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Abstract. Relational learning for knowledge base completion has
been receiving considerable attention. Intuitively, rule-based strate-
gies are clearly appealing, given their transparency and their abil-
ity to capture complex relational dependencies. In practice, however,
pure rule-based strategies are currently not competitive with state-
of-the-art methods, which is a reflection of the fact that (i) learn-
ing high-quality rules is challenging, and (ii) classical entailment is
too brittle to cope with the noisy nature of the learned rules and the
given knowledge base. In this paper, we introduce STRiKE, a new
approach for relational learning in knowledge bases which addresses
these concerns. Our contribution is three-fold. First, we introduce
a new method for learning stratified rule bases from relational data.
Second, to use these rules in a noise-tolerant way, we propose a strat-
egy which extends k-entailment, a recently introduced cautious en-
tailment relation, to stratified rule bases. Finally, we introduce an
efficient algorithm for reasoning based on k-entailment.

1 Introduction

One of the key aims of Statistical Relational Learning (SRL) is to
develop methods for predicting information that can be plausibly in-
ferred, but is missing from a given set of relational facts K. Our focus
in this paper is on rule-based SRL strategies, i.e. our aim is to learn
a set of rules Φ which capture regularities that can be observed in
K. This set of rules can then be used to infer plausible facts which
are missing from K, or even to predict facts which plausibly follow
from a new set of relational facts E involving the same predicates
as those in K. Using rules is appealing because they allow us to
encode learned relational dependencies in a natural and expressive
way. However, the main challenge with rule-based approaches is that
classical logic is only suitable for encoding hard constraints, whereas
most of the learned rules will capture dependencies which are typi-
cally but not universally true. Given such a set of learned default rules
Φ, the set E∪Φ will often be inconsistent, in which case classical en-
tailment cannot be used to derive facts which plausibly follow from
E. Classical entailment is similarly unsuitable in settings where the
given evidence set E may itself be noisy.

In Markov Logic Networks (MLNs) [27] these limitations of clas-
sical logic are avoided by using weighted rules only for defining the
potential functions of a Markov network. While this avoids the afore-
mentioned problems with classical entailment, this solution makes
the overall approach significantly less transparent, as the rules of an
MLN interact in non-trivial and sometimes counter-intuitive ways.
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One possible alternative, which is used in the AMIE+ system [10],
is to only predict facts which can be obtained from a given set of
facts E by the single application of a rule from Φ. In this way, errors
among the predicted facts are not propagated, and problems with in-
consistency are thus avoided completely. However, this approach is
clearly very cautious, which can be especially problematic in cases
where the evidence in E is sparse. Another alternative, advocated in
[15] and [30], relies on using a stratification of the rule base, in the
spirit of possibilistic logic [9]. In cases where E ∪Φ is inconsistent,
the least reliable rules are repeatedly removed until consistency is re-
stored. Predictions can then be made by computing the deductive clo-
sure with the remaining rules. One of the main conclusions from [15]
is that this strategy can be effective in cases where the evidence set
E is small, outperforming strategies based on MLNs in such cases.
Unfortunately, for larger evidence sets the number of rules that has
to be removed often becomes prohibitively large. Consequently, too
few meaningful predictions can be made.

The main limitations of these possibilistic logic inspired methods
are due to the use of classical entailment, which is intuitively not
sufficiently cautious to deal with the default nature of learned rules.
The use of stratification can only partially address this problem. On
the other hand, the main limitation of AMIE+ is that it eschews en-
tailment completely, which intuitively makes it too cautious. In this
paper, we propose a middle ground between these two alternatives.
Following [15], we use a stratified set of rules, but we replace clas-
sical entailment by k-entailment, a cautious form of logical entail-
ment which limits the extent to which erroneous inferences can prop-
agate. In particular, a formula can be k-entailed from E ∪Φ if it can
be classically entailed from a subset of E ∪ Φ involving at most k
constants. We call this approach STRiKE, which stands for STRati-
fied K-Entailment. While various other forms of cautious entailment
could be considered, a key advantage of k-entailment is that it ad-
mits PAC-style guarantees [13, 35, 18] on the number of incorrect
conclusions it infers [16]. While k-entailment has already been stud-
ied from a theoretical point of view, no algorithms exist for reasoning
based on k-entailment. Moreover, the effectiveness of k-entailment
on real datasets has not yet been studied.

The contributions of this paper are as follows. First, we propose
a new algorithm for learning stratified rule bases which is suitable
for the considered setting. Our method is orders-of-magnitude faster
than the method from [15], thanks to the fact that our weight learn-
ing strategy avoids the need for model counting. Compared to the
rule-learning strategy from AMIE+ [10], our approach is able to find
more natural theories. This is because our approach learns the strat-
ified rule base jointly, that is, it considers the impact of adding each
candidate on the rule base as a whole. In contrast, AMIE+ evaluates
each rule in isolation and hence does not consider how the rule un-
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der construction interacts with previously learned rules. Furthermore,
our approach shares the advantage of [15] that standard SAT solvers
can be used to prune the learned theories, which can in some cases
lead to particularly compact and natural representations. Second, we
introduce the first algorithm for reasoning with k-entailment, relying
on ideas from relational databases to enable efficient inference, an
idea which we borrow from Markov Logic Network (MLN) reason-
ers [21, 28]. Finally, we experimentally demonstrate the effectiveness
of the proposed stratified k-entailment approach.

