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Abstract. To reduce the long training time of large deep neural
network (DNN) models, distributed synchronous stochastic gradient
descent (S-SGD) is commonly used on a cluster of workers. However,
the speedup brought by multiple workers is limited by the commu-
nication overhead. Two approaches, namely pipelining and gradient
sparsification, have been separately proposed to alleviate the impact
of communication overheads. Yet, the gradient sparsification methods
can only initiate the communication after the backpropagation, and
hence miss the pipelining opportunity. In this paper, we propose a
new distributed optimization method named LAGS-SGD, which com-
bines S-SGD with a novel layer-wise adaptive gradient sparsification
(LAGS) scheme. In LAGS-SGD, every worker selects a small set
of “significant” gradients from each layer independently whose size
can be adaptive to the communication-to-computation ratio of that
layer. The layer-wise nature of LAGS-SGD opens the opportunity of
overlapping communications with computations, while the adaptive
nature of LAGS-SGD makes it flexible to control the communication
time. We prove that LAGS-SGD has convergence guarantees and it
has the same order of convergence rate as vanilla S-SGD under a
weak analytical assumption. Extensive experiments are conducted to
verify the analytical assumption and the convergence performance
of LAGS-SGD. Experimental results on a 16-GPU cluster show that
LAGS-SGD outperforms the original S-SGD and existing sparsified
S-SGD without losing obvious model accuracy.

1 INTRODUCTION

With increasing data volumes and model sizes of deep neural net-
works (DNNs), distributed training is commonly adopted to acceler-
ate the training process among multiple workers. Current distributed
stochastic gradient descent (SGD) approaches can be categorized into
three types, synchronous [9, 21], asynchronous [40] and stall syn-
chronous [15]. Synchronous SGD (S-SGD) with data-parallelism is
the most widely used one in distributed deep learning due to its good
convergence properties [8, 12]. However, S-SGD requires iterative
synchronization and communication of dense gradient/parameter ag-
gregation among all the workers. Compared to the computing speed
of modern accelerators (e.g., GPUs and TPUs), the network speed is
usually slow which makes communications a potential system bot-
tleneck. Even worse, the communication time usually grows with
the size of the cluster [37]. Many recent studies focus on alleviat-
ing the impact of communications in S-SGD to improve the system
scalability. These studies include the system-level methods and the
algorithm-level methods.
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On the system level, pipelining [4, 38, 12, 28, 22, 13, 17, 27] is
used to overlap the communications with the computations by exploit-
ing the layer-wise structure of backpropagation during the training
process of deep models. On the algorithmic level, researchers have
proposed gradient quantization (fewer bits for a number) and sparsifi-
cation (zero-out gradients that are not necessary to be communicated)
techniques for S-SGD to reduce the communication traffic with neg-
ligible impact on the model convergence [2, 6, 35, 23, 36, 19]. The
gradient sparsification method is more aggressive than the gradient
quantization method in reducing the communication size. For exam-
ple, Top-k sparsification [1, 23] with error compensation can zero-out
99%− 99.9% local gradients without loss of accuracy while quanti-
zation from 32-bit floating points to 1-bit has a maximum of 32× size
reduction. In this paper, we mainly focus on the sparsification meth-
ods, while our proposed algorithm and analysis are also applicable to
the quantization methods.

A number of works have investigated the theoretical convergence
properties of the gradient sparsification schemes under different ana-
lytical assumptions [34, 32, 3, 18, 16, 19]. However, these gradient
sparsification methods ignore the layer-wise structure of DNNs and
treat all model parameters as a single vector to derive the convergence
bounds, which implicitly requires a single-layer communication [37]
at the end of each SGD iteration. Therefore, the current gradient
sparsification S-SGD (denoted by SLGS-SGD hereafter) cannot over-
lap the gradient communications with backpropagation computations,
which limits the system scaling efficiency. To tackle this challenge, we
propose a new distributed optimization algorithm named LAGS-SGD
which exploits a layer-wise adaptive gradient sparsification (LAGS)
scheme atop S-SGD to increase the system scalability. We also derive
the convergence bounds for LAGS-SGD. Our theoretical convergence
results on LAGS-SGD conclude that high compression ratios would
slow down the model convergence rate, which indicates that one
should choose the compression ratios for different layers as low as
possible. The adaptive nature of LAGS-SGD provides flexible options
to choose the compression ratios according to the communication-to-
computation ratios. We evaluate our proposed algorithm on various
DNNs to verify the soundness of the weak analytic assumption and the
convergence results. Finally, we demonstrate our system implementa-
tion of LAGS-SGD to show the wall-clock training time improvement
on a 16-GPU cluster with 10Gbps Ethernet interconnect. The contri-
butions of this work are summarized as follows.

• We propose a new distributed optimization algorithm named LAGS-
SGD with convergence guarantees. The proposed algorithm en-
ables us to embrace the benefits of both pipelining and gradient
sparsification.

