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Abstract. Finding an optimal parameter of a black-box function is
important for searching stable material structures and optimal neu-
ral network structures, and Bayesian optimization algorithms are
widely used for the purpose. However, most of existing Bayesian op-
timization algorithms can only handle vector data and cannot handle
complex structured data. In this paper, we propose the topological
Bayesian optimization, which can efficiently find an optimal solu-
tion from structured data using topological information. More specif-
ically, in order to apply Bayesian optimization to structured data, we
extract useful topological information from a structure and measure
the proper similarity between structures. To this end, we utilize per-
sistent homology, which is a topological data analysis method that
was recently applied in machine learning. Moreover, we propose the
Bayesian optimization algorithm that can handle multiple types of
topological information by using a linear combination of kernels for
persistence diagrams. Through experiments, we show that topolog-
ical information extracted by persistent homology contributes to a
more efficient search for optimal structures compared to the random
search baseline and the graph Bayesian optimization algorithm.

1 INTRODUCTION

In recent years, many studies have been actively conducted on the
analysis of data with complex structures like graph structures. Graph
structure optimization involves searching for graph structures with
optimal properties, and it is one of the fundamental tasks in graph
structured data analysis. Examples of graph structure optimization
include searching for stable lowest-energy crystal structures [23] and
searching for road networks with optimal traffic volume [7]. Another
example of graph structure optimization would be neural network ar-
chitecture search [19, 11], which is an important task in deep learning
architecture research. Thus, learning from complex structure is very
important in various research fields.

The objective function of graph structure optimization (e.g., en-
ergy of a crystal structure and traffic volume of a road network) is an
expensive-to-evaluate function, which needs to be measured by per-
forming a long time experiment or a large scale investigation, and is
a black-box function, which cannot be written explicitly. Therefore,
an optimization method that can optimize even an unknown objective
function with fewer evaluations is desirable. Bayesian optimization
is one of methods that satisfies this condition. However, studies on
Bayesian optimization often assume vector data as the input, and few
studies focus on structured data. In standard Bayesian optimization
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methods, we tend to use the Gaussian kernel, which expresses the
similarity between input vectors. Thus, to handle structured data by
Bayesian optimization, we need to design a similarity that properly
captures the structure. For example, a method using graph kernels
was proposed for handling arbitrary graph structures by Bayesian op-
timization [5], and this method outperforms vector based Bayesian
optimization in tasks such as identifying the most active node in a
social network and searching for optimal transportation networks.

Recently, the topological data analysis (TDA) has received con-
siderable attention in machine learning as a technique for extracting
topological features from complex structured data. Persistent homol-
ogy is a TDA method that is actively studied for application to sta-
tistical machine learning. The result of persistent homology is rep-
resented by a point cloud on R

2 like Figure 2 called a persistence
diagram (PD). As one of the applications of persistent homology to
machine learning, several kernels for PD have been proposed, and the
effectiveness has been demonstrated by classification tasks using the
support vector machines and change point detection [12, 14]. How-
ever, to the best of our knowledge, there is no Bayesian optimization
method that utilizes topological data analysis.

In this paper, we propose the topological Bayesian optimization,
which is a Bayesian optimization algorithm using features extracted
by persistent homology. More specifically, we first introduce the
persistence weighted Gaussian kernel (PWGK) [12] and the per-
sistence Fisher kernel (PFK) [14] for Gaussian processes, and de-
rive a Bayesian optimization algorithm using topological informa-
tion. Since the current persistence homology based approach con-
siders only one type of topological information, it may not be able
to capture various types of topological information. Therefore, we
further propose a multiple kernel learning based algorithm and ap-
ply it to Bayesian optimization problems. Through experiments us-
ing synthetic and four real datasets about properties of molecules,
we show that our method can search for the optimal structure more
efficiently compared to the random search baseline and the state-of-
the-art Bayesian optimization for graphs [5].