2 Background

We consider a standard function-free first-order language defined by
a set of constants C, a set of variables V and for each k ∈ N a set
Rk of k-ary predicates. To avoid confusion, variables start with low-
ercase letters and constants start with uppercase letters. An atom is
of the form r(a1, ..., ak) with a1, ..., ak ∈ C ∪ V and r ∈ Rk. A
literal is an atom or its negation. A clause is a universaly quanti-
fied disjunction over a finite set of literals. We assume that the vari-
ables in a clause are all universally quantified. For a (set of) clause(s)
Θ, Const(Θ) denotes the set of constants appearing in Θ. For a set
of constants C0 ⊆ C, Θ[C0] denotes the set of clauses obtained
from Θ by removing all clauses that contain a constant C �∈ C0.
For instance, when Θ = {Friends(Alice,Bob), Smokes(Alice)} then
Θ[{Alice}] = {Smokes(Alice)}. A clause in which none of the liter-
als contains any variables is called ground. The grounding of a clause
α w.r.t. a set of clauses Θ is the set GΘ(α) = {αθ1, ..., αθm} of all
ground clauses that can be obtained by substituting the variables oc-
curring in α by constants from Const(Θ). When Θ is clear from the
context, we also write GΘ(α) as G(α).

We will mostly focus on sets of facts, definite rules and constraints
instead of full first-order logic theories. These terms are understood
as in the logic programming literature [17]. In particular, a fact is
a ground positive literal. A definite rule is a clause which has ex-
actly one positive literal; note that facts are special cases of definite
rules. A constraint is a clause that has no positive literals. To im-
prove readability, we will usually write a definite rule ∀x1, ..., xm :
h∨¬b1∨· · ·∨¬bn as ∀x1, ..., xm : b1∧· · ·∧bn → h. As usual, we
call b1∧ ...∧ bn the body of the rule and h the head. Unless specified
otherwise, we will restrict ourselves to working with range-restricted
rules, which are rules that satisfy Vars(h) ⊆ Vars(b1 ∧ ... ∧ bn).

A fact β is classically entailed by a set of clauses A =
{α1, ..., αn}, written A |= β, iff GA(α1)∪ ...∪GA(αn) |= β, with
|= in the latter case denoting the standard entailment relation from
propositional logic. When restricting ourselves to facts and definite
rules we can use forward chaining to compute the set of facts that are
entailed by a given set of clauses. As a result, classical entailment is
tractable in this case. It also means that the inference process can be
easily explained to users who are not familiar with formal logic.

Example 1. Forward chaining iteratively expands the given set of
facts by applying (groundings of) rules whose body is satisfied by the
facts that have already been derived. More precisely, if all the literals
in a ground rule’s body are included in the set of facts, then its head
can be added to the set of facts. This process is repeated until no
further facts can be derived. To illustrate this, consider the following
set of rules:

∀x, y, z : BornIn(x, y) ∧ PartOf(y, z) → BornIn(x, z)

∀x, y : BornIn(x, y) ∧ Country(y) → Nationality(x, y)

and the following set of facts:

F1 = {BornIn(Alice, SdC),Country(Spain),PartOf(SdC, Spain)}.

We can use the first rule to derive BornIn(Alice, Spain). Together
with the fact Country(Spain) from F1, we can now apply the second
rule to derive Nationality(Alice, Spain). At this point, no further facts
can be derived.

3 Bounded Reasoning Using k-Entailment

We now describe the notion of k-entailment that was introduced in
[16] for reasoning in relational domains, but we specialize it to our
rule-based setting. Intuitively, a fact can be k-entailed from a given
rule base if it has a derivation involving at most k constants. This
captures the intuition that, in most domains, the knowledge about
one specific constant typically only directly affects what we can
derive about a small set of closely related constants. For instance,
when modelling a social network, using k-entailment means that the
knowledge we have about a given user only directly affects what we
derive about the users in their neighborhood. By using 2-entailment,
we thus restrict the impact of any errors in our knowledge about some
user to his or her direct friends. Similarly, using 3-entailment would
mean that our knowledge about the friends of a user’s friends might
also be affected, but not the wider network. In contrast, when us-
ing classical logic, a single error might in principle affect the entire
network. Formally, k-entailment is defined as follows.

Definition 1 (k-entailment). Let k be a non-negative integer, E a set
of facts, Φ a set of rules and Γ a set of constraints. We say that a
fact α is k-entailed by E ∪ Φ ∪ Γ, denoted E ∪ Φ ∪ Γ |=k α, if
there is some C ⊆ Const(E ∪ Φ ∪ Γ) such that: (i) |C| ≤ k, (ii)
(E ∪ Φ ∪ Γ)[C] is consistent, and (E ∪ Φ)[C] |= α.

