
Anomaly Detection Forest

Jakob Sternby1 and Erik Thormarker2 and Michael Liljenstam3

Abstract. In many applications of anomaly detection, data with
labeled anomalies may not be readily available. When designing
a system for detection of malicious network activity, for instance,
comprehensive malicious data can not be obtained since attacks con-
stantly evolve and hence change their pattern. In such cases, an auto-
matic anomaly detection system needs, at least partly, to rely on one-
class learning, where training data exclusively contains normal in-
stances. In this paper, we present a new anomaly detection algorithm,
the Anomaly Detection Forest, optimized for the one-class learning
problem. The algorithm is an ensemble of binary trees, where each
tree is trained on a random subset and where the location of empty
leaves define the anomaly score attributed to a data point. Our ex-
perimental results on a set with 14 public datasets show that the new
algorithm outperforms the state-of-the-art algorithms Isolation For-
est and One-Class Random Forest for the task of anomaly detection
in the one-class learning setting.

1 Introduction

In machine learning, anomalies or outliers are data points that sig-
nificantly differ from other data points in the same dataset. In many
fields, such distinctly differing points often correspond to properties
of particular interest such as cancer cells within otherwise healthy
tissue, errors in automated systems, malicious network activity, or
financial fraud, to give a few examples. The general task of automat-
ically highlighting such unexpected data points with machine learn-
ing methods is usually called anomaly detection, outlier detection, or
novelty detection. Methods are often unsupervised, as one common
use case is the identification of errors within an unlabeled dataset.
Another common use case is to train a model only on data known
to be normal. This is often called one-class learning, and, as this
utilizes only one label, it may be viewed as a special case of semi-
supervised learning [1]. It is also common to use the term novelty de-
tection specifically for the case of anomaly detection with one-class
learning [20].

As the case of anomaly detection with exclusive normal instance
learning is methodogically aligned with the problem of unsupervised
anomaly detection, methods for the latter can also be applied to the
first case [1]. It does not, however, imply that the same performance
can be guaranteed. Most methods for these anomaly detection tasks
employ a scoring function that aims at producing distinctly different
values for anomalies than for normal points so that the decision func-
tion can be defined by a threshold value [20]. Common such scoring
functions include distance functions [3], density measuring functions
[2, 4, 15], reconstruction error [5, 6, 22], or expected path length in
decision trees [13, 16]. Many of these are specific to the anomaly

1 Ericsson AB, Sweden, email: jakob.sternby@ericsson.com
2 Ericsson AB, Sweden
3 Ericsson Inc, USA

detection problem whereas others are adoptions of some well-known
multi-class method to the one-class domain. Examples of the latter
include one-class support vector machines [7] and one-class random
forests [12].

The Isolation Forest (IF), is an ensemble of search trees that
has been a consistent top performing algorithm for unsupervised
anomaly detection [8, 10], but the authors also claim to have the same
performance for one-class learning with normal instances [18]. Each
isolation tree in the IF is a binary classification tree constructed by
passing a subsample of the training set to the root node and succes-
sively splitting it into smaller portions by choosing a random pair of
feature and split value at each node. In the IF, the split value is cho-
sen from within the range of values handled in a particular node. The
splitting continues at each node until there is only one sample left, in
which case the node is called a leaf. Due to the randomness of fea-
ture and split-value selection, leaves can occur at various depths in
the trees. An anomaly score is produced by passing a sample through
each of the trees in the ensemble and calculating the normalized aver-
age length of the path before reaching a leaf. A shorter path implies
that the leaf’s creation, i.e. the separation of a single sample by a
split-value threshold, was achieved on a large partition on the tree
training subsample using only a small number of random cuts, sug-
gesting it is an outlier.

In this paper we present a novel algorithm for creating a forest of
search trees optimized for the one-class learning case of anomaly
detection, motivated by the observation that the IF is not as well
suited for this scenario. As described above, the leaves providing
high anomaly scores in the IF all stem from observations in the train-
ing set. Since all observations in the training set are normal instances
for the one-class learning case, this means that, for a given threshold,
the IF algorithm has an intrinsic bias towards labelling similar un-
common normal instances as anomalies. The magnitude of this prob-
lem depends on the ratio of anomalies compared to normal instances
similar to those that created the isolation leaves. The reverse problem
for the IF in the one-class learning case may be even worse: for an
anomaly to have a high probability of a high anomaly score it is re-
quired that there exist training instances with feature values, extreme
in the same way as the anomaly, so that leaves based on these fea-
tures are created close to the root during training. With our Anomaly
Detection Forest (ADF) algorithm, we propose a new node structure
to improve upon these deficiencies by introducing two new concepts:
the first is the introduction of empty leaves or anomaly leaves with
the objective of catching anomalies with feature values not contained
in the range of the tree training subsample of observations. The other
key concept is the isolation level, which is a lower size bound on
the training samples in a node during training, determining when
anomaly leaves should be created instead of subdividing the train-
ing samples further. In the experimental section we benchmark the
ADF against state-of-the-art algorithms and show that ADF provides

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200258

1507

the strongest results for the task of anomaly detection in the one-class
learning setting. Furthermore, the ADF is flexible in the sense that it
also supports binary and one-hot-encoding features.