• We provide thorough convergence analysis for LAGS-SGD on non-
convex smooth optimization problems, and the derived theoretical
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results indicate that LAGS-SGD has a consistent convergence guar-
antee with SLGS-SGD, and it has the same order of convergence
rate with S-SGD under a weak analytical assumption.

• We empirically verify the analytical assumption and the conver-
gence performance of LAGS-SGD on various deep neural networks
including CNNs and LSTM in a distributed setting.

• We implement LAGS-SGD atop PyTorch2, which is one of the
popular deep learning frameworks, and evaluate the training effi-
ciency of LAGS-SGD on a 16-GPU cluster connected with 10Gbps
Ethernet. Experimental results show that LAGS-SGD outperforms
S-SGD and SLGS-SGD on a 16-GPU cluster with little impact on
the model accuracy.

The rest of the paper is organized as follows. Section 2 introduces
some related work, and Section 3 presents preliminaries for our pro-
posed algorithm and theoretical analysis. We propose the LAGS-SGD
algorithm and provide the theoretical results in Section 4. The efficient
system design for LAGS-SGD is illustrated in Section 5. Experimen-
tal results and discussions are presented in Section 6. Finally, we
conclude the paper in Section 7.

2 RELATED WORK

Many recent works have provided convergence analysis for distributed
SGD with quantified or sparsified gradients that can be biased or
unbiased.

For the unbiased quantified or sparsified gradients, researchers
[2, 35] derived the convergence guarantees for lower-bit quantified
gradients, while the quantization operator applied on gradients should
be unbiased to guarantee the theoretical results. On the gradient spar-
sification algorithm whose sparsification method is also unbiased,
Wangni et al. [34] derived the similar theoretical results. However,
empirical gradient sparsification methods (e.g., Top-k sparsification
[23]) can be biased, which require some other analytical techniques
to derive the bounds. In this paper, we also mainly focus on the bias
sparsification operators like Top-k sparsification.

For the biased quantified or sparsified gradients, Cordonnier [7]
and Stich et al. [32] provided the convergence bound for top-k or
random-k gradient sparsification algorithms on only convex problems.
Jiang et al. [18] derived similar theoretical results, but they exploited
another strong assumption that requires each worker to select the same
k components at each iteration so that the whole d (the dimension
of model/gradient) components are exchanged after a certain number
of iterations. Alistarh et al. [3] relaxed these strong assumptions on
sparsified gradients, and further proposed an analytical assumption,
in which the �2-norm of the difference between the top-k elements on
fully aggregated gradients and the aggregated results on local top-k
gradients is bounded. Though the assumption is relaxed, it is difficult
to verify in real-world applications. Our convergence analysis is rel-
atively close to the study [30] which provided convergence analysis
on the biased Top-k sparsification with an easy-to-verify analytical
assumption.

The above mentioned studies, however, view all the model pa-
rameters (or gradients) as a single vector to derive the convergence
bounds, while we propose the layer-wise gradient sparsification al-
gorithm which breaks down full gradients into multiple pieces (i.e.,
multiple layers). It is obvious that breaking a vector into pieces and
selecting top-k elements from each piece generates different results
from the top-k elements on the full vector, which makes the proofs
of the bounds of LAGS-SGD non-trivial. Recently, [39] proposed the

2 https://pytorch.org/

blockwise SGD for quantified gradients, but it lacks of convergence
guarantees for sparsified gradients. Simultaneous to our work, Dutta
et al. [11] proposed the layer-wise compression schemes and provided
a different way of proof on the theoretical analysis.

3 PRELIMINARIES

We consider the common settings of distributed synchronous SGD
with data-parallelism on P workers to minimize the non-convex ob-
jective function f : Rd → R by:

xt+1 = xt − αt
1

P

P∑
p=1

Gp(xt), (1)

where xt ∈ R
d is the stacked layer-wise model parameters of the

target DNN at iteration t, Gp(xt) is the stochastic gradients of the
DNN parameters at the pth worker with locally sampled data, and
αt ∈ R is the step size (i.e., learning rate) at iteration t. Let L denote
the number of learnable layers of the DNN, and x(l) ∈ R

d(l) denote
the parameter vector of the lth learnable layer with d(l) elements3.
Thus, the model parameter x can be represented by the concatenation
of L layer-wise parameters. Using � as the concatenation operator,
the stacked vector can be represented by

x = �L
l=1x

(l) = x(1)�x(2)�...�x(L) = [x(1),x(2), ...,x(L)]. (2)

Pipelining between communications and computations. Due to
the fact that the gradient computation of layer l − 1 using the back-
propagation algorithm has no dependency on the gradient aggregation
of layer l, the layer-wise communications can then be pipelined with
layer-wise computations [4, 38] as shown in Fig. 1(a). It can be seen
that some communication time can be overlapped with the compu-
tations so that the wall-clock iteration time is reduced. Note that the
pipelining technique with full gradients has no side-effect on the con-
vergence, and it becomes very useful when the communication time
is comparable to the computing time.

