ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and I0S Press.

1475

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA200254

Metric Learning for Ordered Labeled Trees with
Pq-grams

Hikaru Shindo' and Masaaki Nishino? and Yasuaki Kobayashi® and Akihiro Yamamoto*

Abstract. Computing the similarity between two data points plays
a vital role in many machine learning algorithms. Metric learning has
the aim of learning a good metric automatically from data. Most ex-
isting studies on metric learning for tree-structured data have adopted
the approach of learning the tree edit distance. However, the edit dis-
tance is not amenable for big data analysis because it incurs high
computation cost. In this paper, we propose a new metric learning
approach for tree-structured data with pg-grams. The pg-gram dis-
tance is a distance for ordered labeled trees, and has much lower
computation cost than the tree edit distance. In order to perform met-
ric learning based on pg-grams, we propose a new differentiable pa-
rameterized distance, weighted pq-gram distance. We also propose
a way to learn the proposed distance based on Large Margin Near-
est Neighbors (LMNN), which is a well-studied and practical met-
ric learning scheme. We formulate the metric learning problem as
an optimization problem and use the gradient descent technique to
perform metric learning. We empirically show that the proposed ap-
proach not only achieves competitive results with the state-of-the-art
edit distance-based methods in various classification problems, but
also solves the classification problems much more rapidly than the
edit distance-based methods.

1 Introduction

The performance of many machine learning algorithms depends on
the way in which the distance or similarity between data points are
measured [19]. For instance, k-nearest neighbor classification [7] de-
cides the class label of a data point from those of its neighbors, while
Learning Vector Quantization (LVQ) [17] classifies each data point
based on the closest prototype according to a given distance mea-
sure. Clustering algorithms, such as K-Means [20], rely on a given
distance or similarity function for input data. In order for these al-
gorithms to perform accurately and efficiently, a metric that suits the
given problem is necessary. The metric should capture the charac-
teristics of the datasets expected, i.e., a pair of data points from the
same class is closer than a pair of points from different classes.

The objective of metric learning is to learn a good metric from
data since handcrafting good metrics for specific problems is gener-
ally difficult [S]. Metric learning has been an active research topic
because of its applicability, i.e., any algorithm using a distance mea-
sure internally can benefit from its results [5, 19]. In metric learning,
a training set consists of sets of pairs; positive pairs and negative
pairs. Metrics are learned by optimizing a loss function that makes

1 Kyoto University, Japan, email: hikarushindo @iip.ist.i.kyoto-u.ac.jp
2 NTT Communication Science Laboratories, J. apan

3 Kyoto University, Japan

4 Kyoto University, Japan

Positive
(Pull)

Metric

Learning

Figure 1. An illustration of metric learning applied to tree-structured data.
The training examples are given as pairwise constraints. The red dotted lines
represent positive pairs. The blue dotted lines represent negative pairs.
Metrics are optimized to pull positive pairs closer and push negative pairs
father apart.
positive pairs closer while separating negative pairs. This enables us
to improve the accuracy of various machine learning algorithms that
depend on the metric. Figure 1 illustrates metric learning applied to

tree-structured data, which is the focus of this paper.

Discrete structures, in particular tree structures, play a key role in
several research domains, for instance, XML documents on the web,
parse trees for computer programs and natural language, and gly-
can structures in bioinformatics. Distance measures that exploit such
structures have been extensively studied. The tree edit distance [34]
is one of the common choices for processing tree-structured data.
Intuitively, the tree edit distance is measured by the number of op-
erations needed to transform one input tree into another input tree.
The edit operations consist of deletion, insertion, and replacement of
the nodes in the trees. The tree edit distance is used in many research
domains such as information extraction and bioinformatics [14, 30].
Computing the tree edit distance, however, is not scalable making
it problematic for large-scale datasets. The current best algorithm
runs in O(n®) time where n is the number of nodes of the input
trees [8]. To overcome this issue, Augsten [1] proposed the pg-gram
distance; it can be computed faster than the tree edit distance. Com-
puting the pg-gram distance of trees with n nodes can be done in time
O(nlogn) for fixed p,q € N. Moreover, the pg-gram distance is
known to approximate the fanout weighted tree edit distance, which
is a weighted variant of the tree edit distance [1].

Most existing studies of metric learning for tree-structured data
use the tree edit distance in learning, i.e., learned costs of the edit
operations from examples [4, 22, 27]. The edit distance is, however,
expensive to compute and hence not suitable for large-scale datasets.

In this paper, we propose a novel metric learning approach for
tree-structured data that has the following features. First, we pro-
pose a differentiable parameterized distance based on pg-grams, the
weighted pq-gram distance, to achieve practical metric learning even
for large-scale tree-structured data sets. To make the distance func-

1476 H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams

tion differentiable and always positive, we use the sofiplus function.
It enables us to learn the distance function by gradient descent tech-
niques and retain the triangle inequality during the learning process.
Second, we also propose a way to learn the weighted pg-gram dis-
tance through Large Margin Nearest Neighbors (LMNN) [36], which
is one of the most widely-used metric learning schemes. Our pro-
posed approach not only achieves results competitive with those of
state-of-the-art edit distance-based methods [4, 27] in various classi-
fication problems, but also solves classification problems much faster
than edit distance-based methods. Third, our method is interpretable.
Our approach shares some aspects with kernel methods [11], how-
ever, different from kernel methods, we do not implicitly cast data
points into a high dimension space. Moreover, our weight parameter
indicates which tree substructures are important for classifying input
trees.

The remainder of this paper is structured as follows. We discuss
related work on metric learning for structured data in Section 2.
In Section 3, we revisit the basic concepts of tree-structured data,
the pg-gram distance, and the scheme of distance metric learning as
background. Section 4 describes our metric learning system in de-
tail. Section 5 describes the experiments conducted on our methods,
including accuracy and time comparisons. We conclude in Section 6.