2 Related work

An overview of methods for the one-class learning setting for
anomaly detection (novelty detection in the authors terminology) can
be found in [20]. Many of these are multi-class methods that have
been adjusted to the one-class setting. They include one-class Sup-
port Vector Machines [7], Least Squares Anomaly Detection [21] and
One-Class Random Forest (OCRF) [12]. Of these, OCRF recently
showed the best performance and has been included in the experi-
ments of this paper [12].

Despite the wide adoption of IF since its introduction in 2008, not
much attention has been given to its performance in the one-class
learning setting. A generalization that enables other internal distance
functions can be found in [25]. In [14], the coarseness of the axis-
parallel cuts of the IF is mitigated by using a randomly rotating axis,
qualitatively showing more consistent anomaly scoring. In the SCi-
Forest algorithm, the decision function in each node uses a hyper-
plane in randomly selected features to improve the splitting capac-
ity [17]. The Random Cut Forest algorithm presented in [13] has a
different focus and instead considers if there is a better choice than
choosing the features at random. The authors show improvements on
some datasets by weighing the probability of selecting a given fea-
ture by its relative variability in the training data.

3 Anomaly Detection Forest

Anomalies signified by discrepancy in a feature that shows great con-
sistency for normal instances should be easy to detect. In high dimen-
sional space, however, such distinct differences in a smaller subspace
may be overshadowed by arbitrary variations in other features. Fur-
thermore, as many anomaly detection algorithms have been designed
for the unsupervised anomaly detection problem, it is common that
the impact of a given feature is weighted by its variance in the set.
This may not be effective for the one-class learning case, where an
anomalous instance could be characterized exactly by the difference
in a feature with very low variance in the training set. With the ADF
we propose a novel forest method for detecting anomalies by focus-
ing on feature values not previously observed in the subsamples used
to construct each tree. With a random feature selection mechanism
similar to the IF, this enables the ADF to produce high anomaly
scores for data samples with distinct differences in any feature re-
gardless of its variance in the training subsamples. In this section
we will subsequently describe the training of the proposed new tree
structure as well as the anomaly scoring adopted from [18].

3.1 Binary Decision Trees

We define a binary decision function as a function f : F �→ {0, 1},
where F is the sample feature space. A binary decision tree T =
N1, ..., Nm is a tree where each node N is associated with a bi-
nary decision function fN . Each node in a binary tree has either
0 or 2 children which we call left and right. A node without chil-
dren is called a leaf. We use operators P, C to denote parent and
children respectively s.t. P(N) is the parent of N and CL(N) is
the left child of N , where the subscript L,R denotes left or right
child. Hence, we also have P(CR(N)) = N . A set of training sam-
ples X = x1, ..., xn of F features, s.t. xj = xj(1), . . . , xj(F), is

fit to a binary decision tree T by successively subdividing X from
the root node N1 (thus XN1 = X) s.t. the subset XNj of a node
Nj = C(Nk) is defined by:

XNj
:=

{{x|fNk
(x) = 0, x ∈ XNk

} if Nj = CL(Nk)

{x|fNk
(x) = 1, x ∈ XNk

} if Nj = CR(Nk)
(1)

We use the notation T (X) for a tree T fit to a dataset X .
A threshold t for a single feature r is one way of defining a simple

binary decision function, often referred to as an axis parallel feature
split as seen in (2).

f(x, r, t) =

{
0 if x(r) < t

1 if x(r) ≥ t.
(2)

A node N in a binary decision tree with an axis-parallel feature split
is defined by the triplet N = (XN , rN , tN), denoting node training
samples, selected feature, and threshold split-value.

3.2 Anomaly Detection Trees

One of the distinguishing contributions of the ADF algorithm is the
introduction of anomaly catcher nodes:

Definition 1. An anomaly catcher is a node N with two children s.t.
the corresponding training subset of one child N ′ is the empty set,
while for the other child N ′′, we have XN′′ = XN .

In other words, each anomaly catcher has a child which is an empty
leaf that we call an anomaly leaf. In order for a node N to be an
anomaly catcher according to Definition 1, we see from equations (1)
and (2) that the following needs to hold for the node threshold tN :

tN ≤ minx∈XN
x(rN) ∨ tN > maxx∈XN

x(rN). (3)

Whereas the anomaly catcher node aims to accentuate the
anomaly scores of distinct anomalies by selecting split-values out-
side the range of the node training samples, the other key contribution
of the ADF, the isolation level is introduced to reduce the anomaly
scores of normal instances:

Definition 2. The isolation level η ∈ (0, 0.25) of a binary decision
tree T (X) is a size threshold such that any node N , where |XN |

|X| ≤
η, will be an anomaly catcher.

In Definition 2 |X| is used for the size of the set X , and this notation
will be used throughout the rest of the paper.

In order to achieve anomaly catchers based on sample subsets of
reasonable size, the nodes which are not anomaly catchers can be
programmed to avoid isolation of training samples. With this objec-
tive, we propose Algorithm 2 to calculate the threshold tN , for these
nodes N , which we label as subdivision nodes. By Algorithm 2 the
corresponding requirement to (3) for subdivision nodes is:

�(0.5− 2η)|XN |� ≤ |{x ∈ XN : x(r) < tN}| ≤ �(0.5 + 2η)|XN |	.
(4)

Consequently, for most values of η, |X|, neither child to a subdivi-
sion node will be an anomaly leaf.