Top-k sparsification. In the gradient sparsification method, the
Top-k sparsification with error compensation [1, 23, 29] is promis-
ing in reducing communication traffic for distributed training, and
its convergence property has been empirically [1, 23] verified and
theoretically [3, 18, 32] proved under some assumptions. The model
update formula of Top-k S-SGD can be represented by

xt+1 = xt − αt
1

P

P∑
p=1

G̃p(xt), (3)

where G̃p(xt) = TopK(Gp(xt), k) is the selected top-k gradients at
worker p. For any vector x ∈ R

d and a given k ≤ d, TopK(x, k) ∈
R

d and its ith (i = 1, 2, ..., d) element is:

TopK(x, k)i =

{
xi, if |xi| > thr

0, otherwise
, (4)

where xi is the ith element of x and thr is the kth largest value
of |x|. As shown in Fig. 1(b), in each iteration, at the end of the
backpropagation pass, each worker selects top-k gradients from its
whole set of gradients. The selected k gradients are exchanged with all
other workers in the decentralized architecture or sent to the parameter
server in the centralized architecture for averaging.

3 This generalization is also applicable to the current deep learning frameworks
(e.g., PyTorch), in which the parameters of one layer may be separated into
two tensors (weights and bias).
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Figure 1. Comparison between three distributed training algorithms: (a) the pipeline of layer-wise gradient communications and backpropagation computations
without gradient sparsification (Dense-SGD), (b) the single-layer gradient sparsification (SLGS) without pipelining, and (c) our proposed layer-wise adaptive
gradient sparsification (LAGS) with pipelining.

4 LAYER-WISE ADAPTIVE GRADIENT
SPARSIFICATION

4.1 Algorithm

To enjoy the benefits of the pipelining technique and the gradient
sparsification technique, we propose the LAGS-SGD algorithm, which
exploits a layer-wise adaptive gradient sparsification (LAGS) scheme
atop S-SGD.

In LAGS-SGD, we apply gradient sparsification with error compen-
sation on each layer separately. Instead of selecting the top-k values
from all gradients to be communicated, each worker selects top-k(l)

gradients from layer l so that it does not need to wait for the com-
pletion of backpropagation pass before communicating the sparsified
gradients. LAGS-SGD not only significantly reduces the commu-
nication traffic (hence the communication time) using the gradient
sparsification, but it also makes use of the layered structure of DNNs
to overlap the communications with computations. As shown in Fig.
1(c), at each iteration, after the gradients G(x)(l) of layer l have been
calculated, TopK(G(x)(l), k(l)) is selected to be exchanged among
workers immediately. Formally, let vt denote the model parameter
and εpt denote the local gradient residual of worker p at iteration t.
In LAGS-SGD on distributed P workers, the update formula of the
l-layer’s parameters becomes

v
(l)
t+1 = v

(l)
t − 1

P

P∑
p=1

TopK
(
αtG

p(vt)
(l) + ε

p,(l)
t , k(l)

)
. (5)

The pseudo-code of LAGS-SGD is shown in Algorithm 1.

Algorithm 1 LAGS-SGD at worker p
Input: Stochastic gradients Gp(·) at worker p
Input: Configured k(l), l = 1, 2, ..., L
Input: Configured learning rates αt

1: for t = 1→ L do
2: Initialize v

(l)
0 = ε

p,(l)
0 = 0;

3: for t = 1→ T do
4: Feed-forward computation;
5: for l = L→ 1 do
6: acc

p,(l)
t = ε

p,(l)
t−1 + αt−1G

p(vt−1)
(l);

7: ε
p,(l)
t = acc

p,(l)
t − TopK(acc

p,(l)
t , k(l));

8: g
(l)
t =

∑P
p=1 TopK(acc

p,(l)
t , k(l));

9: v
(l)
t = v

(l)
t−1 − 1

P
g
(l)
t ;

4.2 Convergence Analysis

We first introduce some notations and assumptions for our conver-
gence analysis, and then present the theoretical results of the conver-
gence properties of LAGS-SGD.

4.2.1 Notations and Assumptions

Let ‖ · ‖ denote �2-norm. We mainly discuss that the non-convex
objective function f : Rd → R is C-smooth, i.e.,

‖∇f(x)−∇f(y)‖ ≤ C‖x− y‖, ∀x,y ∈ R
d. (6)

Let x∗ denote the optimal solution of the objective function f . We
assume that the sampled stochastic gradients G(·) are unbiased, i.e.,
E[G(vt)] = ∇f(vt). We also assume that the second moment of the
average of P stochastic gradients has the following bound:

E[‖ 1
P

P∑
p=1

Gp(x)‖2] ≤M2, ∀x ∈ R
d. (7)

We make an analytical assumption on the aggregated results from the
distributed sparsified vectors.