Note that, apart from limiting the impact that a given piece of
knowledge can have, in the presence of constraints, k-entailment
also blocks all inferences involving sets of constants C that make
(E ∪ Φ ∪ Γ)[C] inconsistent. This is illustrated in the next example.

Example 2. Let us consider the following:

Φ = {∀x : Giraffe(x) → Animal(x),

∀x, y : Friends(x, y),→ Friends(y, x),

∀x, y : Friends(x, y) → Human(x)}
Γ = {∀x : ¬Human(x) ∨ ¬Animal(x)}
E = {Giraffe(Liz),Friends(Ann, Liz)}.

Then Animal(Liz) is the only fact which is 2-entailed by E ∪ Φ ∪ Γ,
besides those in E. In particular, note that we can infer neither
Human(Liz) nor Human(Ann) because (E ∪ Φ ∪ Γ)[{Ann, Liz}] is
not logically consistent. Intuitively, the constraint in Γ and rules in
Φ assert that animals do not have friends and that one cannot be
an animal and a human at the same time. This means that, assum-
ing the rules were perfect, Giraffe(Liz) and Friends(Ann, Liz) cannot
both be correct. Since we do not want the potential errors to spread
through our knowledge base, by using 2-entailment we avoid infer-
ences that involve Ann and Liz at the same time.

In [16] we showed that k-entailment allows deriving PAC-type
guarantees for reasoning in relational domains. The main idea is as
follows. Suppose we have a set of rules and constraints Φ∪Γ. We ran-
domly pick a subset S of k objects (first-order logic constants) from
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the domain. We define “accuracy” as the probability that all rules and
constraints from Φ∪Γ are satisfied in the fragment induced by S. We
can then use the accuracy defined in this way to bound the number
of atoms that k-entailment predicts as true but which should actually
be false. In particular, we have for the set of incorrectly predicted
atoms F that |F| ≤ (1− Acc) |C|kka, where C is the domain, Acc
is the accuracy of Φ ∪ Γ and a is the maximum arity of the atoms.
We also showed that such a bound would not work if we used classi-
cal reasoning due to its brittleness. Similarly, such guarantees cannot
be provided for most of the approaches that have been developed for
inconsistency-tolerant reasoning, e.g. those based on maximal con-
sistent subsets [3, 11], since such approaches usually coincide with
classical entailment in the absence of inconsistencies, and clearly er-
rors can still be propagated even in consistent knowledge bases.

The significance of the insights from [16] for this paper is that
they justify why our rule learner is able to evaluate candidate rules
based on how accurate they are on small fragments of the training
data (assuming that this training data was sampled from a reason-
able distribution). Our rule learning approach in Section 6 will take
advantage of this insight.

4 Inference Algorithm

Naively following the definition of k-entailment would require enu-
merating all subsets of up to k constants in the given domain Δ and
determining which literals can be entailed from each of them. This
section shows how to implement k-entailment in a much more ef-
ficient way. In particular, Algorithm 1 presents an approach which
is based on a forward-chaining procedure with additional book-
keeping. Specifically, the algorithm solves the following problem:

Given: A set of rules Φ = {α1, . . . , αl}, constraints Γ = {β1, . . . ,
βl′} and facts E = {a1, a2, . . . , an}.

Compute: The set of positive literals k-entailed by Φ ∪ Γ ∪ E.
We assume w.l.o.g. that Φ does not contain any facts, noting that
including a fact α in Φ is equivalent to including α in E.

4.1 Description of the Algorithm

The algorithm begins by initializing a hash table Support, which as-
sociates literals (keys) to sets of subsets of constants (values). When
the algorithm terminates, Support[a] will contain all minimal sets of
constants C, up to size k, for which E[C]∪Φ∪Γ |= a. The set of k-
entailed literals will thus correspond to the key set of Support, which
we denote by Keys(Support). To find these sets C, the algorithm al-
ternatingly adds new candidate subsets of constants and then filters
those which turn out to be inconsistent. To detect inconsistencies ef-
ficiently, the algorithm maintains the set Incons. This set is initially
empty. Throughout the execution of the algorithm, it is used to store
all encountered subsets I of C where E[I] ∪ Φ ∪ Γ is found to be
logically inconsistent.

The first step of the main loop is to solve the following sub-
problem: given a set of ground positive literals E and a rule α =
(b1 ∧ · · · ∧ bl → a) or a constraint β = ¬(b1 ∧ · · · ∧ bl), find the set
of all groundings ϑ such that (b1∧· · ·∧bl)ϑ ⊆ E. We will denote the
corresponding set of ground rules and constraints by Active(α,E).
In other word, this set contains those ground rules and constraints
whose body is satisfied by the literals that we have derived so far. It
can be efficiently computed using a conjunctive query in a relational
database, similar to how such relational database engines are used in
Markov logic inference [21, 28].