Contributions: The contributions of this paper are as follows:

• We propose a Bayesian optimization algorithm utilizing topologi-
cal information extracted by persistent homology.

• We further propose a multiple kernel learning based algorithm to
use various types of topological information.

• Through experiments, we show that our method can search for the
optimal structure more efficiently compared to the random search
baseline and the graph Bayesian optimization algorithms.
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2 BACKGROUND

In this section, we briefly review the traditional Bayesian optimiza-
tion algorithm based on Gaussian process and the topological data
analysis based on persistent homology.

2.1 Bayesian optimization

Bayesian optimization (BO) is an effective optimization method for
expensive-to-evaluate objective functions [1]. Let us denote the in-
put vector x ∈ R

d and a black box function f : Rd → R. Bayesian
optimization tries to find the optimal data point of the following op-
timization problem:

x∗ = argmin
x∈Rd

f(x).

Since Bayesian optimization does not need derivatives of the ob-
jective function for finding the optimal data point, it is particularly
effective when optimizing black-box objective functions. Bayesian
optimization is an iterative method, and each step consists of two
steps: (i) calculation of a predictive distribution of an objective func-
tion value by a Gaussian process and (ii) selection of the next search
point based on an acquisition function.

Gaussian process: Gaussian process is a generalization of Gaussian
probability distribution [20]. More specifically, Gaussian process de-
scribes the functions of random variables, while Gaussian probabil-
ity distribution describes random scalars or vectors. In Bayesian op-
timization, the objective function f : R

d → R is modeled by a
Gaussian process, which enables easy calculation of predictive dis-
tributions. Now, let { (x1, y1), · · · , (xt, yt) } be pairs of the input
and the corresponding output of the objective function observed up
to a certain step, where xi ∈ R

d, yi ∈ R for i = 1, · · · , t. We as-
sume that the true value f(xi) is not necessarily observed as yi, but
an independent additive Gaussian noise εi ∼ N (0, σ2) is included:

yi = f(xi) + εi.

According to the definition of Gaussian process, the joint probability
distribution of f(x1), · · · , f(xt) is

(f(x1), · · · , f(xt))
T ∼ N (0,K), (1)

where 0 = (0, · · · , 0)T , ·T denotes the transpose operator, and each
element of K ∈ R

t×t is expressed by Kij = k(xi,xj) using
the kernel function k(·, ·). Then, the predictive distribution of the
function value f(xt+1) at the point xt+1, which is not included in
the data, can be calculated. Since the joint probability distribution
of f(x1), · · · , f(xt), f(xt+1) is also expressed similar to the ex-
pression (i.e., Eq. (1)) and the additive noise is included in the ob-
servations, the predictive distribution of f(xt+1) is also a Gaussian
distribution whose mean μ(xt+1) and covariance σ2(xt+1) can be
calculated as follows:

μ(xt+1) = k(K + σ2I)−1y,

σ2(xt+1) = k(xt+1,xt+1)− k(K + σ2I)−1kT ,

where k = (k(xt+1,x1), · · · , k(xt+1,xt)),y = (y1, · · · , yt)T .
See [20] for the detailed derivation.

Acquisition function: The acquisition function acq(x) expresses
the degree to which we should evaluate the input point x based on
the predictive distribution calculated utilizing a Gaussian process. In

Bayesian optimization, the point that maximizes the acquisition func-
tion is selected as the next evaluation point:

xt+1 = argmax
x∈Rd

acq(x).

There are many acquisition functions including probability of im-
provement (PI) [13], expected improvement (EI) [16], and lower con-
fidence bound (LCB) [22]. The balance between exploitation and ex-
ploration is important for acquisition functions. Exploitation involves
evaluation of points in the surroundings of the point observed with
the best objective function value, while exploration involves evalua-
tion of points with high uncertainty. EI, which we use in the exper-
iments, is the expected value of the difference between the best ob-
servation value ybest obtained up to a certain step and the predicted
objective function value f(x).

acqEI(x) = E[max{0, f(x)− ybest}]

=

{
σ(x)(ZΦ(Z) + φ(Z)) σ(x) �= 0

0 σ(x) = 0
,

where Z = μ(x)−ybest
σ(x)

, and Φ and φ are the cumulative density
function and probability density function of a standard normal distri-
bution, respectively.