Assumption 1. For any P vectors xp ∈ R
d (p = 1, 2, ...P ) in P

workers, and each vector is sparsified as TopK(xp, k) locally. The
aggregation of TopK(xp, k) selects k larger values than randomly
selecting k values from the accumulated vectors, i.e.,

∥∥∥∥∥
P∑

p=1

xp −
P∑

p=1

TopK(xp, k)

∥∥∥∥∥
2

≤

E

⎡⎣∥∥∥∥∥
P∑

p=1

xp − RandK

(
P∑

p=1

xp, k

)∥∥∥∥∥
2
⎤⎦ , (8)

where RandK(x, k) ∈ R
d is a vector whose k elements are randomly

selected from x following a uniform distribution, and the other d− k
elements are zeros.

Similar to [3, 30], we introduce an auxiliary random variable xt ∈
R

d, which is updated by the non-sparsified gradients, i.e.,

xt+1 = xt − αtG(vt), (9)

where G(vt) =
1
P

∑P
p=1 G

p(vt) and x0 = 0. The error between xt

and vt can be represented by

εt = vt − xt =
1

P

P∑
p=1

εpt . (10)

4.2.2 Main Results

Here we present the major lemmas and theorems to prove the con-
vergence of LAGS-SGD. Our results are mainly the derivation of the
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standard bounds in non-convex settings [5], i.e.,

lim
T→∞

1∑T
t=1 αt

T∑
t=1

αtE[‖∇f(vt)‖2] = 0,

and E[
1

T

T∑
t=1

‖∇f(vt)‖2] ≤ B, (11)

for some constants B and the number of iterations T .

Lemma 1. For any P vectors xp ∈ R
d, p = 1, 2, ..., P , and every

vector can be broken down into L pieces, that is xp = �L
l=1x

p,(l)

and xp,(l) ∈ R
d(l) , it holds that∥∥∥∥∥
P∑

p=1

xp − �L
l=1

(
P∑

p=1

TopK(xp,(l), k(l))

)∥∥∥∥∥
2

≤(1− 1

cmax
)

∥∥∥∥∥
P∑

p=1

xp

∥∥∥∥∥
2

, (12)

where cmax = max{c(1), c(2), ..., c(L)}, c(l) = d(l)

k(l) for l =

1, 2, ..., L, 0 < k(l) ≤ d(l) and
∑L

l=1 d
(l) = d.

Proof. According to [32], for any vectors x ∈ R
d and 0 < k ≤ d,

Eω[‖x− RandK(x, k)‖2] = (1− k
d
)‖x‖2. Then∥∥∥∥∥

P∑
p=1

xp − �L
l=1

(
P∑

p=1

TopK(xp,(l), k(l))

)∥∥∥∥∥
2

=

∥∥∥∥∥�L
l=1

(
P∑

p=1

xp,(l) −
P∑

p=1

TopK(xp,(l), k(l))

)∥∥∥∥∥
2

=
L∑

l=1

∥∥∥∥∥
P∑

p=1

xp,(l) −
P∑

p=1

TopK(xp,(l), k(l))

∥∥∥∥∥
2

≤
L∑

l=1

E

⎡⎣∥∥∥∥∥
P∑

p=1

xp,(l) − RandK

(
P∑

p=1

xp,(l), k(l)

)∥∥∥∥∥
2
⎤⎦

=

L∑
l=1

(
1− k(l)

d(l)

)∥∥∥∥∥
P∑

p=1

xp,(l)

∥∥∥∥∥
2

≤
(
1− 1

cmax

) L∑
l=1

∥∥∥∥∥
P∑

p=1

xp,(l)

∥∥∥∥∥
2

=

(
1− 1

cmax

)∥∥∥∥∥
P∑

p=1

xp

∥∥∥∥∥
2

.

The inequality (12) is a sufficient condition to derive the conver-
gence properties of Algorithm 1.

Corollary 1. For any iteration t ≥ 1 and η > 0:

E[‖vt−xt‖2] ≤ 1

η

t∑
i=1

((
1− 1

cmax

)
(1 + η)

)i

α2
t−iM

2. (13)

Proof. Let G(vt) = 1
P

∑P
p=1 G

p(vt), gt =
∑P

p=1(αtG
p(vt) +

εpt ) and g
(l)
t =

∑P
p=1(αtG

p(vt)
(l) + ε

p,(l)
t ), l = 1, 2, ..., L. We

have gt = �L
l=1g

(l)
t and ε

(l)
t = g

(l)
t −∑P

p=1 αtG
p(vt)

(l). Accord-

ing to the update formulas of vt+1 and xt+1, we have

‖vt+1 − xt+1‖2

=‖ �L
l=1 (v

(l)
t − 1

P

P∑
p=1

TopK(gp,(l), k(l))

− x
(l)
t +

1

P

P∑
p=1

αtG
p(vt)