In Step 2, the algorithm removes all active rules α for which there
there is some I ∈ Incons such that I ⊆ Const(α). The rules which
are removed in this step correspond to those whose body can only be
satisfied by starting from a fragment of E that is inconsistent with
Φ∪Γ (or more precisely, those which have previously been found to
be inconsistent).

In Step 3, the algorithm iterates over the remaining active rules.
For each such rule (b1∧· · ·∧ bm) → h ∈ A it combines the support
sets of the ground literals b1, . . . , bm and stores them in a set U . In
particular, if we have S1 ∈ Support[b1], this intuitively means that
we can derive b1 using a fragment of E that only involves the con-
stants from S1, and similar for b2, . . . , bm. Hence, thanks to the given
rule, this means that we can also derive its head h using a fragment
that contains all constants from S = S1 ∪ · · · ∪ Sm. Of these sets
S, we only keep those which have at most k elements and which are
minimal (w.r.t. set inclusion). Next, the procedure FindInconsistent
aims to detect subsets of constants C that occur in Support[h′], for
some literal h′, such that E[C]∪Φ∪Γ is inconsistent. To do this ef-
ficiently, we take advantage of the fact that each iteration of the main
loop corresponds to an iteration of a modified forward chaining pro-
cedure. Rather than checking whether E[C] ∪Φ ∪ Γ is inconsistent,
we thus check whether such an inconsistency has been derived so
far. This is done in two steps (not shown in the pseudo-code). First,
we determine all the sets of constants C whose consistency needs
to be (re-)checked. This is the case for all supersets of the elements
from U (including the elements from U themselves). For the sec-
ond step, let us write Support−1[A] for the set of all literals h′ for
which Support[h′] contains a subset of A. Note that Support−1[A]
intuitively corresponds to the set of literals for which our forward
chaining procedure has already established that they can be derived
from E[A]∪Φ∪ Γ. For every superset A of an element from U , the
procedure checks if Support−1[A] is consistent with the constraints
in Γ; it returns all sets A for which this is not the case. Finally, these
sets of constants are removed from Support. If the set of support sets
for some literal h′ in Keys(Support) then becomes empty, this literal
is removed from the key set of the hash table. Finally, all support sets
found as inconsistent are added to the set Incons.

In Steps 4 and 5, the algorithm first updates the current state of the
evidence E to contain exactly the facts which occur as keys in the
hash table Support and then it either goes back to Step 1 if Support
has been modified in the current iteration, or it finishes and returns
E.

We give a sketch of correctness in the appendix. Next we describe
an illustrating example.

4.2 An Illustration

Here we exemplify one run of the algorithm. Let Φ, Γ and E be
as in Example 2, which talks about the giraffe Liz. Running the
initialization procedure will result in Support = {Giraffe(Liz) :
{Liz},Friends(Ann, Liz) : {Ann, Liz}}. Now, in the first step, we
find the set A, which is the set of ground rules whose bodies are true
in the current E (we call these rules “active”):

A = {Giraffe(Liz) ⇒ Animal(Liz),

Friends(Ann, Liz) ⇒ Friends(Liz,Ann)},
Friends(Ann, Liz) ⇒ Human(Ann)}.

After the loop on line 3 is executed, the state of the hash ta-
ble becomes Support = {Giraffe(Liz) : {Liz},Friends(Ann,
Liz) : {Ann, Liz},Animal(Liz) : {Liz},Friends(Liz,Ann) :

M. Svatoš et al. / STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment 1517



Initialization:

1. For ∀a ∈ E, set Support[a] := {Const(a)}
2. Set Incons := ∅

Main Loop:

1. Let A := ∪α∈ΦActive(α,E).
2. Remove from A all ground rules α for which there is I ∈ Incons

such that I ⊆ Const(α).
3. For every ground rule b1 ∧ · · · ∧ bm → h ∈ A do:

(a) SCart := Support[b1]× · · · × Support[bm]

(b) U := {S1 ∪ · · · ∪ Sm|(S1, . . . , Sm) ∈ SCart}
(c) Support[h] := Support[h] ∪ {S ∈ U||S| ≤ k}
(d) /* Remove non-minimal supports: */

Support[h] := {A ∈ Support[h]|
� ∃A′ ∈ Support[h] : A′ � A}

(e) I := FindInconsistent(h, Support,Γ)

(f) For all h′ in Keys(Support), we set:

Support[h′] := Support[h′] \ I
If this results in Support[h′] = ∅ then h′ is removed from
Keys(Support).

(g) Incons := Incons ∪ I

4. E := Keys(Support)

5. If Support was changed in the last iteration, go back to Step 1.
Else finish and return E.

Algorithm 1: k-Entailment Inference Algorithm

{Ann, Liz},Human(Ann) : {Ann, Liz}}. Next, in the procedure
FindInconsistent, none of the support sets will be found inconsis-
tent in this iteration because there is no inconsistency with the con-
straints Γ. The algorithm sets E := Keys(Support) and continues
from line 1.