2 Related Work

Our work is related to some machine learning research areas, espe-
cially metric learning and machine learning for structured data.

A pioneering study of metric learning learned Mahalanobis dis-
tance as an optimization problem [37]. Large Margin Nearest Neigh-
bors (LMNN) [36] was proposed in order to learn the Mahalanobis
distance from nearest neighbors. LMNN is often used because of its
simplicity and efficiency [15, 19, 28, 35]. LMNN is also a well-
studied metric-learning scheme. For instance, the relation between
LMNN and Support Vector Machine has been pointed out in a unified
view [9]. We apply the LMNN scheme to learn the distance between
labeled ordered trees.

Almost all past studies on learning distances between trees em-
ploy edit distance, i.e., learning the costs of edit operations from
examples. Early work in learning edit distance is the stochastic ap-
proach [21, 25, 31]. Good Edit Similarity Learning (GESL) [4] is
a well-organized framework to learn the edit distance. GESL essen-
tially optimizes (e, 7, 7)-goodness [2, 3], which guarantees its gen-
eralization performance. Mokbel [22] proposed a novel approach to
learn simultaneously the edit costs for sequences and the General-
ized Learning Vector Quantization (GLVQ) [32] model. Paalen [27]
proposed to learn embeddings of the tree node labels while learning
the GLVQ model. This approach is called Embedding Edit Distance
Learning (BEDL) and succeeds in learning the edit distance flexi-
bly from examples. These works blazed a trail in the field of metric
learning for structured data. However, all of these methods incur high
computation cost since they essentially compute the edit distance be-
tween trees. Our method uses the pg-gram distance rather than the
edit distance in learning the parameters. This is a key difference be-
tween past studies and our approach.

In the field of machine learning for structured data, the kernel
method is an active research topic [11]. For instance, Kuboyama [18]
proposed a kernel function that is computed from g-grams of trees.
Tree kernels have been applied in many domains, such as Natural
Language Processing and Bioinformatics [23, 38]. Kernel methods,
however, lack interpretability since they implicitly cast data points
into a high dimension space. Moreover, the kernel matrix must be

positive semidefinite, but this constraint does not suit some prob-
lems [33].

3 BACKGROUND

In this section, we define the basic concepts of tree-structured data
and the pg-gram distance following [1]. We also review the general
concept of metric learning following [5, 19] and a metric learning
algorithm following [5, 36].

3.1 Preliminaries

Tree T is a directed, acyclic, connected, non-empty graph with node
set N(T) and edge set E(T). An edge is an ordered pair (p, c),
where p,c € N(T) are nodes, and p is the parent of c. A node
can have at most one parent, and nodes with the same parent are
siblings. Total order < is defined on each group of sibling nodes.
Two siblings s1, s2 are contiguous iff s1 < sz and they have no
sibling x such that s; < x < s2. Node c is the i-th child of p
iff i = |[{x € N(T)|(p,z) € E(T),z < c}|. The node with no
parent is the root node, denoted by root(T), and a node without
children is a leaf. Each node v has a label, A\(v) € X, where ¥ is a
finite alphabet. In what follows, such trees are called ordered labeled
trees. We write, in recursive style, tree T as z(c1,...,cn) Where
x = A(root(T)) and c1, ... cp is a list of subtrees whose root is a
child of the root node.

3.2 pg-gram

Intuitively, the pg-grams of a tree are all subtrees with a specific
shape. Parameters p,q € N define pg-gram shape. To ensure that
each node of the tree appears in at least one pg-gram, we extend the
tree with dummy nodes.

Definition 1 (pg-Extended Tree). Let T be a tree, and p > 0 and
q > 0 be two integers. The pg-extended tree, T?>?, is constructed
from T by (i) adding p — 1 ancestors to the root node, (ii) inserting
q — 1 children before the first and after the last child of each non-
leaf node, and (iii) adding ¢ children to each leaf of T. All newly
inserted nodes are dummy nodes that do not occur in T and have a
special label x ¢ 3.

An example of a pg-extended tree is given in Figure 2-(b).

Definition 2 (pg-Gram). Let T be a tree, T?*? the corresponding
extended tree, p > 0, ¢ > 0. A subtree of T?'? is a pg-gram G of
T iff (i) G has ¢ leaf nodes and p non-leaf nodes, (ii) all leaf nodes
of G are children of a single node, and (iii) the leaf nodes of G are
consecutive siblings in T?'9.

The set of pg-grams are extracted by sliding two windows hori-
zontally and vertically over a pg-extended tree. Window sizes are p
and g, respectively [1] (See Figure 2-(c)). The number of nodes of a
pg-gram is always p + g. An example of extracted pg-grams is given
in Figure 2-(d).

3.3 pg-gram distance

We can define a distance measure between trees based on pg-grams,
which we call the pg-gram distance. Intuitively, the pg-gram distance
is the number of pg-grams that are not shared by two trees. The pg-
gram distance is computed as follows (1) extract all pg-grams of in-
put trees, and (2) count the number of non-shared pg-grams. To save
space, we use the tuple representation of pg-grams.

H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams 1477

T, T?’S stem window
*
\
a a
/N 7 N
b ¢ E:) **/4 C** E:)
/IN /N
* %k kk ok ok

(a) (b)

Il 1L
o /NN)
'*_'b*bc***

Figure 2. Overview of extracting pg-grams with p = 2 and ¢ = 3 from tree T';. (a) A rooted labeled ordered tree T'1. (b) The pg-extended tree of T'q, is
obtained by inserting dummy nodes as in Def. 1. The dummy nodes are represented by *. (c) Sliding two windows pg-extended tree. The size p window (stem
window) moves vertically and the size ¢ window (base window) moves horizontally. (d) The multiset of extracted pg-grams of T';. (e) The pg-gram index of

T'1. Since the shape of pg-grams depends only on the values of p and g, we can represent the multiset of pg-grams as a multiset of tuples of length p + q.