With Definition 1 and Definition 2, the novel Anomaly Detection
Tree (ADT) structure can now be defined as:

Definition 3. An ADT is a binary decision tree T (η,X) with isola-
tion level η, fit to a sample set X , consisting of subdivision nodes
and anomaly catchers s.t. at least all nodes N with |XN | ≤ η · |X|
are anomaly catchers.

J. Sternby et al. / Anomaly Detection Forest1508

3.2.1 Threshold value space

One crucial aspect when using an anomaly catcher threshold as in (3)
is how to choose reasonable values outside of the observed range.
The feature value space V = {Vr}Fr=1 in a root node is determined
by the a priori value intervals Vr = [fmin

r , fmax
r], of the theoreti-

cally possible values for feature r. Apart from the binary case, some
outer boundary is necessary since even anomalies will have bounded
values and the true value interval may be unknown. To get a rea-
sonable starting point, the standard deviation (σr) of each feature
r ∈ (1, . . . , F) in the complete training set X (not just the subset of
the given tree) is used as boundary in the root node N1:

Vr(N1) = [fmin
r , fmax

r]
⋂

[min
x∈XN1

x(r)−aσr, max
x∈XN1

x(r)+aσr], (5)

where a is the anomaly margin, which can typically be set to 1. Be-
low the root node, the value space of a feature is further limited by
any split made in that feature higher up in the tree. As an example,
there can not be any values x(rP(N)) < tP(N), x ∈ XN for any
node N = CR(P(N)) since any samples with such values arriving
at P(N) would subsequently be sent to the left subtree according
to (1). This can be formalized with the following inductive formula
for the feature value space for feature r at the children of node N :

Vr(C(N)) = Vr(N), if r �= rN

Vr(CR(N)) = Vr(N)
⋂

[tN ,∞), if r = rN

Vr(CL(N)) = Vr(N)
⋂

(−∞, tN], if r = rN .

(6)

As the value space of each node depends on that of its parent, the
span of the value space will decrease with depth. This implies that
anomaly leaves deeper in the tree may require less deviation from
the seen data, thereby providing some quantification of abnormality
for unseen values.

3.3 Training

Algorithm 1 describes a method to fit (train) an ADT T to a sample
set X based on Definition 3. The function rand(a, b) corresponds to
the generation of random real values from the uniform distribution in
the interval [a, b]. The function randi(a, b) is the analogue for random
integer values. For a positive integer F , the function randperm(F) re-
turns a permutation of the list (1, 2, ..., F) chosen uniformly at ran-
dom. The training of ADF with trees T = {T1, . . . , T|T |}, is ini-
tialized by selecting corresponding subsets Xi, i = 1, . . . , |T | ran-
domly drawn from the complete set of training samples X and run-
ning the ADTree() function in Algorithm 1. Depending on the size
|X| of the supplied subset (it will be less or equal than that of its
parent at each recursive call), thresholds will be selected according
to one of the two functions SDThreshold() or ACThreshold().

In the first levels of the tree, until the size of the supplied subset
|XN | is below the isolation level η · |X|, the SDThreshold function
is used to determine the threshold value tN for node N . These nodes
are called subdivision nodes. Algorithm 2 describes the process for
selecting such a subdivision threshold t in a Tree T (η,X).

Note that each time that Algorithm 2 returns a value for node N ,
the sizes of both subsets XCL(N), XCR(N) will be smaller than |XN |.
Hence, after a sufficient number of recursions in Algorithm 1, the
size of the supplied subset XN to the node N falls below η · |XN1 |
and the ACThreshold() function is used to determine the node thresh-
old tN . The ACTreshold() function described in Algorithm 3, is
slightly more involved due to the inductive nature of (6), but it should

Algorithm 1: ADTree(X ,η, d, D)
Data: Sample subset X with F features, isolation level η,

depth d, max depth D, feature value space V
Result: Anomaly Detection Tree T
begin

T = {L = NULL, R = NULL}
if d > D or |X| ≤ 1 then

return T

for r in randperm(F) do
Update Vr for current node according to (6)
if |X| ≤ η · |XN1 | then

/* Anomaly catcher */
t = ACThreshold(X, r, Vr)
if t �= NULL then

T.t = t, T.r = r
break

else

/* Subdivision node */
t = SDThreshold(X, η, r)
if t �= NULL then

T.t = t, T.r = r
break

T.L ← ADTree({x(r) < t|x ∈ X}, η, d+ 1, D, V)
T.R ← ADTree({x(r) ≥ t|x ∈ X}, η, d+ 1, D, V)

return T

Algorithm 2: SDThreshold(X, η, r)

Data: Sample subset X , Isolation level η, feature r
Result: A randomly chosen Subvidision Threshold t

satisfying (4), if such a threshold exists.
begin

X ′ = {x′
1, . . . , x

′
|X|} = Sort(X(r)) ascending

a = x′
floor((0.5−2η)·|X|)(r)

b = x′
ceil((0.5+2η)·|X|)(r)

if a = b then
return NULL

return rand(a, b)

J. Sternby et al. / Anomaly Detection Forest 1509

still be clear that the obtained threshold t satisfies both the require-
ment in (3) and that it is reachable according to the discussion in
the section about threshold value space. As these anomaly catcher
nodes never divide the subset into smaller parts, the creation of a leaf
(|X| ≤ 1) is not a sufficient condition for Algorithm 1 to converge.
Consequently, each node keeps track of its depth d, and the training
also terminates when the supplied maximum depth D is reached.