In the second iteration, the algorithm then adds Human(Liz) :
{Ann, Liz} to Support. Next, in step 3e, the algorithm finds the fol-
lowing support sets to be inconsistent Incons = {{Ann, Liz}}. After
the filtering step, the state of the hash table Support becomes

Support := {Animal(Liz) : {Liz},Giraffe(Liz) : {Liz}}.

In the third (and in this case final) iteration, the state of the hash
table Support remains the same and the algorithm finishes, returning
the set { Animal(Liz), Giraffe(Liz), Friends(Ann, Liz) }. Note that the
fact Friends(Ann, Liz) is added from the original evidence set.

5 Stratified k-Entailment

Unlike classical logic, k-entailment is not monotonic. In particular,
E ∪ Φ ∪ Γ |=k α does not imply that E ∪ E′ ∪ Φ ∪ Γ |=k α, for
E,E′ sets of ground literals, Φ a set of rules and Γ a set of con-
straints. This is illustrated in the next well-known example from the
non-monotonic reasoning literature.

Example 3. Consider the following rules and constraints:

Φ = {∀x : Bird(x) → Flies(x), ∀x : Penguin(x) → Bird(x)}

Γ = {∀x : ¬Penguin(x) ∨ ¬Flies(x)}.
For E = {Bird(Tweety)}, we can derive Flies(Tweety) using k-
entailment. However, when we additionally know that Tweety is a
penguin, i.e. if our evidence is given by E′ = {Bird(Tweety),
Penguin(Tweety)}, we can no longer derive Flies(Tweety) using k-
entailment because (Φ ∪ Γ ∪ E′)[{Tweety}] is inconsistent.

This non-monotonic behavior is in itself not problematic. Indeed, it is
standard practice in AI to use non-monotonic reasoning when deal-
ing with rules that may have exceptions, and probabilistic reason-
ing is also non-monotonic. However, the behavior of k-entailment in
the presence of conflicts is arguably too cautious: most frameworks
for non-monotonic reasoning would still derive bird(Tweety) from
penguin(Tweety) in the previous example. This can be achieved by
taking into account that the rule ∀x : Penguin(x) → Bird(x) is more
reliable than the other rule, either by inducing an ordering on the set
of rules automatically [24, 12] or by relying on an explicitly given
ordering of these rules [4].

We will follow the latter strategy to obtain a refinement of k-
entailment, which we call stratified k-entailment or STRiKE.

Definition 2 (Stratified k-Entailment). Let Λ = (α1, . . . , αm) be a
list of rules and constraints and let E be a set of facts. We say that a
fact a is k-entailed at level i from Λ and E if there exists some j ≤ i
s.t. {α1, . . . , αj} ∪ E |=k a.

The general intuition is that the rules and constraints in Λ are ordered
based on how confident we are in them (i.e. α1 is the most confident
rule or constraint). The use of stratified k-entailment serves two pur-
poses. First, ordering the rules and constraints permits ordering the
predictions made by stratified k-entailment according to how confi-
dent we are in them. This brings k-entailment closer to approaches
such as AMIE+ and MLNs, which also provide confidence values for
the predicted facts. In applications, this allows us to tune the trade-
off between precision and recall. Second, by taking the ordering of
the rules and constraint into account, we can avoid the situation from
Example 3, where a less reliable rule was blocking the conclusion of
a more reliable rule. This is illustrated in the next example.

Example 4. Consider the following list: Λ = (∀x : Penguin(x) →
Bird(x), ∀x : ¬Penguin(x) ∨ ¬Flies(x), ∀x : Bird(x) → Flies(x))
and let E = {Penguin(Tweety)}. Then one can check that
Bird(Tweety) is k-entailed at level 1 whereas with standard k-
entailment we could not derive Bird(Tweety) at all.

Note that the inference mechanism in the previous example is sim-
ilar in spirit to the one from possibilistic logic [9]. However, the or-
dering of formulas in possibilistic logic plays a different role than
in stratified k-entailment: it is used in possibilistic logic to avoid en-
tailment becoming trivial in the face of inconsistencies, but in our
setting, the use of k-entailment already prevents entailment from be-
coming trivial. Furthermore, standard possibilistic logic only consid-
ers propositional formulas. The set of entailed facts in possibilistic
logic is also unordered, when the standard approach to inconsistency
handling is used. Specifically, a formula is entailed from a possibilis-
tic logic knowledge base iff it can be clasically entailed from the set
of formulas above the so-called inconsistency level, i.e. the first level
i such that {α1, ..., αi} is inconsistent.

6 A Heuristic Rule Learner

We introduce a heuristic algorithm for learning rules that are suitable
for reasoning with stratified k-entailment. At a high level, the algo-
rithm performs a beam-search through the space of definite rules,
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using a refinement operator [20] that adds one literal at a time to the
rules in the beam. This is a standard strategy in relational learning
and inductive logic programming systems [20, 25]. The algorithm’s
key novelty is in how it heuristically scores the candidate rules.