Definition 3 (Label Tuple). Let G be a pg-gram with nodes {v1, . ..,
UpyUp+1,- - -Up+q } Where v; is the i-th node in the preorder transver-
sal of G. Tuple *(G)=(A(v1),- - - ,A(Vp);A(Vp41)5- - A(Vptq)) 18
called the label tuple of G where A(v;) is the label of node v;.

Definition 4 (pg-Gram Index). Let A be the multiset of all pg-grams
of a tree T, p,q € N. The pg-gram index, Z"?(T'), of T is defined
as the multiset of label tuples of all pg-grams of T, i.e., Z"'¢(T) =

Ugea A" (G).

Figure 2-(e) shows an example of the label tuple and the pg-gram
index. The size of the pg-gram index is linear in the number of tree
nodes [1]. Hereafter, if the distinction is clear from the context, we
use the term pg-gram for both the pg-gram itself and its representa-
tion as a label tuple.

Definition 5 (pg-Gram Distance). Let T; and T3 be trees, Z; =
IP9(T1),Ze = ZI?%(T2), p,q € N. The pq-gram distance,
dist??(T1,T2), between the trees T1, T2 is defined as the size of
the symmetric difference between their indexes:

dist??(T1,T2) = |T1 UZLz| — 2|Th N T2, (D
where U is multiset union and N is multiset intersection.

Example 1. Consider the 1,2-gram distance between input trees
a(b, c) and a(c,b), namely dist'*(a(b, c),a(c,b)). The pg-gram
indexes for the input trees are Z"2(a(b, c)) = {(a, *,b), (a, b, c),
(a,c,*), (b,*,%), (c,*,%)}, and Z"3(a(c,b)) = {(a *,c),
(a,¢c,b), (a,b,x), (b,*,%), (c,*,*)}, respectively. We have
|Z"2(a(b, c)) UZ"?(a(c,b))| = 5 + 5 = 10, and |Z"?(a(b, c)) N
T'2(a(c,b))| = 2, then dist™?(a(b, c),a(c,b)) = 10—-2x2 = 6.

Augsten [1] showed that the pg-gram distance is pseudo-metric,
that is, the distance can be zero for distinct trees in contrast to a
normal metric. The computation time of the pg-gram distance is
O(nlogn) for fixed p,q € N, where n is the number of nodes of
input trees. Moreover, the pg-gram distance approximates edit dis-
tance weighted by the number of each node, which is called fanout
weighted tree edit distance [1].

3.4 Metric learning with nearest neighbors

The purpose of metric learning is to adapt the parameterized mea-
sure by given positive examples and negative examples. The metric
learning problem is typically formulated as an optimization problem
that has the following general form [5]:

mein L(dg,P,N))

@ : classl
Pa;iltlil‘)/e [: class2
hf(;%‘aistli;e o e J:|
Metric
Learning
... margin_.--"

Figure 3. An illustration of the LMNN distance learning scheme. For each
data point, ;, the neighbors with the same label, called “targets”, are paired
as positive. On the other hand, the neighbors with different labels, called
“impostors”, are paired as negative. After the learning step, targets are
brought closer to x; while impostors are moved further away from x;.

where L is a loss function that incurs a penalty when training con-
straints are violated, dy is a distance function parameterized by 6,
P is a set of positive pairs, and N is a set of negative pairs. More
precisely.

P = {(zi,z;) : z; and z; should be similar}, 3)
N = {(x;,z;) : x; and z; should be dissimilar}. “)

Large Margin Nearest Neighbors (LMNN) [36] is one of the most
widely-used distance learning schemes. LMNN locally defines the
training pairs: for each data point, same class neighbors, the rarget
neighbors, are paired as positive, while different class neighbors, im-
postors, are paired as negative. A schematic illustration of LMNN is
given in Figure 3.

4 Method

In this section, we introduce a novel approach of metric learning be-
tween trees based on pg-grams. The pg-gram distance is computed
by simply counting the number of pg-grams not shared between input
trees. Some pg-grams, however, can be important as discriminators
for a given classification problem. We introduce a weight function
for pg-grams and learn it from examples.

Our approach shares some aspects with edit distance-based ap-
proaches [4, 22, 27]. The edit distance is defined by the minimum
number of edit operations needed to transform one tree into another.
Edit distance-based methods primarily learn the cost of edit oper-
ations, i.e., they distinguish which edit operations are essential for
a given classification problem. The edit operations are defined be-
tween two nodes, so they mostly learn the importance of the relations

1478 H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams

of nodes. On the other hand, our approach learns the importance of
subtrees of the tree structure.

4.0.1 pq-gram distance with vector representations

Augsten [1] represents the pg-gram index as a multiset and compute
the distance by operations between multisets. However, if the set of
tree node labels ¥ is finite, the pg-gram index can be represented
as a vector of fixed dimension. Vector representation allows us to
compute the pg-gram distance efficiently.

Definition 6. (pg-Gram Vector) Let 7 be the set of all pg-grams
in dataset D. For tree T € D and its pg-gram index Z?¢(T), pq-
gram vector is a | J |-dim count vector v¥'?('T'). Each dimension of
vP9(T) corresponds to a pg-gram.

In order to compute the pg-gram distance from counting vectors,
we introduce a function that computes the number of not shared pg-
grams.

Definition 7. (pg-Gram Symmetric Difference Vector) Let T and
T be input trees. We define the pg-gram symmetric difference vector
between T and T as:

@P(TL,) = VPT) 4 vPT)
— 2min(v”(T1),v"!(T2)), (5)

where min is the element-wise minimum function, i.e., for n-
dimensional vector x and y,

min(x,y) = (min(zs, ¥:));—, ,, - ©

Theorem 1. Let T; and T be trees. The pg-gram distance equals
the sum of the elements of the pg-gram symmetric difference vector,
ie.,

dist”(T1,T2) = 1" - d”9(Ty, T2), (7)

where 1 is the all-one vector and d”'?(T1, T2) is the pg-gram sym-
metric difference vector.