Algorithm 3: ACThreshold(X, r, Vr)

Data: Samples X , feature r, value space Vr for feature r
Result: A randomly chosen Anomaly Cather Threshold

t ∈ Vr satisfying (3), if such a threshold exists.
begin

/* check existence outside feature
span */

if Vr \ [min
x∈X

x(r),max
x∈X

x(r)] = ∅ then

return NULL
/* check existence below feature span

*/
if min

v∈Vr

v = min
x∈X

x(r) then

return rand(max
x∈X

x(r),max
v∈Vr

v)

if rand(0, 1) > 0.5 then
return rand(max

x∈X
x(r),max

v∈Vr

v)

return rand(min
v∈Vr

v,min
x∈X

x(r))

3.4 Anomaly scoring

The scoring mechanism of the ADF is almost the same as that of
the IF, however, there is a slight difference in how normalization is
conducted. In IF, the average path length of the trees in the forest is
divided by a constant that relates to the average path length of un-
successful searches in a binary search tree [18]. In the case of the
ADF, however, the average path length for normal samples is more
dependent on the data, as well as the isolation level, and, maximum
depth that control the topology of the constituent trees. For this rea-
son we change the normalization of the scores to use the observed
average path length over the training set instead. The anomaly score
for a sample x′ over a set of trees T = {T1, . . . , T|T |} trained on set
X is then obtained by

s(x′,X) = 2
−

∑

j
(l(x′,Tj))/|T |

l∗(X ,T) , (7)

where l(x′, T) is the path length for sample x′ in tree T and
l∗(X , T) = 1

|X||T |
∑
x∈X

∑
j

l(x, Tj). Recall that X is the complete

training set and not only the subsample Xi used to train tree Ti. For
normal instances x, l(x, Ti) is expected to be close to the max depth
DTi of tree Ti, whereas distinct anomalies are expected to end up in
at least some anomaly leaves during scoring.

3.5 Properties of ADF

Each path to the first anomaly catcher nodes in an Anomaly Detec-
tion tree can be seen as a random subspace containing a subsample
of the training set. The following anomaly catcher nodes continue to
put more borders in random dimensions further enclosing this part.

0.1 0.2 0.3

0.1

0.2

(a) |X| = 512

0.0 0.1 0.2 0.3

0.1

0.2

(b) |X| = 512, X in red.

0.1 0.2 0.3

0.1

0.2

(c) |X| = 16

0.0 0.1 0.2 0.3

0.1

0.2

(d) |X| = 16, X in red.

Figure 1. Anomaly catcher subspace density plot for ADF model
(thyroid-ann dim. 3,4).

Adding many such tree models creates overlapping subspaces such
that dense parts of training space will be present in more such enclo-
sures. In this respect, the ADF can be seen as a density model of the
training sample space4, where samples corresponding to dense areas
in training space have a larger probability of being covered (i.e. not
isolated) by more trees. Figure 1 shows plots visualizing this by cre-
ating a histogram of the covered areas of the paths to the anomaly
catcher nodes at the tree max depth, i.e. the anomaly catcher node
without children, in all trees of two ADF models (trained with dif-
fering subsample size). As seen in the figure, a larger subsample size
corresponds to more smoothing of the density estimation of the nor-
mal space.

3.5.1 Isolation

By searching for values outside of the observed value span for differ-
ent features, the ADF is very capable of providing lower path lengths
for anomalies with feature values different from those observed dur-
ing training. It is quite obvious that the IF may miss such anoma-
lies unless there is also some training sample with similar properties
since in the IF, leaves are only created by isolating values in the train-
ing set. This problem has been presented in [13] as the Held Out Data
problem. Consider the probabilities for creating an isolating leaf in
the two cases. In the IF, given a distinct anomaly z s.t. for some fea-
ture r we have z(r) > maxx∈X x(r), the probability for creating an
isolating leaf from a node N with feature r is the same as setting the
threshold t larger than the next to largest feature value x′

|X′|−1(r) in
the sorted node subsample X ′ = {x′

1, . . . , x
′
|X′|}, x′

i ≤ x′
j , ∀i < j

i.e.
|x′

|X′|−x′
|X′|−1

|
|x′

|X′|−x′
1|

due to the uniform selection of t. In the ADF

the corresponding probability for choosing a threshold that isolates
z does not depend on the density of the node subsample, and in-
stead increases linearly with the separation of z(r) from the interval
[minx∈X′ x(r),maxx∈X′ x(r)].

There is also the special case of when training samples show zero
variance in a feature for a node subsample XN . The standard IF ig-
nores such features since the node subsample cannot be split. For
the ADF however, such features can also be used to create anomaly

4 Note that the use of the word density here is not meant to indicate any direct
relation to the density measuring functions of Section 1.

J. Sternby et al. / Anomaly Detection Forest1510

leaves catching data points that show deviation in this feature. This
will give a high anomaly score and indicate abnormality as one
should expect for feature values that are distinctly different from
what is encountered in the training set. Note that this may be partic-
ularly useful for binary features (such as one-hot encodings) where
duplicate values are common.