2.2 TDA based on persistent homology

In TDA, we focus on the shapes of a complex data from the view-
point of topology. Here, we give an intuitive explanation of one of
the TDA methods, namely persistent homology [3, 6]. We analyze
a point cloud {x1, · · · ,xN } on a metric space (M, c). In case of
analysis of a compound, the point cloud may be the set of 3D coor-
dinates of atoms forming the compound. In order to analyze this by
persistent homology, we consider the union of balls centered on each
point with radius r:

Sr =
N⋃
i=1

{x ∈ M | c(x,xi) ≤ r } .

Figure 1 shows examples of Sr . We can observe that topological
structures like connected components and rings appear and disap-
pear while increasing r. In persistent homology, we focus on when
each topological structure appears and how long it persists.

Figure 1. Examples of Sr . We can observe that topological structures like
connected components and rings appear and disappear while increasing r.

The topological features extracted by persistent homology can be
expressed as a point cloud on R

2 called a persistence diagram (PD).
A point (b, d) on a PD shows the corresponding topological struc-
ture that appears at radius b and disappears at radius d. b and d are
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called birth and death of the structure, respectively, and d−b is called
persistence of the structure. Since b < d, all the points on a PD are
distributed above the diagonal. We can consider multiple PDs for the
same point cloud depending on the structure of interest. It is called
the 0th PD when we focus on the connected components, the 1st
PD when we focus on the rings and so on. Figure 2 shows the 0th
PD and the 1st PD for the point cloud of Figure 1. The births of all
points in the 0th PD are 0 because all connected components already
exist at r = 0 and new one does not appear in the middle of in-
creasing r. Two points corresponding to the small ring and the large
ring in the point cloud can be seen in the 1st PD. The small ring
corresponds to the point closer to the diagonal because it has smaller
persistence than the large one. A point with small persistence is likely
to be caused by noise. Thus, the points distributed near the diagonal
may represent noisy structures, while the points distributed far from
the diagonal may represent more important structures.

Figure 2. 0th and 1st PDs for the point cloud of Figure 1. The births of all
points in the 0th PD are 0 because all connected components already exist at
r = 0. Two points corresponding to the small ring and the large ring are in
the 1st PD. The smaller ring corresponds to the point closer to the diagonal
because it has smaller persistence than the large one. These points are often
treated as noisy structures since small persistences are likely to be caused by

noise in data (i.e. the point cloud of Figure 1).

In this section, we gave the explanation of persistent homology
based on a fattened ball model which is applicable only to point
cloud data, since it is easy to intuitively understand persistent ho-
mology while associating it with the concept of holes. However, we
can also apply persistent homology to images and graphs and extract
persistence diagrams from them [10]. There is more general explana-
tion based on sublevel sets which is applicable to these various data
(e.g. images and graphs) [6].

3 PROPOSED METHOD

In order to handle structured data by Bayesian optimization, it is nec-
essary to design a similarity that captures the topological features of
a structure. Although TDA has attracted considerable attention as
techniques that can extract such features from complex data, there
has been no Bayesian optimization method utilizing TDA to design
the similarity. Therefore, in this paper, we propose Bayesian opti-
mization utilizing features extracted by persistent homology.

Moreover, most studies on the applications of persistent homology
to machine learning, especially studies on kernels for PDs, consider
one type of PD extracted from one data to calculate the kernel. How-
ever, it is possible to extract multiple types of PD from one data by
using persistent homology. We further propose methods to handle

multiple topological features extracted by persistent homology by
constructing a kernel using kernels calculated from each type of PD.

