than actuators. Balancing the
pole is challenging, as its equilibrium is highly unstable.

In this problem, a state s consists of the position of the cart (in
[—4.8,4.8]), the angular position of the pole (in [—0.42, 0.42]), the
velocity of the cart (in [—2, 2]) and the angular velocity of the pole
(in [—2,2]). The start and goal state are the same, namely, at the
equilibrium, i.e., Ssurt = Sgoar = [0, 0]. The standard deviation of the
reward function o r is set to 0.2. We set the number of support points
to 300.

We consider a fleet of three carts: a target with a pole mass of
0.1 units, source A with mass 0.2 and source B with mass 0.5. For
each source, we provide a batch of 50 transitions sampled uniformly
random from its environment. We do the same for the target, but
only sample 5 times, resulting in a total of 105 samples. We run the
experiment 50 times for the three target types: single, joint and fleet.

We measure the performance of the methods by reporting the to-
tal sum of squared distances from the equilibrium during 200 time
steps.” The results are shown in Figure 1b. Due to the instability
of the equilibrium, it is necessary to accurately represent the tran-
sition model. The joint target fails to achieve this, as it aggregates
samples over different dynamics. The single target achieves better
results, but is often uncertain about its transition model, leading to
suboptimal behavior. The fleet target consistently manages to keep
the pole around its equilibrium.

6.3 Wind Turbines

To demonstrate the need for our method in practical applications, we
introduce a new setting in the context of wind energy. Current wind
turbine controllers position the rotors toward the measured incoming
wind vector to ensure high productivity [3]. However, as wind passes
through upstream turbines, the wind speed is reduced and the en-
ergy extracted by downstream turbines is significantly lower, which
is referred to as the wake effect. When considering wind farms (i.e.,
groups of wind turbines), it is essential to take this effect in consid-
eration [12].

In recent work, steering wake through rotor misalignment is in-
vestigated [10, 1]. For example, in a setting with two wind turbines,
the upstream turbine slightly misaligns its rotor to deflect the wake
away from the downstream turbine. Therefore, although the upstream
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Figure 2: Mountain car — Contour plots of the learned value functions (GPs) during the best runs of each target type. Each of the learner types
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Figure 3: Mountain car — Optimized correlation matrix between the
fleet members, i.e., target (T), source A (SA) and source B (SB) for
both state dimensions.

turbine itself produces less energy, the group’s total productivity is
increased.

Because of the complexity of the wake effect and incomplete
knowledge about a turbine’s condition, it is necessary to gather data
in the field about potential control policies, rendering it a reinforce-
ment learning problem. As learning policies from scratch could re-
sult in potential revenue loss, fleet-wide policy iteration can improve
the learning speed. Moreover, our batch RL setting makes sense, as
wind farm service providers first need to thoroughly assess the per-
formance of the acquired policy before implementing it [3].

We demonstrate our method on a fleet of two-turbine rows in a
wind farm that consists of 8 rows and show how information ex-
change between transition models can improve the learning speed.
We use the state-of-the-art open source WISDEM FLORIS simulator
to model the wind farm dynamics and wake effect [27], and use the
5-megawatt (MW) reference turbine description from the National
Renewable Energy Laboratory to model the individual wind turbines
[18].

In this environment, the state consists of the orientations of both
turbines (values in [—45, 45] degrees with respect to the wind vector)
and the associated total power production (values in [0.5, 1.05] MW).
The actions are changes in orientation with values of either -1, 0 or 1
degrees. The start state is both turbines aligned with the wind vector,
which is current practice in wind turbine control [3]. The goal s is
centered around a power production of 1.07 MW with a scale o r of
0.05 to encourage high productivity. The number of support points is
set to 300.

Each two-turbine row represents a fleet member. Again, we report
the results for one target. This is considered to be a new row of which
the generator efficiency is set to 1. However, we set the generator
efficiencies to 0.9 for 3 source members, and to 0.8 for the remaining
4 source members, which is a realistic configuration that could be
the result of aging [34]. The turbines are positioned 100 m apart on
a line parallel to the incoming wind vector. The wind speed is set to
6 m/s. We assume independence between turbine rows, which is a
reasonable assumption given the specified wind vector, since wake
generated by one row will not influence the other turbine rows.

To each turbine row, we provide a batch of 50 transitions randomly
sampled from its environment. We measure the performance of the
methods by reporting the power production (MW) achieved at the
end of the run. We compare the targets to the performance achieved
under the optimal policy and to the performance under the policy
used in current practice, i.e., aligning all turbines with the incoming
wind vector. The results are shown in Figure 4.