For a rule α = b1 ∧ · · · ∧ bm → h and a set of facts E,
we define τΛ(α) = |Hα ∩ E|/|Hα| where Hα = {hϑ|E |=
(b1 ∧ · · · ∧ bm)ϑ, ϑ ∈ GE(α)}. In other words, τΛ(α) corre-
sponds to the percentage of facts predicted by the rule α that we
know to be true, that is, the precision of the rule. We then treat
a list of rules Λ = (α1, . . . , αl), where τΛ(αi) ≥ τΛ(αi+1), as
defining a probabilistic model that assigns to any fact a the prob-
ability p(a) = max{τΛ(αi) | 1 ≤ i ≤ l, a ∈ Hαi}. Thus, this
simple model assumes that the probabilities of the facts are inde-
pendent. However, we recall that this is still just a heuristic for se-
lecting the rules, not the final model for prediction. The advantage
of this probabilistic view is that it naturally allows us to learn rules
by selecting those that most improve the log-likelihood of the train-
ing data, i.e.

∑
a∈E log p(a) +

∑
a∈EC log (1− p(a)). This strat-

egy contrasts with the standard covering strategy used in inductive
logic programming [19], which is brittle and has problems with im-
balanced data. Our rule learning strategy exploits the properties of
stratified k-entailment, especially its ability to predict facts with dif-
ferent levels of certainty. In the classical inductive logic program-
ming setting, one would normally optimize accuracy (or a closely
related measure) and would therefore often only end up with high
precision rules. In contrast, since stratified k-entailment ranks the
predicted facts by confidence, it can also work well with less precise
rules (although the usefulness of such lower-confidence predictions
clearly depends on the application).

In order to force the rule learning algorithm to discover non-trivial
relationships, we give it subsampled data. Consider, for instance, that
the training dataset contains facts of the form Friends(x, y) and that
it is complete. Then it would be difficult to learn any rules beyond
∀x, y : Friends(x, y) → Friends(y, x) as no other rule for predict-
ing friendship would improve the log-likelihood. However, by sub-
sampling the data we can break these symmetries, which means that
other rules may be found that improve the log-likelihood. For in-
stance, assume that the fact Friends(C,A) is missing from the sub-
sampled dataset, but that the facts Friends(A,B), Friends(B,C)
and Friends(A,C) are present. Then the rule learner might add
the rule ∀x, y, z : Friends(x, y) ∧ Friends(y, z) → Friends(x, z),
which might improve log-likelihood because it can be used to predict
Friends(A,C). In contrast, without subsampling, Friends(A,C) can
simply be predicted from Friends(C,A) using the symmetry rule,
hence there would not be any reason for adding the transitivity rule.

Finally note that given a list of rules Λ = (α1, . . . , αm), there
often exists a probability-assigning function τ ′Λ(.) �= τΛ(.) that will
lead to a better log-likelihood score; in fact, an optimal one can be
obtained using the geometric programming formulation from [15].
However, using the fixed distribution τΛ(.) has several practical ad-
vantages. First, it means that all rules and their weights can be un-
derstood in isolation from the other rules and their weights: a rule’s
weight gives a lower bound on the probability of the facts it predicts.
Second, it means that adding more rules at some point stops improv-
ing the log-likelihood even if there are some not yet used rules, which
we think of as a form of heuristic regularization.

7 Experiments

In this section, we experimentally evaluate our proposed approach
STRiKE. The goal of our empirical evaluation is to address the fol-
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Figure 1: Comparison of the performance for inference given a fixed
rule set. The results show the cumulative Hamming error as a func-
tion of the size of the evidence set between the predictions made by
(1) PosLog, (2) k-entailment, and (3) STRiKE versus MLN-MAP.
Increasing slopes mean that a specific inference approach outper-
forms MLN-MAP.
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Figure 2: The cummulative difference of Hamming errors of STRiKE
vs MLN-MAP on the proteins dataset for rule sets with 1, 2, . . . , 5
best rules. Increasing slopes mean that STRiKE inference outper-
forms MLN-MAP.

lowing two questions:

1. How does our proposed STRiKE reasoning method compare to
other forms of inference?

2. Does our proposed rule learner learn more accurate theories than
existing approaches?

In all the experiments reported in this section, we set the parameter
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Figure 3: The left two panels, 3a and 3b, show the AUC PR as a function of size of the evidence when combining the rules learned by STRiKE
or AIME+ with various inference strategies. The right panels, 3c and 3d, show precision-recall curves for two representative evidence set sizes.

of (stratified) k-entailment to k = 5.5

7.1 Evaluation of STRiKE Inference

To address the first question, we compare the following four ap-
proaches to reasoning with a fixed set of relational rules:

MLN-MAP uses RockIt [22] to perform MAP-inference in a
Markov logic network learned using the default structure learner
from the Alchemy package.