In this section, we first formulate the topological Bayesian opti-
mization problem using persistence diagrams. Then, we propose the
kernel based Bayesian optimization algorithms. We first introduce
kernels for PDs in Section 3.2, and then explain methods for con-
structing a kernel from multiple kernels in Section 3.3.

3.1 Problem formulation

Let us denote the dataset of PDs by D = {Di }i∈I , where I is the
set of oracle indices that we cannot observe in the beginning. In addi-
tion, we assume that evaluating a PD Di is expensive. Since TDA is
highly used in material science, this assumption is rather reasonable.
In this paper, we consider searching for the point that minimizes the
objective function from the dataset D:

D∗ = argmin
D∈D

f(D), (2)

where f : D → R is a black box function. This problem can be
solved easily if we can examine all possible cases. However, since
the objective function is expensive to evaluate, we need to find the
optimal data point with a small number of evaluations. We also as-
sume that the objective function value can be observed only in a state
of including the independent additive Gaussian noise εi ∼ N (0, σ2).
Note that we search for the optimal PD from the given dataset D
which we generate from the given dataset of structured data. Since
we know all possible PDs and the corresponding structured data, we
do not consider about the inverse problem. That is, we need not to
reconstruct a structured data from a PD. The final goal of this paper
is to develop a Bayesian optimization algorithm to solve Eq. (2).

3.2 Kernels for persistence diagrams

There have been several kernels for persistence diagrams. We use the
persistence weighted Gaussian kernel proposed by Kusano et al. and
the persistence Fisher kernel proposed by Le and Yamada. In this
section, we introduce these kernels.

Persistence weighted Gaussian kernel [12]: Persistence weighted
Gaussian kernel (PWGK) considers a PD as a weighted measure. It
first vectorizes the measure on an RKHS by kernel mean embedding,
and then uses conventional vectorial kernels such as linear kernel
and Gaussian kernel on the RKHS. More specifically, it considers
the following weighted measure for a persistent diagram D:

μD =
∑
x∈D

w(x)δx, (3)

where δx is a Dirac measure, which takes 1 for x and 0 for other
points. Additionally, Dirac measures are weighted by the weight
function w(x) : R

2 → R based on the idea that the points close
to the diagonal in the PD may represent noisy features, while the
points far from the diagonal may represent relatively important fea-
tures. Let E(μD) =

∑
x∈D w(x)k(·,x) be the vector representa-

tion of μD embedded by kernel mean embedding into the RKHS H
using Gaussian kernel k(x,y) = exp

(
− ‖x−y‖2

2ν2

)
. Then, the linear

kernel of persistence diagrams Di, Dj on the RKHS is

kL(Di, Dj) = 〈E(μDi), E(μDj )〉H

=
∑
x∈Di

∑
y∈Dj

w(x)w(y) exp

(
−‖x− y‖2

2ν2

)
,
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where ν > 0 is the kernel bandwidth. In addition, the Gaussian ker-
nel on the RKHS is

kG(Di, Dj) = exp

(
−‖E(μDi)− E(μDj )‖2H

2τ2

)
.

Here, τ > 0 and ‖E(μDi) − E(μDj )‖2H = kL(Di, Di) +
kL(Dj , Dj)−2kL(Di, Dj). We will refer to them as PWGK-Linear
and PWGK-Gaussian, respectively.

Note that PWGK can be efficiently approximated using ran-
dom Fourier features [18]. This method uses the random variables
z1, · · · , zM from the normal distribution N ((0, 0), ν−2I) to ap-
proximate kL(Di, Dj) by

kL(Di, Dj) ≈ 1

M

M∑
m=1

Bm
i (Bm

j )∗,

where Bm
i =

∑
x∈Di

w(x) exp
(√−1zmx

)
and ∗ denotes the

complex conjugate.