The inverse problem may also cause noise from normal samples
when trying to detect anomalies. Since each leaf close to the root in
the IF corresponds to a normal instance having an isolated value in
the training set, any new normal instance with similar feature values
may end up in the same leaf during scoring, and thus, get a short path
length. Even though an anomaly with even more extreme value for
that feature ends up in the same leaf during scoring, the IF algorithm
has no way of discriminating the anomaly from the normal instance.

3.5.2 Impact of subsample size

An interesting parameter is the subsample size |X|, i.e. the size of the
partition used to train each tree. There is a simple probabilistic rela-
tion between |X| and the probability that a feature value of a normal
instance is outside the range [minx∈X x(rN),maxx∈X x(rN)] of a
node N . Consider a normal instance x′ from a i.i.d set X and a node
subsample X = {x1, . . . , x|X|} ⊂ X . Let’s now consider a fixed
threshold t ∈ (minx∈X x(r),maxx∈X x(r)) for a feature r in ADF.
This gives:

P (x′(r) ≥ t,max
x∈X

x(r) < t) =

P (x′(r) ≥ t)

|X|∏
P (x(r) < t) =

(1− P (x′(r) < t))

|X|∏
P (x(r) < t) → 0, |X| → ∞. (8)

0 50 100 150 200
Sample index

0.4

0.6

0.8

An
om

al
y

sc
or

e

(a) |X| = 16

0 50 100 150 200
Sample index

0.4

0.6

0.8

An
om

al
y

sc
or

e

(b) |X| = 128

0 50 100 150 200
Sample index

0.4

0.6

0.8

An
om

al
y

sc
or

e

(c) |X| = 512

Figure 2. Anomaly scores for ADF for different subsample sizes (|X|) on
the breast-w dataset. Normal instances are depicted by dots and anomalies

by triangles.

This means that a forest trained with smaller subsample sizes have
a higher probability of treating instances from the normal class as

anomalies. It will also imply a higher probability of catching anoma-
lies with values overlapping those of normal instances. Depending
on how separated anomalies are from normal instances, this will im-
ply that some anomalies will get lower anomaly scores for a larger
subsample size.

When viewing the ADF as a density estimation model of normal
space, the subsample size can be seen as a smoothing parameter. The
effect of this is shown in Figure 1. In terms of anomaly scoring, the
smoothing effect reduces the variance of the scores of samples classi-
fied as normal and makes them more similar, while at the same time,
it increases the anomaly score of samples classified as anomalous as
seen in Figure 2.

0.1 0.2 0.3

0.1

0.2

(a) D = 16

0.1 0.2 0.3

0.1

0.2

(b) D = 48

Figure 3. Density plots for ADF of thyroid-ann dimensions 3,4 with
subsample size 16 at different depths.

3.5.3 Impact of depth

The depth of the anomaly catchers after the subdivision nodes pro-
vides boundaries for the normal models. With insufficient depth with
respect to the number of features, the boundaries may fail to en-
close the normal model, causing the phenomenon of axis-parallel
bias, where the normal density spreads to unobserved areas parallel
to the modeled area as seen in Figure 3a. This phenomenon for the
anomaly scores of IF is the main motivation behind [14]. By increas-
ing the depth as seen in Figure 3b, the arbitrary feature choices for
the anomaly catchers succeed in enclosing the training space to be
modeled and the phenomenon is reduced. Although the phenomenon
is clearly visible in Figure 3a, it does not seem to have a major effect
on other performance metrics, and both metrics described in the ex-
periments are fairly constant for most datasets for |X| = 256 as seen
in Figure 4.

4 Experiments

Since our work can be seen as an adaptation of the IF algorithm for
the case of one-class learning we have focused our comparison to this
case. We also run experiments for the one-class random forest of [12]
using the implementation found in [11] as their results are among the
strongest reported in the literature for the one-class anomaly detec-
tion problem. Thus, we believe using IF and OCRF as comparison
basis is supported by the literature, with IF found to be a top per-
forming anomaly detection algorithm [8, 10] and OCRF among top
for one-class anomaly detection. For some use cases, slightly bet-
ter outlier detection results than IF have been reported recently us-
ing Deep or Recurrent Neural Network algorithms [23]. But given
our space constraints here, we reserve such comparisons for future
work. Performance for anomaly detection is usually presented with
the properties of Receiving Operating Characteristic (ROC) curves
and/or Precision-Recall (PR) curves [1]. We provide Area Under

J. Sternby et al. / Anomaly Detection Forest 1511

10 15 20 25 30 35 40
max_depth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP

AP for with various values of max_depth

thyroid-ann
optdigits
Ionosphere
cardiotocography

(a)

10 15 20 25 30 35 40
max_depth

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AP

AP for with various values of max_depth

mammography
satellite_image
diabetes
smtp

(b)

Figure 4. AP for varying depths, D

Curve (AUC) for ROC and average precision (AP) which is approxi-
mately the AUC of the PR curve. In the Results section we argue that
the AP is a more suitable performance marker for the common case
when the budget for analysis of detections is limited. Since there are
random elements to the algorithms benchmarked here, we present all
results as average and standard deviation over several runs.

4.1 Datasets

To enable comparison with state-of-the-art algorithms, the datasets in
the Open ML [24] and UCI [9] repositories have been prepared in ac-
cordance with previous work, as listed in Table 1. Since OCRF only
supports variables with a certain level of continuity, some datasets
have been tested also with binary features removed, listed as (cont)
in Table 2.