4.1 Computing the weighted pg-gram distance

In this section, we introduce the weighted pq-gram distance to per-
form metric learning based on pg-grams. The weight reflects the “im-
portance” of each pg-gram, and allows the pg-gram distance to yield
highly granular classification. In order to make the distance function
differentiable and always positive, we use the softplus function. It en-
ables us to learn the distance function by gradient descent techniques
and retain the triangle inequality during the learning process.

4.1.1 Weighted pq-gram distance

Definition 8 (Softplus function). The softplus function is defined as:
softplus(z) = In(1 + €”). (8)

The softplus function always returns positive values. In order to pre-
vent weight parameters from being negative, we apply the softplus
function to the parameters. The softplus function is differentiable
with respect to the input variables, and enables us to learn distance
parameters by gradient descent techniques.

Definition 9 (Weighted pg-Gram Distance). Let T and T2 be input
trees. The weighted pq-gram distance, dist5;?(T1, T2) is defined as
follows:

dist%?(T1,To) = a(w)" - d”4(T1, T2),)

where a(w) = (softplus(wi))i=1...jw| = (I (1 +€)),_; |-
w is a parameter that we learn. d”?(T, T'2) is the pg-gram sym-
metric difference vector between T and T',.

Theorem 2. The weighted pg-gram distance is pseudo-metric, i.e.,
satisfies the following conditions:

(i) non-negativity: disty%(x,y) > 0

(ii) reflexivity: * = y = dist?(z,y) =0

(iii) symmetry: dist%?(z,y) = dist%?(y, x)

(iv) triangle inequality: dist%;? (z, y)+dist(y, z) > dist?(z, 2)

Proof. (i), (ii), and (iii) are clear by definition.

(iv) Let A, Ay, and A, be the multisets of extracted pg-grams
of trees z, y, and z, respectively. Let g be a pg-gram with g €
Az U Ay U A, and i, j, and k be the numbers of occurrences of g
in Az, Ay, and A, respectively. Let dy(x,y), dg(y, 2), dg(z, z) be
the contributions of g to the distance disth;?(z, y), dist%?(y, z), and
disth;?(x, z), respectively. The distance is computed as the sum of
the contributions: dist%(z,y) = deAquyqu dg(x,y). Here,
dg(z,y) = ag(i +j — 2min(i, 7)) = agli — j|, dg(y,2) =
aglj — k|, and dg4(x,2) = ag4l|i — k|, where a4 is a weight pa-
rameter for g. Note that a4 is positive since it is output by the soft-
plus function. Therefore, we have dist%?(z,y) + dist%(y,z) =

deAmuAyqu (dg(z,y) + dg(y,2)) = deAzuAyqu ag(li —
1=k = deAzuAyqu agli — k| = dist”?(x, 2). g

4.2 Learning the weighted pg-gram distance

The steps to perform metric learning are (1) create training pairs from
a given dataset, (2) set an appropriate loss function for the training
pairs, and (3) optimize the loss function with respect to the parameter
of the target distance function.

We generate training pairs following the LMNN scheme. For every
data point x; with class label y; in given dataset D, we create positive
and negative pairs as follows:

Pi = {(zi,2;) 12 € N ()}, (10)
Ni = {(wi,x;) 125 € Ny (2:)}, (11)

where N, (x;) is the “target” function that returns the set of k-
nearest neighbors with the same label y;, and N, () is an “impos-
tor” function that returns the set of data points with different labels
and are closer than the farthest (k-th) target. We now define the set
of positive pairs as P = |J,_, ,,, P, and the set of negative pairs as
N = U, ,,Ni where m is the number of training data points.
We note that the training pairs are created with the default distance
metric before the learning step.
Now we introduce the loss function based on the hinge loss:

L(disty?, P,N) =Bllw|* + 3

(T1,T2)EP
+ >

[u2 — distly?(T1, T2)]4, (12)
(T1,T2)eEN

[distw?(T1, T2) — pa]+

where 3 is a regularization coefficient, [z]+ = max(0, z), and 1
and po are constants that represent margins. The first term is the

H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams 1479

L2 regularization term, the second term is a loss that makes pos-
itive pairs closer, and the third term is a loss that makes negative
pairs farther apart. The hinge loss-based formulation is widely-used
in margin-based methods such as soft-margin SVM [6], LMNN [36],
and GESL [4]. If a positive (resp. negative) pair satisfies a certain
criterion, i.e., it is close (resp. far) enough, then it does not contribute
to the loss function.

We minimize the loss function by gradient descent. In order to per-
form gradient descent, we need the gradient Vdist%;?(T1, T2) for
input trees T and T2. The gradient of weighted pg-gram distance
function with respect to w is computed as follows:

Wi

deistfv’q(Tl,Tg):< © d‘.”q(Tth)) . (13)

w; i
L4ewi i=1...|w|

where wj is the i-th element of w and d"9(T'1, T2) is the i-th ele-
ment of the pg-gram symmetric difference vector d”'?(T1, T2).

The learning procedure is summarized as follows: First, the pg-
gram vector representations are computed for all input trees. We note
that the computed pg-gram vector representations are used internally
by the distance function disth;? in the following steps. Second, the
set of positive pairs and the set of negative pairs are created by Eq.
(10) and Eq. (11), respectively, from a given training dataset. Finally
we minimize the loss function in Eq. (12) with respect to w by gra-
dient descent. In practice, we update impostors during the learning
process to improve model performance.