Persistence Fisher kernel [14]: Persistence Fisher kernel (PFK)
considers a PD as the sum of normal distributions and measures the
similarity between the distributions by using the Fisher information
metric. Let DiΔ and DjΔ be the point sets obtained by projecting
persistence diagrams Di and Dj on the diagonal, respectively. PFK
compares D′i = Di ∪DjΔ and D′j = Dj ∪DiΔ instead of compar-
ing Di and Dj . It makes the sizes of each point cloud equal, which
makes it easy to apply various similarities. Then, it considers the fol-
lowing summation of normal distributions for D′i:

ρD′
i
=

1

Z

∑
μ∈D′

i

N (μ, νI),

where ν > 0 and Z =
∫ ∑

μ∈D′
i
N (x;μ, νI)dx is the normaliza-

tion constant. The Fisher information metric of the probability distri-
butions ρD′

i
and ρD′

j
is as follows:

dFIM (Di, Dj) = arccos

(∫ √
ρD′

i
(x)ρD′

j
(x)dx

)
.

The integral appearing in Z and dFIM is calculated using the func-
tion value at Θ = Di ∪DjΔ ∪Dj ∪DiΔ. Finally, PFK is expressed
as follows using the Fisher information metric:

kPF (Di, Dj) = exp(−tdFIM (Di, Dj)),

where t > 0 is the tuning parameter.
PFK can also be efficiently computed by approximating ρ by fast

Gauss transform [17]. We use their implementation5.

3.3 Multiple kernel learning

In order to handle multiple topological features, we construct an ad-
ditive kernel calculated from each feature. In particular, we consider
a linear combination of k Gram matrices K1, · · · ,Kk:

K = α1K1 + · · ·+ αkKk, (4)

where αi ≥ 0 for all i. This construction makes it possible to main-
tain the positive definiteness of each kernel. We consider two meth-
ods to learn the coefficient parameter α = (α1, · · · , αk)

T .

5 http://users.umiacs.umd.edu/˜morariu/figtree/

Kernel target alignment: A method of maximizing a value called
alignment was proposed to learn α [4]. It first considers the centered
Gram matrix Kc for the Gram matrix K:

(Kc)ij = Kij − Ei[Kij ]− Ej [Kij ] + Ei,j [Kij ].

Then, the alignment of two Gram matrices K,K′ is as follows:

κ(K,K′) =
〈Kc,K

′
c〉F

‖Kc‖F ‖K′
c‖F ,

where 〈·, ·〉F is the Frobenius inner product and ‖ · ‖F is the Frobe-
nius norm. In the alignment-based method [4], we maximize the
alignment of K =

∑
i αiKi and Y = yyT . Maximization of the

alignment results in the following quadratic programming problem:

min
v≥0

vTMv − 2vTa,

where

Mij =〈Kic,Kjc〉F , a=(〈K1c,Y 〉F , · · · , 〈Kkc,Y 〉F )T .
Let v∗ be the solution of this problem. Then, the coefficients are
calculated by α = v∗/‖v∗‖. Since y is updated at each step in
Bayesian optimization, learning is performed when a new observa-
tion is obtained at each step.

Marginal likelihood maximization: In Bayesian optimization, the
objective function is modeled by a Gaussian process. Therefore,
given the outputs of the function obtained up to a certain step y =
(y1, · · · , yt)T , the log marginal likelihood of y can be calculated by:

log p(y|α) ∝ −1

2
log |K + σ2I| − 1

2
yT (K + σ2I)−1y.

We consider the use of marginal likelihood maximization to learn α.
This can be performed by a gradient-based optimization method [2].
As in the case of kernel target alignment, we learn the coefficients
when a new observation is obtained.

4 RELATED WORK

Bayesian optimization is widely used for optimizing expensive-to-
evaluate, black-box, and noisy objective functions [1]. For example,
it is used for automated tuning of hyperparameters in machine learn-
ing models [21], path planning of mobile robots [15] and finding
the optimal set of sensors [8]. Although most studies on Bayesian
optimization including these studies consider vectorial data as in-
put, there are few studies that consider structured data such as point
clouds and graphs.