Dataset Source Anomaly definition Size Anomalies R R(cont)
thyroid-ann OML [15] 3772 7.5% 21 6
cardiotocography OML [6] 1831 9.6% 35 24
ecoli OML [6] 336 3.0% 7 7
arrhythmia OML [12] 451 14.7% 275 192
diabetes OML [15] 768 35.1% 8 8
Ionosphere OML [18] 351 35.8% 33 32
ForestCover UCI [12] 286048 1.0% 10 10
breast-w OML [18] 683 35.1% 9 9
mammography OML [18] 11183 2.3% 6 6
satellite image OML [18] 6435 31.6 36 36
optdigits OML [6] 5620 9.8% 64 64
smtp UCI [18] 95380 0.01% 3 3
spambase UCI [12] 3902 39.4% 57 57
pendigits UCI [12] 10992 10.4% 16 16

Table 1. Table of tested Open-ML (OML) and UCI datasets. R/R(cont) are
the complete and continuous number of features respectively.

Every dataset has been randomly split into training and testing
set (70/30%). To enable a more robust statistical analysis, the func-
tion StratifiedShuffleSplit of scikit-learn has been used to test
over 10 different train/test splits. By using the stratified version of
the shuffle split each test set was constructed to contain the same
ratio of anomalies as the whole dataset [19]. For the same reason,

the anomalies were removed from the training set after the splits
were made. Since each algorithm was trained in two different in-
stances on each split, a total of 20 results was obtained for each
dataset/algorithm combination. Statistical analysis on these were per-
formed by comparing the algorithm with the highest average against
the others with a pairwise Wilcoxon signed-rank test. Recall that this
is a non-parametric test that, in our case, can reject a null hypothesis
that the difference of the performance of two methods is symmetri-
cally distributed around 0 in favour of an alternative hypothesis that
it is not.

4.1.1 Complexity

As the tree resulting from Algorithm 1 has the same structure as the
iTree of IF in [18], including the node operations, the time complex-
ity during inference is also comparable to that of IF. The number
of comparison operations is bounded by the maximum depth of the
trees. Training complexity is also similar although somewhat higher
due to the additional sorting in Algorithm 2.

4.2 Standard settings

As default settings for ADF for the experimental results given in Ta-
ble 2 we have used a subsample size |X| = 256, anomaly margin
a = 1, isolation level η = 0.1 and max depth D = 13. The settings
for the IF and OCRF were also chosen to be the default as specified
in the respective papers [12, 18].

4.3 Results

As seen in Table 2 ADF shows the best results on a majority of
the datasets both for ROC AUC and AP metrics. One of the few
datasets with a significant decrease in performance compared to IF
is the pima/diabetes dataset but as seen in Figure 5, it is questionable
whether it is meaningful to grade performance between two methods
for novelty detection at such a low level of utility. The other dataset
that has better performance for both IF and OCRF (both AUC, AP)
is the breast-w dataset. For this dataset the ADF lacks the power
to distinguish some of the anomalies and fails to give high anomaly
scores for these as seen in Figure 2. A failure to provide a higher
anomaly score for these anomalies with ADF implies that the feature
values of the anomalies are within the density distributions modelled.
Analysis show that the breast-w training set contains a few sam-
ples with extreme values, and with such a small set (683) and large
subsample size (256), this may reduce the possibility for ADF to
give high anomaly scores to actual anomalies since anomaly catcher
nodes look for anomalies outside the feature span for the node sub-
sample. IF, on the other hand, assigns high anomaly scores to actual
anomalies that have corresponding isolations in the training set and
this is therefore a case where the previously mentioned weaknesses
of IF is not a problem. There are some possible mitigations to im-
prove ADF under such conditions, like reducing the subsample size,
as seen in Figure 2 or normalizing training data in some fashion, but
this is left for future work. OCRF shows the best results for some
datasets, in particular ForestCover and ann-thyroid, but not so great
results for the majority of datasets, possibly due to its strong require-
ments on continuity. ADF on the other hand, has the capability to
handle all feature types and for the cardiotocography and Ionosphere
datasets the addition of binary features give a boost in performance.

Compared to the IF, the anomaly scores coming from the ADF
seems to be higher for anomalies with fairly high scores from IF

J. Sternby et al. / Anomaly Detection Forest1512

0 50 100 150 200

0.45

0.50

0.55

0.60

0.65

0.70

(a) ADF

0 50 100 150 200
0.35

0.40

0.45

0.50

0.55

0.60

0.65

(b) IF

Figure 5. Anomaly scores for IF and ADF on the pima/diabetes dataset.
Normal test instances in dots and anomalies with triangles.

while they are lower for anomalies with low scores as seen in Fig-
ures 6c and 6d. Given the use of thresholds outside the range of
observed node samples, it is probable that the anomalies that got
higher scores with ADF have more distinctly differing features from
the training data whereas the anomalies that got lower scores are
less separable from the training set. This increased separation of dis-
tinct anomalies with ADF seems to be useful as in Figure 6c, where
at least four of the anomalies could be detectable without an over-
whelming amount of false positives. However, it also highlights the
general difficulty in defining relevant performance measures for nov-
elty detection algorithms. The insufficiency in using ROC AUC as a
performance indicator for anomaly detection is particularly striking
in the results for the smtp set seen in Figure 6, where ADF ranks the
top scoring anomalies higher (corresponding to the first jump to 0.4
TPR (True Positive Rate = #Correctly identified anomalies / #Anoma-
lies) in Figure 6a) whereas the IF ranks the lowest scoring anomalies
higher (corresponding to the jump to 1.0 in TPR in Figure 6b).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic example

ROC curve (area = 0.85)

(a) ROC curve for ADF

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic example

ROC curve (area = 0.89)

(b) ROC curve for IF.