(l))‖2

=

L∑
l=1

∥∥∥∥∥ 1

P

P∑
p=1

g
p,(l)
t − 1

P

P∑
p=1

TopK
(
gp,(l), k(l)

)∥∥∥∥∥
2

=

∥∥∥∥∥�L
l=1

(
1

P

P∑
p=1

g
p,(l)
t − 1

P

P∑
p=1

TopK
(
gp,(l), k(l)

))∥∥∥∥∥
2

=

∥∥∥∥∥ 1

P

P∑
p=1

gp
t −

1

P
�L

l=1

(
P∑

p=1

TopK
(
gp,(l), k(l)

))∥∥∥∥∥
2

≤(1− 1

cmax
)

∥∥∥∥∥ 1

P

P∑
p=1

gp
t

∥∥∥∥∥
2

= (1− 1

cmax
) ‖αtG(vt) + vt − xt‖2

≤(1− 1

cmax
)

(
(1 + η)‖αtG(vt)‖2 + (1 +

1

η
)‖vt − xt‖2

)
,

where η > 0. Iterating the above inequality from i yields:

‖vt − xt‖2

≤(1− 1

cmax
)(1 +

1

η
)

t∑
i=1

((1− 1

cmax
)(1 + η))i−1‖αt−iG(vt−i)‖2

=
1

η

t∑
i=1

((1− 1

cmax
)(1 + η))i‖αt−iG(vt−i)‖2.

Taking the expectation and using the bound of the second moment on
stochastic gradients: E[‖G(vt)‖2] ≤M2, we obtain

E
[‖vt − xt‖2

] ≤1

η

t∑
i=1

(
(1− 1

cmax
)(1 + η)

)i

E
[‖αt−iG(vt−i)‖2

]
≤1

η

t∑
i=1

(
(1− 1

cmax
)(1 + η)

)i

α2
t−iM

2,

which concludes the proof.

Corollary 1 implies that the parameters with sparsified layer-wise
gradients have bounds compared to that with dense gradients.

Theorem 1. Under the assumptions defined in the objective function
f , after running T iterations with Algorithm 1, we have

1∑T
t=1 αt

T∑
t=1

αtE[‖∇f(vt)‖2]

≤4(f(x0)− f(x∗))∑T
t=1 αt

+
2(C + 2C2D

η
)M2 ∑T

t=1 α
2
t∑T

t=1 αt

, (14)

if one chooses a step size schedule such that ∃D > 0 and ∃η > 0,

t∑
i=1

((
1− 1

cmax

)
(1 + η)

)i α2
t−i

αt
≤ D (15)

holds at any iteration t > 0.

= 0→ t
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Proof. We use the smooth property of f and Corollary 1 to derive
(14). First, with the smoothness C of f , we have

f(xt+1)− f(xt) ≤∇f(xt)
T (xt+1 − xt) +

C

2
‖xt+1 − xt‖2

=αt∇f(xt)
TG(vt) +

α2
tC

2
‖G(vt)‖2.

Taking expectation with respective to sampling at t, it yields

Et[f(xt+1)]− f(xt)

≤αt∇f(xt)
T
Et[G(vt)] +

α2
tC

2
Et[‖G(vt)‖2]

=αt∇f(xt)
T∇f(vt) +

α2
tC

2
Et[‖G(vt)‖2]

=− αt

2
‖∇f(xt)‖2 − αt

2
‖∇f(vt)‖2

+
αt

2
‖∇f(xt)−∇f(vt)‖2 + α2

tC

2
Et[‖G(vt)‖2]

≤− αt

2
‖∇f(xt)‖2 + αtC

2

2
‖vt − xt‖2 + α2

tCM2

2

=− αt

2
(‖∇f(xt)‖2 + C2‖vt − xt‖2)

+ αtC
2‖vt − xt‖2 + α2

tCM2

2
.

Taking expectation with respective to the gradients before t, it yields

E[f(xt+1)]− E[f(xt)] ≤− αt

2
E[‖∇f(xt)‖2 + C2‖vt − xt‖2]

+ αtC
2
E[‖vt − xt‖2] + α2

tCM2

2
.

Using Corollary 1, we obtain

E[f(xt+1)]− E[f(xt)]

≤αtC
2

η

t∑
i=1

((1− 1

cmax
)(1 + η))iα2

t−iM
2 +

α2
tCM2

2

− αt

2
E[‖∇f(xt)‖2 + C2‖vt − xt‖2]

=
α2
tC

2

η

t∑
i=1

((1− 1

cmax
)(1 + η))i

α2
t−i

αt
M2 +

α2
tCM2

2

− αt

2
E[‖∇f(xt)‖2 + C2‖vt − xt‖2].

If (15) holds, then we have

E[f(xt+1)]− E[f(xt)]

≤(C +
2C2D

η
)
M2α2

t

2
− αt

2
E[‖∇f(xt)‖2 + C2‖vt − xt‖2].

Adjusting the order, we obtain

αtE[‖∇f(xt)‖2 + C2‖vt − xt‖2]

≤2(E[f(xt)]− E[f(xt+1)]) + (C +
2C2D

η
)M2α2

t . (16)

We further apply the property of f , that is

‖∇f(vt)‖2 = ‖∇f(vt)−∇f(xt) +∇f(xt)‖2

≤ 2‖∇f(vt)−∇f(xt)‖2 + 2‖∇f(xt)‖2

≤ 2C2‖vt − xt‖2 + 2‖∇f(xt)‖2.