The graph Bayesian optimization (GBO) was proposed as a frame-
work of Bayesian optimization for graph data in particular for tree
structured data [19]. Then, it was recently extended to an arbitrary
graph structure [5]. GBO proposed by [5] uses a linear combina-
tion of two kernels. One is a conventional vectorial kernel such as
linear kernel and Gaussian kernel for the explicit feature vector in-
cluding the number of nodes, average degree centrality, and average
betweenness centrality. The other one is a graph kernel, which may
capture the implicit topological features that cannot be expressed by
explicit features. The coefficients of the linear combination is learned
through the Bayesian optimization process. After that, we can ana-
lyze which features expressed by the vectorial kernel or the graph
kernel were effective as a result. Specifically, they used the auto-
matic relevance determination squared exponential (SEARD) kernel
as a vectorial kernel and the deep graph kernel based on subgraphs
[25] as a graph kernel. However, to the best of our knowledge, there
is no Bayesian optimization framework that explicitly uses topologi-
cal information.

T. Shiraishi et al. / Topological Bayesian Optimization with Persistence Diagrams1486



5 EXPERIMENTS

In this section, we evaluate our proposed algorithms using synthetic
and four real datasets about properties of molecules.

5.1 Setup

For the proposed method, we use marginal likelihood maximization
like as described in Section 3.3 for estimating the noise parameter σ
in Bayesian optimization.

We set the hyperparameters of PWGK and PFK according to the
original papers [12] and [14], respectively. Let {D1, · · · , Dn } be
the PDs for each point cloud in a dataset. In PWGK, we use the
weight function:

w(x) = arctan(Cpers(x)p),

where pers(x) = d − b for x = (b, d). Therefore, the hyperparam-
eters of PWGK-Linear are C and p in the weight function and the
kernel bandwidth ν. PWGK-Gaussian includes τ in addition. We fix
the hyperparameters with the following values:

• C = median { pers(Di) | i = 1, · · · , n },
• p = 5,
• ν = median { ν(Di) | i = 1, · · · , n },
• τ = median

{ ∣∣∣∣E(μDi)− E(μDj )
∣∣∣∣
H

∣∣ i < j
}

,

where

pers(Di) = median { pers(xj) | xj ∈ Di } ,
ν(Di) = median { ||xj − xk|| | xj ,xk ∈ Di, j < k } .

The hyperparameters of PFK are ν and t. We search these parameters
from ν ∈ { 10−3, 10, 103 } and 1/t ∈ { q1, q2, q5, q10, q20, q50 },
where qs is the s% quantile of { dFIM (Di, Dj) | i < j }.

We compare our proposed algorithm with the random search base-
line and GBO [5]. For GBO, since the synthetic data is given as a
point cloud, we first compute a 5 nearest-neighbor graph and then
feed the graph into GBO. We use the same kernels as used in the orig-
inal paper. We extract 5 features from a graph (the number of nodes,
the number of edges, average degree centrality, average betweenness
centrality, and average clustering coefficient). Each element x is nor-
malized by x̃ = (x − xmin)/(xmax − xmin). The window size
and embedding dimension for the deep graph kernel are chosen from
{ 2, 5, 10, 25, 50 }. The kernel bandwidths in the SEARD kernel and
the coefficients of the linear combination are estimated by marginal
likelihood maximization. We also compared with the method only
using the SEARD kernel.

In Bayesian optimization, we randomly choose 10 data points to
calculate the predictive distribution for the first search point. We use
PWGK-Linear, PWGK-Gaussian and PFK as the kernel for PDs and
EI as an acquisition function. We first calculate the 1st PDs for syn-
thetic dataset, and the 0th PDs for real datasets. We calculate these
kernels using approximation methods (random Fourier features for
PWGK and fast Gauss transform for PFK, respectively). We conduct
Bayesian optimization 30 times.