(c) ADF scores. (d) IF scores.

Figure 6. Anomaly scores for smtp testset with |X| = 256, anomalies are
red triangles.

The ROC AUC is shown to be significantly higher for the IF but
as seen in the figure it does not seem to indicate that the method
is better to use to detect the smtp anomalies. The problem is that
ROC AUC does not differentiate between absolute anomaly ranking
differences since it only measures the area under curve [1]. In many
applications of anomaly detection with one-class learning, anomalies
are rare, and, only the fraction of samples with the highest anomaly
scores can be handled for further actions. In such cases, as illustrated

above, the AP gives a more reliable indication of utility with its focus
on the performance of the anomaly class. ADF shows particularly
good performance in terms of AP as seen in Table 2.

Dataset OCRF ADF SciKit iForest
ROC AP ROC AP ROC AP

thyroid-ann N/A 84.2± 3 32.2± 5 78.2± 3 20.0± 2
thyroid-ann(cont) 97.1± 0 63.9± 5 94.2± 1 56.6± 5 93.0± 1 53.6± 5
mammography 81.7± 3 24.9± 5 88.6± 2 35.0± 5 87.9± 2 22.5± 5
optdigits N/A 89.8± 2 42.2± 6 79.1± 4 22.2± 4
optdigits(cont) 49.0± 3 10.6± 1 90.2± 2 43.2± 6 81.3± 4 24.6± 5
cardiotocography N/A 99.8± 0 97.8± 1 88.8± 3 51.1± 9
cardiotocography(cont) 90.9± 2 68.9± 3 97.2± 1 81.5± 5 93.7± 2 63.0± 7
diabetes 68.1± 3 51.3± 5 64.5± 3 50.4± 5 72.2± 3 55.7± 3
ForestCover 98.5± 0 50.2± 2 97.7± 0 20.6± 2 85.1± 4 4.3± 1
satellite image 78.3± 1 75.3± 1 82.3± 1 80.2± 1 80.8± 2 77.8± 1
Ionosphere N/A 97.2± 2 95.5± 3 92.4± 2 88.4± 3
Ionosphere(cont) 93.4± 3 83.4± 8 97.0± 2 95.2± 3 91.9± 2 87.8± 3
pendigits 88.2± 1 30.0± 2 93.1± 1 47.7± 5 78.9± 3 20.5± 2
smtp 90.0± 5 1.4± 1 84.9± 10 12.0± 8 89.1± 4 .2± 0
breast-w 98.7± 1 96.3± 2 95.3± 4 93.0± 4 99.5± 0 99.0± 0
spambase 85.8± 1 76.1± 2 85.6± 1 81.8± 1 83.6± 2 75.9± 3
ecoli N/A 82.1± 15 49.4± 23 82.4± 15 54.0± 26
ecoli(cont) 44.3± 8 3.8± 1 51.5± 14 11.0± 10 51.7± 11 8.4± 8
arrhythmia N/A 0.836± 0.04 0.568± 0.06 0.835± 0.04 0.544± 0.08
arrhythmia(cont) 0.521± 0.07 0.158± 0.04 0.845± 0.04 0.547± 0.06 0.834± 0.04 0.518± 0.06

Table 2. ROC AUC and AP in percent for 20 runs (10 train/test splits and
2 training instances) on each dataset. Wilcoxon signed-rank test (significance

level α = 0.05) has been run pairwise for the method with the highest
average score (boldface) versus the other methods and significance is

indicated by gray background.

4.3.1 Subsample size

Figure 7 shows how the AP values vary with subsample size for stan-
dard settings as described above. For most of the datasets, increasing
the subsample size from 16 provides a higher AP but levels out for a
subsample size of 128-256. As a larger subsample size has a smooth-
ing effect on the normal modeling as seen in Figure 1, anomalies
that are surrounded by normal instances will not be likely to produce
high anomaly scores for this case. In the case of the breast-w
and optdigits datasets, AP values are best for small subsam-
ple sizes. As discussed in the properties of ADF, this is likely be-
cause the smoothing of a larger subsample size makes the border
between anomalies and normal instances too indistinct. As seen in
Figure 2, a smaller subsample size produces better performance for
the breast-w dataset by more distributed scoring of anomalous
and normal instances.

5 Conclusions

In this paper we have presented a new ensemble method for the one-
class learning case of anomaly detection, based on random binary
trees, called Anomaly Detection Forest (ADF). It is an adaptation
of the isolation paradigm of the IF algorithm to work better for the
one-class learning case. By introducing elements that reduce the risk
for classifying uncommon normal instances as anomalies as well as
adding elements that have a chance of detecting anomalies in fea-
tures that are dense and stable in training data, we show considerable
improvements both in ROC AUC and AP compared to IF as well as
to OCRF. Another merit of ADF is that it can make use of binary
features, such as one-hot-encodings.