PosLog is the possibilistic logic inference approach from [15].
k-entailment is the k-entailment algorithm proposed in Section 4.
STRiKE is our stratified k-entailment proposed in Section 5.

We compare these four approaches on the UWCSE and proteins data
set, which were used in [15].6 We use the same sets of rules, MLNs
and constraints as in [15]. We follow the same experimental protocol
as [15]. In particular, we randomly divide the constants into two dis-
joint sets of equal size. The training set consists of atoms containing
only the constants from the first set and the test set contains only the
constants from the second set. We then predict the set of facts given
evidence sets of increasing size using the four inference methods and
compute the Hamming error, which measures the size of the symmet-
ric difference of the predicted set of facts and the set of facts in the
test set. We then report the cumulative differences between the errors
of the models and a baseline, which is MAP-inference in Markov
logic networks.

The results are shown in Figure 1. A specific inference method
outperforms MAP inference in MLNs for a range of evidence set-
sizes if the curve is increasing and performs worse otherwise. Steeper
curves signify large differences in performance.

In this case, STRiKE performed best among the considered meth-
ods. For UWCSE, it improves MLNs consistently, across the entire
range of evidence sizes, in contrast to the possibilistic logic strategy
which is only effective for sufficiently small evidence sets. On the
proteins dataset, we can see that MLNs perform best for large ev-
idence sets; the difference between STRiKE and possibilistic logic
is also smaller on this dataset. The relatively weak performance of
this variant, shown in Figure 1, shows that having constraints can be
beneficial. On the Proteins dataset, on the other hand, there was no
difference between the variants with and without constraints.

To better understand why MLNs outperformed STRiKE for large
evidence sets on the Proteins dataset, we perform the following ex-

5 Available from https://github.com/martinsvat.
6 Both available from http://alchemy.cs.washington.edu/data/

periment. We select the n most confident rules from the rule set and
then report the cumulative Hamming error of predictions made by
STRiKE and MLN-MAP when using the simplified rule set. Fig-
ure 2 shows the results for this experiment when using only top
n = {1, . . . , 5} rules. Having all but the least certain rule already
leads to STRiKE outperforming MLNs over the entire range of evi-
dence set sizes.

7.2 Evaluation of the Heuristic Rule Learner

We now compare the predicted performance for the theories learned
by our rule learner to AIME+, which is a state-of-the-art relational
rule learner [10]. In order to obtain a subsampled dataset for learning
definite rules, we uniformly select half of the facts. Constraints are
learned exhaustively by searching through all possible size-2 con-
straints on the training data. After learning a theory, we make pre-
dictions using three inference methods: (1) STRiKE, (2) possibilistic
logic (PosLog), and (3) one-step prediction (1S), which returns the
predictions made by performing only one iteration of forward chain-
ing. We write STRiKE for the version using our rules and AMIE+
STRiKE for the version with AMIE+’s rules, and similar for PosLog
and 1S.

We followed the same experimental protocol as in Section 7.1, but
report the area under the precision-recall curve (AUC PR) because
AUC PR is better suited for evaluating weighted predictions. We used
the following settings for our rule learner: beam-size was set to 4
and the number of iterations of beam search was set to 5. Both rule
learners, AMIE+ and ours, shared the following settings: minimum
coverage was set to 1, maximum number of literals in the rules’ bod-
ies was set to 3, and the maximal number of variables within a rule
was limited to 5. From AMIE+’s rules we selected the five highest-
confidence rules per head-predicate because AMIE+ usually returns
tens or hundreds of thousands of rules and using all of them would
make performing inference on the test data extremely slow. Hence
we chose settings that would give us the same number of rules from
AMIE+ as from our rule learner. This also means that the improve-
ments seen in experiments for our rule learner are partially due to the
heuristic strategy used by our rule learner to select the rules.

The results are shown in Figure 3. Figure 3a and 3b display AUC
PR of the methods as a function of evidence size. Figure 3c and 3d
display two illustrative PR curves for different evidence sizes on the
two datasets; these allow us to gain better insight into the behavior of
the methods. Here, we also added STRiKE without any constraints
for comparison. As can be seen from these graphs, using constraints
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helps STRiKE to obtain better precision but at the cost of decreasing
the recall, which is to be expected.

We observe the following trends. First, rules learned using our
heuristic method perform consistently better than rules obtained by
AMIE+ (for the same inference method). In fact, in some cases
AMIE+ did not manage to find rules beyond length 3, even after sev-
eral hours, whereas our rule learner had no problems finding longer
rules (Table 1). However, it should be noted that the two algorithms
are quite different and were designed with different goals in mind.
Second, the methods generally work as expected. STRiKE without
constraints (STRiKE W/O C) derives more than STRiKE and 1S but
its precision is lower than that of STRiKE. Finally, possibilistic logic
performs clearly worse, except for very small evidence sets.