5.2 Synthetic dataset

To generate the synthetic dataset, we used the method proposed in
[9]. This method generates a point cloud on [0, 1] × [0, 1]. We gen-
erate M = 1000 point clouds consisting of N = 1000 points as the
dataset. The specific procedure is as follows.

1. Randomly choose (x0, y0) ∈ [0, 1]× [0, 1].
2. Iterate the following procedure M times.

(a) Randomly choose r ∈ [2.0, 4.3].

(b) Generate a point cloud { (x1, y1), · · · , (xN , yN ) } according
to the following recurrence relations:

xn+1 = xn + ryn(1− yn) mod 1,

yn+1 = yn + rxn+1(1− xn+1) mod 1.

The point clouds generated for r = 2.0 and r = 4.3 are shown
in Figure 3. We use the value of r, which was used to generate a
point cloud, as the label of the point cloud. In this experiment, we
find the PD of the point cloud with minimum r by using Bayesian
optimization algorithms.

Figure 3. Illustrative examples of synthesized data.

Figure 4 shows averages of the minimum observation obtained at
each step for the synthetic dataset over 30 BO runs. As we expected,
the topological Bayesian optimization methods outperformed ran-
dom search baseline and the GBO algorithm.

Figure 4. Comparison between random search baseline, GBO and PD
kernels using the synthetic dataset. The black dotted line shows the objective

function value of the target data that we want to search for.

T. Shiraishi et al. / Topological Bayesian Optimization with Persistence Diagrams 1487



Figure 5. Comparison between random search baseline, GBO and PD kernels using four real datasets. The black dotted line shows the objective function
value of the target data that we want to search for.

5.3 Real datasets

We use four real datasets about the properties of relatively small com-
pounds from MoleculeNet [24]. ESOL is a dataset about the water
solubility of 1128 compounds. FreeSolv is a dataset about the hydra-
tion free energy of 642 compounds in water. Lipophilicity is a dataset
about the octanol/water distribution coefficient of 4200 compounds.
BACE is a dataset about the binding results for a set of inhibitors of
human β-secretase 1 of 1513 compounds. The average numbers of
atoms in each dataset are 25.6, 18.1, 48.5, 64.7, respectively. For our
method, we treat a compound as a point cloud using only the 3D co-
ordinates of each atom forming the compound without considering
any other information about atoms or bonds. We find the PD of the
compound with the minimum property such as water solubility and
hydration free energy by using the Bayesian optimization algorithms.

Figure 5 shows the averages of the minimum observation obtained
at each step for real datasets. In each case, we can see that the infor-
mation of PDs contributes to efficient search for the optimal struc-
ture. Our method shows comparable or better results than existing
methods. Our method outperforms especially in the case of the ESOL
dataset, which may show that molecular structure reflects some fac-
tors associated with water solubility.

5.4 Effectiveness of multiple kernel learning

We compare Bayesian optimization using only one type of PD and
that using combined multiple types of PD. Here, we consider com-

bining the information of the 0th PD and the 1st PD (i.e., k = 2
in Eq. (4)). We compare the cases of using only the 0th PD, using
only the 1st PD and combining both information using kernel tar-
get alignment (KTA) and marginal likelihood maximization (MLM)
as methods for learning the coefficients. When combining the PFKs,
we first conduct experiments similar to those in the previous section
using only one type of PD and optimize the hyperparameters in each
PFK, and then we learn the coefficients of a linear combination.

The results are summarized in Table 1. We evaluate the perfor-
mances according to the area under the convergence curve:

T∑
t=1

(
y
(t)
best − ybest

)
,

where T is the number of iteration, y(t)best is the minimum value ob-
served before the tth iteration and ybest is the minimum function
value. That is, we calculate the area between the convergence curve
and the black dotted line in Figure 4 and 5. The values in the table
are scaled so that the case of random search baseline becomes 1.