For some applications, such as those that will send alarms for man-
ual human inspection, anomaly detection may only be useful if it can
keep the number of false positives very low. The ADF is particularly
suitable when the inspection budget is limited, as it increases the rel-
ative scores of distinct anomalies at the expense of difficult cases. We
argue that this is demonstrated more clearly by the AP performance
metric, rather then ROC AUC that is commonly used for anomaly
detection, in general.

J. Sternby et al. / Anomaly Detection Forest 1513

0 100 200 300 400 500
Subsample size

0.2

0.4

0.6

0.8

1.0

AP

AP for with various values of subsample size

thyroid-ann
optdigits
diabetes
cardiotocography

(a)

0 100 200 300 400 500
Subsample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP

AP for with various values of subsample size

Ionosphere
mammography
satellite_image
thyroid-ann#cont

(b)

Figure 7. AP for varying subsample size of ADF over the different
datasets.

ACKNOWLEDGEMENTS

We would like to thank Luis Barriga, Julen Kahles, and Amine
Boukhtouta for support and valuable comments during preparation
of this manuscript.

REFERENCES

[1] Charu C. Aggarwal, Outlier Analysis, Springer Publishing Company,
Incorporated, 2nd edn., 2016.

[2] Marcelo Bacher, Irad Ben-Gal, and Erez Shmueli, ‘An information the-
ory subspace analysis approach with application to anomaly detection
ensembles.’, in KDIR, volume 1, pp. 27–39, (2017).

[3] Stephen D Bay and Mark Schwabacher, ‘Mining distance-based out-
liers in near linear time with randomization and a simple pruning rule’,
in Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 29–38. ACM, (2003).

[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg
Sander, ‘Lof: Identifying density-based local outliers’, SIGMOD Rec.,
29(2), 93–104, (May 2000).

[5] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla,
‘Robust, deep and inductive anomaly detection’, in Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 36–51. Springer, (2017).

[6] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga, ‘Out-
lier detection with autoencoder ensembles’, in Proceedings of the 2017
SIAM International Conference on Data Mining, pp. 90–98. SIAM,
(2017).

[7] Yuting Chen, Jing Qian, and Venkatesh Saligrama, ‘A new one-class
svm for anomaly detection’, in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 3567–3571. IEEE,
(2013).

[8] Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane
Zouaoui, ‘A comparative evaluation of outlier detection algorithms: Ex-
periments and analyses’, Pattern Recognition, 74, 406–421, (2018).

[9] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
[10] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern,

and Weng-Keen Wong, ‘Systematic construction of anomaly detection

benchmarks from real data’, in Proceedings of the ACM SIGKDD work-
shop on outlier detection and description, pp. 16–21. ACM, (2013).

[11] Nicolas Goix. https://github.com/ngoix/ocrf, 2016.
[12] Nicolas Goix, Nicolas Drougard, Romain Brault, and Mael Chiapino,

‘One class splitting criteria for random forests’, in Proceedings of the
Ninth Asian Conference on Machine Learning, eds., Min-Ling Zhang
and Yung-Kyun Noh, volume 77 of Proceedings of Machine Learning
Research, pp. 343–358. PMLR, (15–17 Nov 2017).

[13] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers, ‘Ro-
bust random cut forest based anomaly detection on streams’, in Inter-
national conference on machine learning, pp. 2712–2721, (2016).

[14] Sahand Hariri, Matias Carrasco Kind, and Robert J Brunner, ‘Extended
isolation forest’, arXiv preprint arXiv:1811.02141, (2018).

[15] Fabian Keller, Emmanuel Muller, and Klemens Bohm, ‘Hics: High con-
trast subspaces for density-based outlier ranking’, Proceedings - Inter-
national Conference on Data Engineering, 1037–1048, (04 2012).

[16] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, ‘Isolation forest’, in
2008 Eighth IEEE International Conference on Data Mining, pp. 413–
422. IEEE, (2008).

[17] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, ‘On detecting clus-
tered anomalies using sciforest’, in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pp. 274–290.
Springer, (2010).

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, ‘Isolation-based
anomaly detection’, ACM Transactions on Knowledge Discovery from
Data (TKDD), 6(1), 3, (2012).

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research, 12, 2825–2830, (2011).

[20] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel
Tarassenko, ‘A review of novelty detection’, Signal Processing, 99,
215–249, (2014).

[21] John A Quinn and Masashi Sugiyama, ‘A least-squares approach to
anomaly detection in static and sequential data’, Pattern Recognition
Letters, 40, 36–40, (2014).

[22] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu
Chang, ‘A novel anomaly detection scheme based on principal com-
ponent classifier’, Technical report, MIAMI UNIV CORAL GABLES
FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING,
(2003).

[23] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and
Sean Robinson, ‘Deep learning for unsupervised insider threat detec-
tion in structured cybersecurity data streams’, in Artificial Intelligence
for Cyber Security Workshop (AAAI-2017). AAAI, (2017).

[24] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo,
‘Openml: Networked science in machine learning’, SIGKDD Explo-
rations, 15(2), 49–60, (2013).

[25] Xuyun Zhang, Wanchun Dou, Qiang He, Rui Zhou, Christopher Leckie,
Ramamohanarao Kotagiri, and Zoran Salcic, ‘Lshiforest: A generic
framework for fast tree isolation based ensemble anomaly analysis’,
in 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pp. 983–994. IEEE, (2017).

J. Sternby et al. / Anomaly Detection Forest1514