Together with (16), it yields

αtE[‖∇f(vt)‖2] ≤ 2αtE[C
2‖vt − xt‖2 + ‖∇f(xt)‖2]

≤4(E[f(xt)]− E[f(xt+1)]) + 2(C +
2C2D

η
)M2α2

t .

Summing up the inequality for t = 1, 2, ..., T , it yields

T∑
t=1

αtE[‖∇f(vt)‖2] ≤4(f(x0)− f(x∗))

+ 2(C +
2C2D

η
)M2

T∑
t=1

α2
t .

Multiplying 1∑T
t=1 αt

in both sides concludes the proof.

Theorem 1 indicates that if one chooses the step sizes to satisfy
(15), then the right hand side of (14) converges as T → ∞, so that
Algorithm 1 is guaranteed to converge. If we let (1 − 1

cmax
)(1 +

η) < 1 which is easily satisfied then (15) holds for both constant
and diminishing step sizes. Therefore, if the step sizes are further
configured as

lim
T→∞

T∑
t=1

αt =∞ and lim
T→∞

T∑
t=1

α2
t <∞, (17)

then the right hand side of inequality (14) converges to zero, which
ensures the convergence of Algorithm 1.

Corollary 2. Under the same assumptions in Theorem 1, if αt =
θ/
√
T , ∀t > 0, where θ > 0 is a constant, then we have the conver-

gence rate bound for Algorithm 1 as:

E[
1

T

T∑
t=1

‖∇f(vt)‖2] ≤ 4θ−1(f(x0)− f(x∗)) + 2θCM2

√
T

+
4C2M2(c3max − cmax)θ

2

T
, (18)

if the total number of iterations T is large enough.

Proof. As αt = θ/
√
T , we simplify the notations by: α = αt =

θ/
√
T and τ = (1− 1

cmax
)(1+η). The left hand side of (15) becomes

t∑
i=1

((1− 1

cmax
)(1 + η))i

α2
t−i

αt
=

t∑
i=1

τ iα
2
t−i

αt
= α

τ(1− τ t)

1− τ
.

Let η = 1
cmax

, then 0 ≤ τ = (1− 1
cmax

)(1 + η) < 1, and

lim
t→∞

α
τ(1− τ t)

1− τ
=

ατ

1− τ
.

So (15) holds when D = ατ
1−τ

. Applying Theorem 1, we obtain

E

[
1

T

T∑
t=1

‖∇f(vt)‖2
]

≤4(f(x0)− f(x∗))
αT

+ 2(C +
2C2D

η
)M2α

=
4θ−1(f(x0)− f(x∗)) + 2θCM2

√
T

+
4C2M2(c3max − cmax)θ

2

T
,

which concludes the proof.
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In Corollary 2, if T is large enough, then the right hand side of
inequality (18) is dominated by the first term. It implies that Algorithm
1 has a convergence rate of O(1/

√
T ), which is the same as the vanilla

SGD [9]. However, the second term of inequality (18) also indicates
that higher compress ratios (i.e., cmax) lead to a larger bound of
the convergence rate. In real-world settings, one may have a fixed
number of iteration budget T to train the model, so high compression
ratios could slowdown the convergence speed. On the one hand, if
we choose lower compression ratios, then the algorithm has a faster
convergence rate (less number of iterations). On the other hand, lower
compression ratios have a larger communication size and thus may
result in longer wall-clock time per iteration. Therefore, the adaptive
selection of the compression ratios tackles the problem properly.

5 SYSTEM IMPLEMENTATION AND
OPTIMIZATION

The layer-wise sparsification nature of LAGS-SGD enables the
pipelining technique to hide the communication overheads, while
the efficient system implementation of communication and computa-
tion parallelism with gradient sparsification is non-trivial due to three
reasons: 1) Layer-wise communications with sparsified gradients in-
dicate that there exist many small size messages to be communicated
across the network, while collectives (e.g., AllReduce) with small
messages are latency-sensitive. 2) Gradient sparsification (especially
top-k selection on GPUs) would introduce extra computation time.
3) The convergence rate of LAGS-SGD is negatively effected by
the compression ratio, and one should decide proper compression
ratios to trade-off the number of iteration to converge and the iteration
wall-clock time.