Table 1: Runtimes in minutes of rule learners on both datasets given
maximal literals in rule body.

domain Nations Kinships
no. literals / method STRiKE AMIE+ STRiKE AMIE+

3 3 50 90 0.1
4 2.5 X > 24h 0.1 417

8 Related Work

Our approach can be seen as an alternative to Markov Logic Net-
works (MLNs) [27]. MLNs address the brittleness of classical logic
by using weighted rules that define a probabilistic graphical model.
Among others, this means that MLNs can be used for marginal infer-
ence, which our method does not support. However, learning MLNs
is challenging and their effectiveness for knowledge base completion
tasks is not well-understood. The same holds to a large extent for
other statistical relational learning systems (e.g. [8, 1]) as well. An-
other popular framework for completing knowledge bases consists
in learning predictive vector space embeddings of objects and predi-
cates [2, 33, 5]. However, such knowledge graph embedding methods
lack transparency and they tend to perform poorly when some sets of
objects are only sparsely represented in K [34]. There are also meth-
ods that combine rule-based reasoning and vector space embeddings,
e.g. [31, 29] but, to a large extent, these methods also share some of
the limitations of the other knowledge graph embedding methods.

Our work is also related to approaches for learning relational rules
from data. The most closely related work falls in the area of structure
learning for statistical relational learning (e.g., [14, 7]). These ap-
proaches typically evaluate a candidate rule’s usefulness in the con-
text of the current model. They also often employ a beam search.
However, for formalisms like Markov logic, unless one considers a
restricted model class, it is intractable to select rules that maximize
the log likelihood of the data. For this reason, an approximate mea-
sure, such as pseudo likelihood, is often used instead (e.g., [14]).
Our approach to rule learning is quite different from traditional ap-
proaches to inductive logic programming (e.g., [32, 26]), which typi-
cally employ a cover-removal style approach that scores each rule in-
dependently by looking at, for example, the difference in the number
of positive and negative examples a rule covers. Similarly, more re-
cent approaches to mining relational rules from KBs (e.g., [10, 37])
continue this tradition of evaluating the usefulness of each rule in iso-
lation. In addition, in contrast to some rule learners [10, 6, 23], our
approach is not limited to knowledge graphs. Finally, some proposi-
tional rule-based methods used stratified rule lists, e.g. [36].

9 Conclusions

We proposed a new rule-based method for knowledge base comple-
tion, which is in many cases both more efficient and more effective
than MLNs, AMIE+ and the possibilistic logic strategy from [15].
The performance of our method is due to two complementary factors.
On the one hand, we showed that the use of stratified k-entailment
often outperforms possibilistic logic, the one-step inference mech-
anism from AMIE+, and the probabilistic approach of MLNs. On
the other hand, we showed that our new heuristic rule learner also
produces more effective rules than AMIE+, regardless of which in-
ference strategy is used. A closer combination of AMIE+ with our
rule learning heuristic, e.g. using the latter in a post-processing step,
may yield even better results, but we leave this for future work.
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A Sketch of Correctness and Runtime

If we had Γ = ∅ then the correctness of the algorithm would follow
almost immediately from the same arguments that show correctness
of the forward chaining procedure for classical logical reasoning. In
general, when Γ �= ∅, we can proceed as follows. It is easier to ana-
lyze a version of the algorithm without the filtering of non-minimal
support sets. We can check that omitting this step would not affect
correctness of the algorithm and that the number of iterations of this
modified algorithm would not be lower than that of the full algorithm.
Hence, we will analyze this simpler algorithm below.

Termination Let A be the maximum arity among the rela-
tions from R. Let us define Ni = |R| · kA+1 · |Inconsi| +∑

a∈Keys(Supporti)
|Supporti[a]| where Inconsi and Supporti are

states of the respective data structures at the beginning of the i-th iter-
ation of the main loop. Then for all i > 1 it holds Ni−1 < Ni (in par-
ticular, this is true because we ignore filtering of non-minimal sup-
port sets). Since the set C is finite, there may be only a finite number
of iterations of the algorithm, in particular at most |R| · kA+1 · |C|k.

Soundness and Completeness Showing soundness and complete-
ness for our inference algorithm in a completely rigorous way would
be tedious and not really illuminating. Thus, we only provide a brief
justification. Soundness is easy to check. In particular, whenever a
fact h is derived using the inference algorithm, there must be a classi-
cal proof of it on a fragment of evidence, given as input, with at most
k constants (this can be seen easily by inspection of the algorithm).
Now, it could still be the case that h is derived from a fragment which
is inconsistent with Φ ∪ Γ. However, if that was the case, this frag-
ment would have been detected by the procedure FindInconsistent
and it would have been removed together with all its occurrences
among support sets stored in the hash table Support.

Completeness is not difficult to check either. If there is a fragment
of E that is consistent with Φ ∪ Γ and a fact h can be derived from
it, then it can also be derived from it using forward chaining (this
follows from the same result for classical logic). Since the fragment
is consistent, neither the fragment itself nor any of its subsets can be
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present in the set Incons at any time. It follows that the fact h must
be derived by the algorithm.
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