S EXPERIMENTS

In this section, we discuss our experiments on artificial and real-
world datasets. The experiments are designed to show that the pro-
posed approach not only achieves competitive results with state-of-
the-art edit distance-based methods in various classification prob-
lems, but also solves the classification problems much faster than
edit distance-based methods. All experiments were performed on a
desktop computer with Intel(R) Xeon(R) E5-2680 v2 @ 2.80GHz
CPU, 126GB RAM, and CentOS Linux 7.4.

We used our Python 3.6 and PyTorch [29] implementation for
LMNN learning with the weighted pg-gram distance. The tree edit
distance algorithm is implemented following [26]. We adopted Adam
optimizer [16] to optimize parameters in our training phase. We also
used a Java implementation® for BEDL and GESL.

5.1 Dataset

We evaluated our approach on one artificial dataset and several real-
world datasets.

Strings This dataset consists of two classes of strings with a length
of exactly nine. The first class is drawn randomly from the set of
strings expressed by ((A|B)(C|D)(A|B))? in the regular expression.
For the second class, we do the same from the set of strings ex-
pressed by (A|B|C|D)? in the regular expression. We can observe that
substring DAD never appears in the first class, and every string in the
first class is generated in a “periodic way” unlike those in the second
class. These facts are important for classifying these strings. We can
regard a string as a tree (without branching nodes) in a natural way.
We used 100 strings for each class.
5https://pub.uni-bielefeld.de/data/2919994

Glycan We used two datasets from KEGG database [12] as used

in [39]. Glycans are defined as the third major class of biomolecules
following DNA and proteins. Each monosaccharide in a glycan struc-
ture is connected to one or more monosaccharides, and we can re-
gard a glycan structure as a labeled tree. CarbBank/CCSD [10] gives
the class labels for glycans. The trees have node labels and edge la-
bels. We put edge labels into corresponding child nodes in the same
way as [39]. For instance, subtree bdgaliadryc is represented as
Gal.1b4 — Fuc.1a3. Every leaf node is represented by the special
label $. Each glycan structure is assigned to a blood component
class among Erythrocyte, Leukemic, Serum, and Plasma. We created
two binary classification problems (i) Erythrocyte/Leukemic (Gly-
can_EL) and (ii) Serum/Plasma (Glycan_SP). These problems have
138 trees and 267 trees, respectively. For evaluating multi-label clas-
sification, we also used the dataset that contains all instances (Gly-
can_-MULTI) in accuracy comparison. Glycan_.MULTI contains 405
trees and 4 class labels.

Words The words dataset used in [4] contains English words and
French words extracted from Wiktionary®. It consists of basic En-
glish/French words in order of frequency of use. We can regard a
word as a tree (without branching nodes) in a natural way. Every leaf
node is represented by the special label $. We considered only words
of length at least 4 to remove articles and prepositions. We used the
top 500 words for each class.

Sentiment Treebank Sentiment Treebank dataset contains movie
reviews with their parse trees. The internal nodes have one of the 5-
class labels from highly negative to highly positive. We set the class
label as the sentence is positive or negative as a whole, i.e., the root
node’s label. Every root node is replaced by a unique node whose
label is root. Every leaf node represents a specific word in the review
sentence. We replaced each word with its POS tag for scaling. We
randomly chose 100 trees for each class.
The datasets we used are summarized in Table 1.

Dataset trees node labels mean tree size | class
Strings 200 4 9.0 2
Glycan_SP 138 48 10.9 2
Glycan_EL 267 37 134 2
Words 1000 28 6.8 2
Sentiment 200 39 39.2 2
Glycan_ MULTI 405 51 12.5 4

Table 1. The description of datasets used in our experiments. The first
column shows the number of trees in each dataset. The second column
shows the number of node labels of trees in each dataset. The third column
shows the mean size of trees (number of nodes in a tree) for each dataset.
The fourth column shows the number of classes.

5.2 Accuracy comparison

We evaluated several classification problems using different models
with different distance measures. The problem setting has 3 parts: (i)
the distance measure used by the classification model, (ii) the metric
learning algorithm, and (iii) the distance-based classification model.
We compared the following 5 settings: (E1) the pg-gram distance
and the k-nearest neighbor classifier, (E2) the weighted pg-gram dis-
tance with LMNN and the k-nearest neighbor classifier (proposed),
(E3) the edit distance with LMNN and the k-nearest neighbor clas-
sifier, (E4) the edit distance with GESL and the MRGLVQ classi-
fier [4, 24], and (E5) the edit distance with BEDL and the MRGLVQ
classifier [24, 27].

6

http://en.wiktionary.org/wiki/Wiktionary:
Frequency_lists

1480

0.5
0.45

0.35

Strings Glycan_SP Glycan_EL Words

I
%ﬂﬁiiﬁi-.iii

H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams

B (E1) pg-gram + k-NN

H (E2) weighted pg-gram (LMNN) + k-NN
(E3) edit (LMNN) + k-NN

® (E4) edit (GESL) + MRGLVQ

m (E5) edit (BEDL) + MRGLVQ

Sentiment Glycan_MULTI

Figure 4. The figure indicates error rates for each real-world datasets. The bottom labels specify the datasets. The bar represents the error rate for each
method. The vertical black line represents the standard deviation of the results of the folds. For each dataset, the bar corresponds to each combination of
distance and classifier: (E1) the pg-gram distance and the k-nearest neighbor classifier, (E2) the weighted pg-gram distance with LMNN and the k-nearest
neighbor classifier (proposed), (E3) the edit distance with LMNN and the k-nearest neighbor classifier, (E4) the edit distance with GESL and the MRGLVQ
classifier, (E5) the edit distance with BEDL and the MRGLVQ classifier.

Strings Glycan_SP

E default pg-gram 0.45
E weighted pg-gram

Error Rate
o
b
&
Error Rate

0.20 E default pg-gram

0.05 ﬁ weighted pg-gram

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Value of p and q Value of p and q

Figure 5. The figure indicates error rates with standard deviations for
1 < p = g < 7. The horizontal axis represents the value of p and g. The
vertical axis represents the error rate of k-nearest neighbor classifier. The
blue line represents the error rate with the pg-gram distance, and the red line
represents the error rate with the weighted pg-gram distance.