First, we exploit a heuristic method to merge extremely small spar-
sified tensors to a single one for efficient communication to address
the first problem. Specifically, we use a memory buffer to temporarily
store the sparsified gradients, and aggregate the buffered gradients
once the buffer becomes full or the gradients of the first layer have
been calculated. Second, we implement the double sampling method
[23] to approximately select the top-k gradients, which can signifi-
cantly reduce the top-k selection time on GPUs. Finally, to achieve a
balance between the convergence rate and the training wall-clock time,
we propose to select the layer-wise compression ratio according to the
communication-to-computation ratio. To be specific, we select a com-
pression ratio c(l) = d(l)/k(l) for layer l such that its communication
overhead is appropriately hidden by the computation. Given an up-
per bound of the compression ratio (e.g., cu = 1000), the algorithm
determines c(l) according to the following three metrics: 1) Back-
propagation computation time of the pipelined layers (i.e., t(l−1)

comp); 2)
Communication time of the current layer t(l)comm under a specific com-
pression ratio c(l), which can be predicted using the communication
model of the AllGather or AllReduce collectives (e.g., [22, 25]) ac-
cording to the size of gradients and the inter-connection (e.g., latency
and bandwidth) between workers; 3) An extra overhead involved by
the sparsification operator (t(l)spar), which generally includes a pair of
operations (compression and de-compression). Therefore, the selected
value of c(l) can be generalized as

c(l) = max{cu,min {c|t(l)comm(c) + t(l)spar ≤ t(l−1)
comp}}. (19)

5.1 Bound of Pipelining Speedup

In LAGS-SGD, the sparsification technique is used to reduce the
overall communication time, and the pipelining technique is used to

further overlap the already reduced communication time with com-
putation time. We can analyze the optimal speedup of LAGS-SGD
over SLGS-SGD in terms of wall-clock time under the same com-
pression ratios. Let tf , tb and tc denote the forward computation,
backward computation and gradient communication time at each it-
eration respectively. We assume that the sparsification overhead can
be ignored as we can use the efficient sampling method. Compared
to SLGS-SGD, LAGS-SGD reduces the wall-clock time by pipelin-
ing the communications with computations, and the maximum over-
lapped time is thidden = min{tb, tc} (i.e., either backpropagation
computations or communications are completely overlapped). So the
maximum speedup of LAGS-SGD over SLGS-SGD can be calculated
as S = (tf + tb+ tc)/(tf + tb+ tc− thidden). Let r = tc/tb denote
the communication-to-computation ratio. The ideal speedup can be
represented by

Smax = 1 +
1

tf
min(tc,tb)

+max(r, 1/r)
. (20)

The equation shows that the maximum speedup of LAGS-SGD over
SLGS-SGD mainly depends on the communication-to-computation
ratio. If r is close to 1, then LAGS-SGD has the potential to achieve
the highest speedup by completely hiding either the backpropagation
computation or the communication time.

6 EXPERIMENTS

6.1 Experimental Settings

We conduct the similar experiments as the work [23], which cover
two types of applications with three data sets: 1) image classification
by convolutional neural networks (CNNs) such as ResNet-20 [14]
and VGG-16 [31] on the Cifar-10 [20] data set and Inception-v4 [33]
and ResNet-50 [14] on the ImageNet [10] data set; 2) language model
by a 2-layer LSTM model (LSTM-PTB) with 1500 hidden units per
layer on the PTB [24] data set. On Cifar-10, the batch size for each
worker is 32, and the base learning rate is 0.1; On ImageNet, the
batch size for each worker is also 32, and the learning rate is 0.01;
On PTB, the batch size and learning rate is 20 and 22 respectively.
We set the compression ratios as 1000 and 250 for CNNs and LSTM
respectively. In all compared algorithms, the hyper-parameters are
kept the same and experiments are conducted on a 16-GPU cluster.

6.2 Verification of Assumption 1 and Convergences

To show the soundness of Assumption 1 and the convergence results,
we conduct the experiments with 16 workers to train the models. We
define metrics δ(l) (l = 1, 2, ..., L) for each learnable layer during
the training process at each iteration with Algorithm 1, and

δ(l) =

∥∥∥∑P
p=1 x

p,(l) −∑P
p=1 TopK(xp,(l), k(l))

∥∥∥2

∥∥∥∑P
p=1 x

p,(l) − RandK
(∑P

p=1 x
p,(l), k(l)

)∥∥∥2 , (21)

where xp,(l) = Gp(vt)
(l) + ε

p,(l)
t . Assumption 1 holds if δ(l) ≤ 1

(l = 1, 2, ..., L). We measure δ(l) on ResNet-20, VGG-16 and LSTM-
PTB during training, and the results are shown in Fig. 2. It is seen
that δ(l) < 1 throughout the training process, which implies that
Assumption 1 holds. The evaluated models all converge in a certain
number of epochs, which verifies the convergence of LAGS-SGD.
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Figure 2. The values of δ(l) (7 layers are displayed for better visualization), and the training loss of LAGS-SGD on 16 workers.