1.06 MW

optimum ===========—===————-—-.

current |
practice

Power production

1.00 MW T T T
Joint Single Fleet

Figure 4: Wind Farm — Boxplot of the power productions for each
target type over 50 runs. The optimal performance, as well as the
performance achieved when using the control policy used in current
practice, are given (dashed lines).

To each member, we provide a batch of 50 transitions sampled uni-
formly random from their environment, resulting in 400 fleet sam-
ples. We run the experiment 50 times for each of the target types:
single, joint and fleet. We show the results in Figure 4.
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We observe that the single target has a wide variance on its per-
formance. The uncertainty about its transition model is high due to
the limited amount of data it has access to. The joint target has lower
variance, but has the worst performance, close to the performance of
current practice policies. As all data is aggregated, many transition
samples are not representative for the true dynamics of the target.
The fleet target consistently achieves results that closely follow the
optimal performance, as it has the ability to differentiate between
relevant and irrelevant samples over the entire fleet data set.

7 DISCUSSION

Fleet-wide policy iteration outperforms the two baselines over all of
our experiments. The joint target often fails to reach the goal while
the single target is often uncertain about its own transition model.
This reflects a trade-off in bias and variance, where we have to de-
cide to either use all data at the risk of misrepresenting the transition
model (bias) or only use representative data while remaining uncer-
tain about the model (variance). Our method successfully balances
both by properly weighing each source with their correlation with
the target. This is reflected in the learned value functions. The fleet
target finds the region of highest reward, which is around the goal
state, while the single and joint targets misrepresent their value func-
tion. We further validated the ability of our method to balance be-
tween bias and variance through a sensitivity analysis on the moun-
tain car setting. Specifically, we varied the power parameter of source
A between 5 - 1072 and 15 - 107 to simulate a range of similarities
between source A and the target. The fleet target outperforms both
baselines and exhibits similar performance to the single target when
the target is significantly different from source A, and thus no infor-
mation transfer is possible. More information on this analysis can be
found in the Supplementary Information.

The successful use of data exchange in fleets has strong impli-
cations for the real world applications. The wind farm experiment
shows that close-to-optimal performance can be achieved when us-
ing fleet-wide policy iteration, while the alternatives (i.e., single and
joint learning) often yield performances close to current practice or
worse.

The fleet-wide transition model is a sparse variant of the intrin-
sic coregionalization model (ICM) [14, 4]. The ICM captures cross-
covariances between multiple functions, and thus improves the ac-
curacy of those functions jointly. However, as we consider multiple
sources and a single target, the target’s transition model will be tai-
lored toward improving its own accuracy, rather than the joint ac-
curacy over all fleet members. Additionally, the computational bur-
den when using our sparse coregionalization model is significantly
lower. Our method can be executed in a distributed manner over the
fleet which reduces the quadratic complexity of the coregionalization
matrix in the ICM model to a linear complexity per target member.
Moreover, as the covariances in Equation 14 are sparse, the inversion
operation can be made linear in the number of fleet members as well.
This renders our method scalable to larger fleets. We perform addi-
tional experiments to compare our sparse model against ICM in the
Supplementary Information.

In future work, we will further improve the scalability of our
method by using sparse GP approximations [33, 39] to reduce the
computational burden of the matrix inversion. As many of these
methods are independent with respect to the covariance kernel or re-
quire a factorable kernel, our model is extensible to many of these
approximations. By using a sparse GP approximation, our fleet RL
method can handle even larger data sets and fleets. Additionally, in

a real-world wind farm, dependencies exist between the fleet mem-
bers [13]. In previous work, we investigated that coordination among
agents in the farm can significantly increase the farm’s power produc-
tion and propose a coordinated exploration-exploitation mechanism
[1]. In future work, we aim to connect this work with the fleet-wide
policy iteration method, which allows for coordinated exploration in
fleet settings, while retaining the ability of transferring knowledge
among the fleet members.

8 CONCLUSION

In this work, we introduced a novel sample-efficient fleet rein-
forcement learning method, called fleet-wide policy iteration, based
on Gaussian processes and coregionalization. It estimates cross-
covariances between a fleet of machines and transfers knowledge be-
tween them.

We provided experimental results on two benchmark problems:
mountain car and cart-pole. In these settings, a target has to share
data with a similar and dissimilar fleet member. While the two base-
lines (i.e., no transfer and single model learning) perform poorly, the
learner that uses our fleet-wide policy iteration method manages to
solve both tasks consistently. Additionally, we provided a real-world
example of how fleet-wide policy iteration can be used in wind farms.
The method shows overall improvement with respect to the wind
farm’s power production.

9 STATEMENT OF REPRODUCIBILITY

The code for the method and experiments is available at https://
github.com/timo-verstraeten/fwpi-experiments.
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