On each data set, we performed 5-fold cross-validation and com-
pared the mean test error across the folds. In the setting (E1) and
(E2), we set p = 2, ¢ = 2 as pg-gram size. We set k = 1 for
Strings and Glycan_.MULTI dataset, and k& = 3 for others, where k is
the number of neighbors for the k-nearest neighbor classifier and the
number of “targets” of LMNN learning. As these parameters affect
the classification results, we analyze their impact in the next subsec-
tion. Other parameters were set as follows: @1 = p2 = 5.0 for mar-
gin parameters, 7 = 1072 for the initial learning rate of the Adam
optimizer [16], 8 = 10~* for the L2 regularization. We trained the
model for 600 epochs. We updated impostors for LMNN every 50
epochs. In the LMNN learning step, we randomly chose 200 training
data points if the number of input training data points is more than
200. In the setting (E3), we fixed the optimal edit operations that are
computed for the first time of the learning algorithm, in the same
way, as [5] and performed metric learning using the LMNN scheme
with gradient descent with respect to the edit costs. The parameters
for the settings (E4) and (ES) are selected by nested cross-validation
following [27].

Figure 4 shows the results of our experiments. On each dataset,
the k-nearest neighbor classifier with the weighted pg-gram distance
(E2) achieves a lower error rate than the pg-gram distance (E1) .
Moreover, for all datasets, the k-nearest neighbor classification with
the weighted pq-gram distance (E2) achieves better results than that
with the tree edit distance (E3). Also, our approach achieves com-
petitive results with the state-of-the-art edit distance-based methods
such as GESL and BEDL with the MRGLVQ classifier (E4) (ES).

5.2.1 Effects of parameters

Since the values of p and ¢ determine the shape of pg-grams, they can
affect the error rates of classification. We analyze the effect on our
proposed method of changing the values of p and ¢ (E2). In particu-

Strings Glycan_SP

0.225

0.200
4 0175
& 0.150

gOlZS
w

0.100

ZK default pg-gram

E default pg-gram
L weighted pg-gram 0.15

E weighted pg-gram

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of Neighbors Number of Neighbors

0.075

Figure 6. The figure indicates error rates with standard deviations for
1 < k < 7. The horizontal axis represents the number of neighbors for the
k-nearest neighbor classifier and the LMNN learning algorithm. The vertical
axis represents the error rate of the k-nearest neighbor classifier. The blue
line represents the error rate with the pg-gram distance, and the red line
represents the error rate with the weighted pg-gram distance.

lar, we investigate the error rate of the 3-nearest neighbor classifiers
with the conventional pg-gram distance and with the weighted pg-
gram distance. The values p and g are chosenas 1 < p = ¢ < 7.
Figure 5 shows the transition in error rates with respect to p and gq.
For the Strings dataset, the case p = ¢ = 1 is worst among all, which
follows our intuition that every string in the first class is composed
of substrings of length three, and these substrings can be seen only in
the case where p = ¢ > 2. For the Glycan_SP dataset, the error rates
gradually increase as both p and ¢ become large. In both datasets,
for all p and g values except for the case p = ¢ = 1 in the Strings
dataset, the k-nearest neighbor classifier with the weighted pg-gram
distance outperformed that with the conventional pg-gram distance.

We also analyze the effect of the number of neighbors £ on the
k-nearest neighbor classifier and the LMNN metric learning scheme.
In the training step, we created training pairs with k targets for each
tree. In the classification step, we performed the k-nearest neighbor
classification. Figure 6 shows the transition in error rate with respect
to k. Interestingly, in the Strings dataset, the case of k& = 1 achieves
the highest accuracy among all. With regard to the number of neigh-
bors k for the k-nearest neighbor classifier, Hastie [13] pointed out
that the best k value is situation dependent. We highlight the fact that
our proposed distance outperformed the conventional pg-gram dis-
tance regardless of the k£ values in both datasets except for the case
k = 1,7 in the Glycan_SP dataset.

5.2.2 Interpretability

In this subsection, we discuss the interpretability of our method. We
can consider that pg-grams with substantial weights are important
discriminators for classification problems since they essentially de-
termine the classification results.

‘We exhibit some pg-grams receiving substantial weights and their
occurrences in each class in Strings, Glycan_EL, and Words dataset

H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams 1481

as in Table 2. We can observe that high-weight pg-grams tend to ap-
pear many times in one of the classes, but not so much in the other
classes. This fact implies that pg-grams with substantial weights are
important features for classifying trees. In the Glycan_EL dataset,
for example, (GlcNAc.1b4,Gal.1b3,$,) appears only with class
1. It means that subtree 22G1cNAc®2Gal which contains the leaf
node, is a key feature for class 1. In the Words dataset, pg-gram
(e,u, , *) appears on French words 14 times, but never on English
words, which means French words in the dataset often have substring
“eur”, but English words do not.

Dataset | pg-gram | classl | class2
(B,B, A, %) 0 9
(D, A, %, +) 21 8
Strings (A,D, B, *) 45 12
(C, A, *, %) 26 2
(D, A,D, %) 0 11
(%, Xyl.,Gal.1b4, *) 3 0
(GlcNAc.1b4,Gal.1b3, $, *) 2 0
GlycanEL | (Gal.1b4,GlcNAc.1b3,$, *) 4 0
(Gal.,GlcNAc.1b3, 8, *) 0 1
(GalNAc.1b3, GalNAc.1a3, *, $) 2 0
(c,h,*,9) 6 0
(o,n, *,e) 9 0
Words (s,e,u,*) 0 4
(e,u,r,*) 0 14
(o,1,s,*) 0 6

Table 2. Extracted high-weight pg-grams and appearance number in each
class. Right 2 columns show the number of occurrences of pg-grams in each
class.