Figure 3. The comparison of convergence performance.

6.3 Comparison of Convergence Rates

The convergence comparison under the same number of training
epochs is shown in Fig. 3. The top-1 validation accuracy (the higher
the better) on CNNs and the validation perplexity (the lower the bet-
ter) on LSTM show that LAGS-SGD has very close convergence
performance to SLGS-SGD. Compared to Dense-SGD, SLGS-SGD
and LAGS-SGD both have slight accuracy losses. The problem could
be resolved by some training tricks like momentum correction [23].
The final evaluation results are shown in Table 1. The nearly consis-
tent convergence performance between LAGS-SGD and Dense-SGD
verifies our theoretical results on the convergence rate.

Table 1. Comparison of evaluation performance. Top-1 validation accuracy
for CNNs and perplexity for LSTM-PTB.

Model Dense-SGD SLGS-SGD LAGS-SGD
ResNet-20 0.9092 0.8985 0.9024
VGG-16 0.9278 0.9255 0.9227

ResNet-50 0.7191 0.7211 0.7183
LSTM-PTB 106.7 105.7 109.4

6.4 Wall-clock Time Performance and Discussions

We evaluate the average iteration time with CNNs including VGG-16I
(VGG-16 [31] for ImageNet), ResNet-50 and Inception-v4 on the
large-scale data set ImageNet (over one million training images) on a

16-GPU cluster (four nodes and each node contains four Nvidia Tesla
V100 PCIE-32G GPUs) connected with 10Gbps Ethernet (10GbE).
The servers in the cluster are with Intel CPUs (Xeon E5-2698v3
Dual), Ubuntu-16.04 and CUDA-10.0. The main libraries used in our
experiments are PyTorch-v1.1, OpenMPI-v4.0.0, Horovod-v0.18.1
and NCCL-v2.3.7. The experimental results are shown in Table 2
using the compression ratio of 1000 for gradient sparsification. It
demonstrates that LAGS-SGD performs around 3.3%− 4.5% faster
than SLGS-SGD, which is up to 45% close to the maximum speedup,
and it achieves 22%− 30% improvement over Dense-SGD.

Table 2. The average iteration time in seconds of 1000 running iterations. S1

and S2 indicate the speedups of LAGS-SGD over Dense-SGD and SLGS-SGD
respectively. Smax is the maximum speedup of pipelining over SLGS-SGD.

Model Dense SLGS LAGS S1 S2 Smax

VGG-16I 1.488s 1.003 0.961 1.507 1.044 1.096
ResNet-50 0.570s 0.485s 0.464s 1.228 1.045 1.133
Inception-v4 0.891s 0.749s 0.725s 1.229 1.033 1.204

The achieved speedups of LAGS-SGD over SLGS-SGD in the end-
to-end training wall-clock time are minor, which is caused by three
main reasons. First, as shown in Eq. (20), the improvement of LAGS-
SGD over SLGS-SGD is highly depended on the communication-to-
computation ratio r. In the conducted experiments, r is small because
transferring highly sparsified data under 10GbE is much faster than
the computation time on Nvidia Tesla V100 GPUs, while the proposed
method has potential improvement with increased r such as lower
bandwidth networks. Second, the compression time is not negligible
compared to the communication time. Even we exploit the sampling
method [23] to select the top-k gradients, it is inefficient on GPUs
so that it enlarges the computation time, which makes r smaller. For
example, in the VGG-16I model, the backpropagation time is around
0.391s, while the gradient compression time and the communication
time are about 0.359s and 0.049s respectively. It is worthy to explore
more efficient selection algorithms for gradient sparsification like [26].
Third, the layer-wise communications introduce many startup times
in transferring small tensors which could make the performance even
worse if the communications are not scheduled properly. It could be
possible to exploit the adaptive tensor fusion method [27] to further
improve the scalability. We will leave this as our future work.

7 CONCLUSION

In this paper, we proposed a new distributed optimization algorithm
for deep learning named LAGS-SGD, which exploits a novel layer-
wise adaptive gradient sparsification scheme to embrace the promising
pipelining techniques and gradient sparsification methods. LAGS-
SGD not only takes advantage of the gradient sparsification algo-
rithm to reduce the communication size, but also makes use of the
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pipelining technique to further hide the communication overhead. We
provided detailed theoretical analysis for LAGS-SGD which showed
that LAGS-SGD has convergence guarantees and the consistent con-
vergence rate as the original SGD under a weak analytical assumption.
We ran extensive experiments to verify the soundness of the analytical
assumption and theoretical results. Experimental results on a 16-node
GPU cluster connected with 10Gbps Ethernet interconnect demon-
strated that LAGS-SGD outperforms the state-of-the-art sparsified
S-SGD and Dense-SGD with comparable model accuracy.
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