The performances of PWGK-Linear and PWGK-Gaussian are im-
proved by combining the information of both PDs in many datasets.
However, PFK get worse in many cases. Perhaps, this is because
we perform optimization of kernel parameters and coefficients sep-
arately. In addition, when we apply PWGK-Linear to the ESOL
dataset as example, the performance is better when combining by
marginal likelihood maximization than when using only the 1st PD.
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If there is no prior knowledge about which type of PD is effective,
this shows that it may be better to combine both PDs than to choose
one type of PD for intuition.

For example, when analyzing the water solubility of compounds,
the situation we want to search the compound with some specific wa-
ter solubility not only one with the minimum water solubility may be
considered. Thus, we conduct another experiment of finding the max-
imizer of an objective function as another simple target compound.
The results are summarized in Table 2. As in the case of finding the
minimizer, it is shown that PWGK-Linear and PWGK-Gaussian tend
to be improved by multiple kernel learning while PFK often not.

Table 1. Comparison between cases of using only one type of PD and of
using multiple kernel learning methods to find the minimizer of a function.

Synthetic ESOL Free Lipo BACE
Random 1.000 1.000 1.000 1.000 1.000
Vectorize 0.747 0.299 1.668 0.371 0.636

GBO 0.252 0.479 0.646 0.088 0.092
PWGK 0th 0.161 0.056 0.663 0.279 0.184

-Linear 1st 0.153 0.377 1.409 0.261 0.954
KTA 0.166 0.301 1.061 0.336 0.211
MLM 0.090 0.172 0.456 0.263 0.237

PWGK 0th 0.151 0.081 0.895 0.162 0.070
-Gaussian 1st 0.158 0.464 1.235 0.179 0.132

KTA 0.167 0.246 0.878 0.150 0.067

MLM 0.338 0.054 0.544 0.264 0.113
PFK 0th 0.117 0.115 0.770 0.050 0.056

1st 0.073 0.254 0.646 0.123 0.068
KTA 0.092 0.120 0.882 0.062 0.080
MLM 0.147 0.090 0.745 0.080 0.252

Table 2. Comparison between cases of using only one type of PD and of
using multiple kernel learning methods to find the maximizer of a function.

Synthetic ESOL Free Lipo BACE
Random 1.000 1.000 1.000 1.000 1.000
Vectorize 0.774 0.396 1.029 0.688 0.510

GBO 0.466 0.195 0.356 0.512 0.026
PWGK 0th 1.153 0.254 1.339 0.606 0.021
-Linear 1st 0.276 0.284 0.769 0.386 0.112

KTA 0.273 0.366 1.359 0.378 0.023
MLM 0.197 0.272 0.988 0.295 0.004

PWGK 0th 0.473 0.052 0.835 0.357 0.026

-Gaussian 1st 0.303 0.199 0.880 0.304 0.047
KTA 0.296 0.056 1.062 0.255 0.034
MLM 0.675 0.117 0.289 0.418 0.080

PFK 0th 0.604 0.075 0.747 0.330 0.030

1st 0.438 0.172 0.574 0.655 0.095
KTA 0.608 0.142 0.795 0.577 0.058
MLM 1.132 0.186 0.524 0.695 0.037

6 Conclusion

In this paper, we proposed the topological Bayesian optimization,
which is a Bayesian optimization method using features extracted by
persistent homology. In addition, we proposed a method to combine
the kernels computed from multiple types of PDs by a linear combi-
nation, so that we can use the multiple topological features extracted
from one source of data. Through experiments, we confirmed that
our method can search for the optimal structure from complex struc-
tured data more efficiently than the random search baseline and the
state-of-the-art graph Bayesian optimization algorithm by combining
multiple kernels.

In the experiments, we treated a compound as a point cloud. For
future work, we consider to extend our method to utilize information
about atoms and bonds as well. For example, we can treat a com-
pound as a graph and directly apply persistent homology using graph
filtration. However, we need to appropriately define a function on
nodes or bonds to use graph filtration, which will be main challenge.
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