5.3 Running time comparison

In order to show the practical performance of our method, we com-
pare the running times of classification algorithms based on the
weighted pg-gram distance and the tree edit distance. In this experi-
ment, we run the standard k-nearest neighbor algorithm with two dis-
tinct distance functions, the weighted pg-gram distance and the tree
edit distance. We measured the time for executing whole process: (i)
encoding into count vectors, (ii) computing the distances between the
test data and the training data to identify neighbors, (iii) and making
an inference by the majority vote. The first encoding step is executed
only for the weighted pg-gram distance. We first note that the theo-
retical running time O(n logn) of computing the pg-gram distance
between trees is much faster than the fastest known tree edit distance
algorithm, that of [8] which runs in O(n?®) time. Thus, the running
time of the k-nearest neighbor inference with the weighted pg-gram
distance is O(mimz(nlogn + k)), and that with the tree edit dis-
tance is O(mime (n3 +k)), where m; is the number of training data
points and my is the number of test data points.

Table 3 shows the mean running time of 3-nearest neighbor in-
ference for 5-fold cross-validation. In all datasets, the weighted pg-
gram distance yields much shorter inference times than the tree edit
distance as a distance function. Especially in the Sentiment dataset,
whose mean tree size is the largest among all datasets, the k-nearest
neighbor classifier using our proposed method yields over 5000 times
shorter inference time than that using the tree edit distance.

We note that edit distance-based methods such as GESL do not di-
rectly learn the edit cost of tree edit distance. They first compute an
optimal sequence of edit operations for training data which is then
fixed (held unchanged). Then, they learn an appropriate edit cost
along with this sequence of edit operations, which makes their learn-
ing process much easier and faster than directly learning the edit cost.
However, when making an inference for test data using the learned

distance, the costly computation for the edit distance is still a major
drawback.

Dataset [proposed edit distance

Strings 1.29 + 0.098 sec 23.7 £ 0.09 sec
Glycan_SP | 0.665 & 0.059 sec ~ 28.4 + 2.21 sec
Glycan_EL | 0.249 £+ 0.121 sec 182.9 + 8.86 sec

Words 41.3 £ 0.31 sec 283.9 4+ 5.18 sec
Sentiment 1.79 + 0.105 sec 9013 + 770 sec

Table 3. Mean inference time of the 3-nearest neighbor classifier in each
dataset. The first column specifies the dataset. The second column shows the
inference time of the 3-nearest neighbor classifier using the weighted
pg-gram distance. The third column shows that the inference time of the
3-nearest neighbor classifier using the tree edit distance.

6 Conclusion

This contribution has proposed a novel metric learning approach for
tree-structured data that has the following features. The differentiable
parameterized distance based on pg-grams (proposed herein), called
the weighted pq-gram distance, achieves fast metric learning for tree-
structured data. The time complexity of the weighted pg-gram dis-
tance is O(nlogn), while that of the tree edit distance is more than
O(n3), where n is the number of nodes of the input trees. Moreover,
computation of the proposed distance involves only basic vector op-
erations with the softplus function. It enables the distance function to
be learned by the gradient descent techniques while retaining the tri-
angle inequality during the learning process. Second, a way of learn-
ing the weighted pg-gram distance through LMNN, which is one of
the most widely-used metric learning schemes, was also proposed.
Moreover, the metric learning problem was formulated as an opti-
mization problem based on the hinge loss-based formulation. Third,
the results of our proposal are interpretable. Our weight parameter
indicates which substructures in trees are important for classifying
input trees.

We have empirically shown that for various classification prob-
lems our proposed method reduces error rates compared to the con-
ventional pg-gram distance using the k-nearest neighbor classifi-
cation. Moreover, our approach achieved competitive results with
the state-of-the-art edit distance-based methods such as GESL and
BEDL. We have also shown that our approach solves classification
problems much faster than the edit distance-based methods. In our
experiments, the k-nearest neighbor classifier using our proposed
method solved the various classification problems at most 5000 times
faster than that using the tree edit distance.

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number
17K19973.

References

[1] Nikolaus Augsten, Michael Bohlen, and Johann Gamper, ‘The
pg-gram distance between ordered labeled trees’, ACM Trans.
Database Syst., 35(1), 4:1-4:36, (2008).

[2] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro, ‘Im-
proved guarantees for learning via similarity functions’, in 21st
Annual Conference on Learning Theory (COLT), pp. 287-298,
(2008).

[3] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro, ‘A the-
ory of learning with similarity functions’, Machine Learning,
72(1), 89-112, (2008).

1482

[4

—_

[5

—

[6

—_

[7

—

[8

—_—

[9

—

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

(20]

(21]

(22]

(23]

H. Shindo et al. / Metric Learning for Ordered Labeled Trees with pq-grams

Aurélien Bellet, Amaury Habrard, and Marc Sebban, ‘Good
edit similarity learning by loss minimization’, Machine Learn-
ing, 89(1), 5-35, (2012).

Aurélien Bellet, Amaury Habrard, and Marc Sebban, ‘A sur-
vey on metric learning for feature vectors and structured data’,
CoRR, abs/1306.6709, (2013).

Di-Rong Chen, Qiang Wu, Yiming Ying, and Ding-Xuan Zhou,
‘Support vector machine soft margin classifiers: Error analy-
sis.’, Journal of Machine Learning Research, 5, 1143-1175,
(2004).

Thomas M. Cover and Peter E. Hart, ‘Nearest neighbor pat-
tern classification’, IEEE Trans. Information Theory, 13, 21—
27, (1967).

Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren
Weimann, ‘An optimal decomposition algorithm for tree edit
distance’, ACM Trans. Algorithms, 6(1), 2:1-2:19, (2009).
Huyen Do, Alexandros Kalousis, Jun Wang, and Adam
Woznica, ‘A metric learning perspective of svm: on the rela-
tion of Imnn and svm’, in I5th International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 308-317,
(2012).

Scott Doubet and Peter Albersheim, ‘Letter to the Glyco-
Forum: CarbBank’, Glycobiology, 2(6), 505-505, (1992).
Thomas Girtner, ‘A survey of kernels for structured data’,
SIGKDD Explorations, 5(1), 49-58, (2003).

Kosuke Hashimoto, Susumu Goto, Shin Kawano, Kiyoko F.
Aoki-Kinoshita, Nobuhisa Ueda, Masami Hamajima,
Toshisuke Kawasaki, and Minoru Kanehisa, ‘KEGG as a
glycome informatics resource’, Glycobiology, 16(5), 63R—
70R, (2006).

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The
Elements of Statistical Learning, Springer New York Inc.,
(2001).

Tao Jiang, Guohui Lin, Bin ma, and Kaizhong Zhang, ‘A gen-
eral edit distance between rna structures’, Journal of compu-
tational biology : a journal of computational molecular cell
biology, 9, 371-88, (2002).

Dor Kedem, Stephen Tyree, Fei Sha, Gert R. Lanckriet, and
Kilian Q Weinberger, ‘Non-linear metric learning’, in Advances
in Neural Information Processing Systems 25 (NeurIPS),2573—
2581, (2012).

Diederik Kingma and Jimmy Ba, ‘Adam: A method for stochas-
tic optimization’, International Conference on Learning Repre-
sentations (ICLR), (2014).

Teuvo Kohonen, Learning Vector Quantization, 175-189,
Springer Berlin Heidelberg, (1995).

Tetsuji Kuboyama, Kouichi Hirata, Hisashi Kashima, Kiyoko F.
Aoki-Kinoshita, and Hiroshi Yasuda, ‘A spectrum tree kernel’,
Information and Media Technologies, 2(1), 292-299, (2007).
Brian Kulis, ‘Metric learning: A survey’, Foundations and
Trends®) in Machine Learning, 5(4), 287-364, (2013).

Stuart P. Lloyd, ‘Least squares quantization in pcm’, I[EEE
Transactions on Information Theory, 28, 129—-137, (1982).
Andrew McCallum, Kedar Bellare, and Fernando Pereira, ‘A
conditional random field for discriminatively-trained finite-
state string edit distance’, in Conference on Uncertainty in Ar-
tificial Intelligence (UAI), (2005).

Bassam Mokbel, Benjamin Paassen, Frank-Michael Schleif,
and Barbara Hammer, ‘Metric learning for sequences in rela-
tional lvq’, Neurocomputing, 169, 306-322, (2015).
Alessandro Moschitti, ‘Making tree kernels practical for nat-

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

ural language learning’, in I//th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics
(EACL), (2006).

David Nebel, Barbara Hammer, Kathleen Frohberg, and
Thomas Villmann, ‘Median variants of learning vector quanti-
zation for learning of dissimilarity data’, Neurocomputing, 169,
295-305, (2015).

Jose Oncina and Marc Sebban, ‘Learning stochastic edit dis-
tance: application in handwritten character recognition’, Pat-
tern Recognition, 39, 1575-1587, (2006).

Benjamin Paaflen, ‘Revisiting the tree edit distance and its
backtracing: A tutorial’, CoRR, abs/1805.06869, (2018).
Benjamin Paaflen, Claudio Gallicchio, Alessio Micheli, and
Barbara Hammer, ‘Tree edit distance learning via adaptive
symbol embeddings’, in 35th International Conference on Ma-
chine Learning (ICML), pp. 3976-3985, (2018).

Shibin Parameswaran and Kilian Q Weinberger, ‘Large margin
multi-task metric learning’, in Advances in Neural Information
Processing Systems 23 (NeurIPS), 1867-1875, (2010).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmai-
son, Luca Antiga, and Adam Lerer, ‘Automatic differentiation
in PyTorch’, in NIPS Autodiff Workshop, (2017).

Davi Reis, Paulo Golgher, Altigran Silva, and Alberto Laender,
‘Automatic web news extraction using tree edit distance’, in
13th International World Wide Web Conference (WWW), pp.
502-511, (2004).

Eric Ristad and Peter Yianilos, ‘Learning string edit distance’,
Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 20, 522-532, (1998).

Atsushi Sato and Keiji Yamada, ‘Generalized learning vector
quantization’, in Advances in Neural Information Processing
Systems 8 (NeurIPS), 423-429, (1996).

Frank-Michael Schleif and Peter Tino, ‘Indefinite proximity
learning: A review’, Neural Computation, 27(10), 2039-2096,
(2015).

Kuo-Chung Tai, ‘The tree-to-tree correction problem’, J. ACM,
26(3), 422-433, (1979).

Kilian Q. Weinberger and Lawrence K. Saul, ‘Fast solvers and
efficient implementations for distance metric learning’, in 25th
International Conference on Machine Learning (ICML), pp.
1160-1167, (2008).

Kilian Q. Weinberger and Lawrence K. Saul, ‘Distance metric
learning for large margin nearest neighbor classification’, Ma-
chine Learning, 207-244, (2009).

Eric P. Xing, Michael I. Jordan, Stuart J Russell, and Andrew Y.
Ng, ‘Distance metric learning with application to clustering
with side-information’, in Advances in Neural Information Pro-
cessing Systems 15 (NeurlPS), 521-528, (2003).

Yoshihiro Yamanishi, Francis Bach, and Jean-Philippe Vert,
‘Glycan classification with tree kernels’, Bioinformatics,
23(10), 1211-1216, (2007).

Tomoya Yamazaki, Akihiro Yamamoto, and Tetsuji Kuboyama,
“Tree PCA for extracting dominant substructures from labeled
rooted trees’, in I8th International Conference on Discovery
Science (DS), pp. 316-323, (2015).

