
Property Invariant Embedding for Automated Reasoning

Miroslav Olšák 1 and Cezary Kaliszyk 2 and Josef Urban 3

Abstract. Automated reasoning and theorem proving have recently
become major challenges for machine learning. In other domains,
representations that are able to abstract over unimportant transfor-
mations, such as abstraction over translations and rotations in vision,
are becoming more common. Standard methods of embedding math-
ematical formulas for learning theorem proving are however yet un-
able to handle many important transformations. In particular, embed-
ding previously unseen labels, that often arise in definitional encod-
ings and in Skolemization, has been very weak so far. Similar prob-
lems appear when transferring knowledge between known symbols.

We propose a novel encoding of formulas that extends existing
graph neural network models. This encoding represents symbols only
by nodes in the graph, without giving the network any knowledge of
the original labels. We provide additional links between such nodes
that allow the network to recover the meaning and therefore cor-
rectly embed such nodes irrespective of the given labels. We test
the proposed encoding in an automated theorem prover based on the
tableaux connection calculus, and show that it improves on the best
characterizations used so far. The encoding is further evaluated on
the premise selection task and a newly introduced symbol guessing
task, and shown to correctly predict 65% of the symbol names.

1 Introduction

Automated Theorem Provers (ATPs) [39] can be in principle used to
attempt the proof of any provable mathematical conjecture. The stan-
dard ATP approaches have so far relied primarily on fast implemen-
tation of manually designed search procedures and heuristics. How-
ever, using machine learning for guidance in the vast action spaces
of the ATP calculi is a natural choice that has been recently shown to
significantly improve over the unguided systems [27, 20].

The common procedure of a first-order ATP system – saturation-
style or tableaux – is the following. The ATP starts with a set of first
order axioms and a conjecture. The conjecture is negated and the for-
mulas are Skolemized and clausified. The objective is then to derive
a contradiction from the set of clauses, typically using some form of
resolution and related inference rules. The Skolemization as well as
introduction of new definitions during the clausification results in the
introduction of many new function and predicate symbols.

When guiding the proving process by statistical machine learn-
ing, the state of the prover and the formulas, literals, and clauses,
are typically encoded to vectors of real numbers. This has been so
far mostly done with hand-crafted features resulting in large sparse
vectors [28, 5, 1, 49, 23, 19], possibly reducing their dimension af-
terwards [6]. Several experiments with neural networks have been

1 University of Innsbruck, Austria, email: mirek@olsak.net
2 University of Innsbruck, Austria and University of Warsaw, Poland, email:

Cezary.Kaliszyk@uibk.ac.at
3 Czech Technical Univ. in Prague, Czechia, email: Josef.Urban@cvut.cz

made recently, in particular based on 1D convolutions, RNNs [16],
TreeRNNs [6], and GraphNNs [9]. Most of the approaches, how-
ever, cannot capture well the idea of a variable occurring multiple
times in the formula and to abstract from the names of the variables.
These issues were first addressed in FormulaNet [50] but even that
architecture relies on knowing the names of function and predicate
symbols. This makes it unsuitable for handling the large number of
problem-specific function and predicate symbols introduced during
the clausification.4 The same holds for large datasets of ATP prob-
lems where symbol names are not used consistently, such as the
TPTP library [44].

In this paper, we make further steps towards the abstraction of
mathematical clauses, formulas and proof states. We present a net-
work that is invariant not only under renaming of variables, but also
under renaming of arbitrary function and predicate symbols. It is also
invariant under replacement of the symbols by their negated versions.
This is achieved by a novel conversion of the input formulas into a
hypergraph, followed by a particularly designed graph neural net-
work (GNN) capable of maintaining the invariance under negation.
We experimentally demonstrate in three case studies that the network
works well on data coming from automated theorem proving tasks.

The paper is structured as follows. We first formally describe our
network architecture in Section 2, and discuss its invariance proper-
ties in Section 3. We describe an experiment using the network for
guiding leanCoP in Section 4, and two experiments done on a fixed
dataset in Section 5. Section 6 contains the results of these three ex-
periments.

2 Network Architecture for Invariant Embedding

This section describes the design and details of the proposed neural
architecture for invariant embeddings. The architecture gets as its in-
put a set of clauses C. It outputs an embedding for each of the clauses
in C, each literal and subterm and each function and predicate sym-
bol present in C. The process consists of initially constructing a hy-
pergraph out of the given set of clauses, and then several message
passing layers on the hypergraph. In Section 2.1 we first explain the
construction of a hypergraph from the input clauses. The details of
the message passing are explained in Section 2.2 .

2.1 Hypergraph Construction

When converting the clauses to the graph, we aim to capture as much
relevant structure as possible. We roughly convert the tree structure
of the terms to a circuit by sharing variables, constants and also
bigger terms. The graph will be also interconnected through special

4 The ratio of such symbols in real-world clausal datasets is around 40%, see
Section 5.2.

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200244

1395

nodes representing function symbols. This not only allows us to ab-
stract the functional symbols but it also shortens the graph diameter,
making it more suitable for the following message passing.

The conversion of the local term tree structures is similar to
“treelets” in [50]. It can possibly discard information about the struc-
ture in rare cases, for instance f(t1, t2, t1) is encoded the same way
as f(t2, t1, t2) as discussed below, but it keeps all the arguments
closely related to the function, contrary to e.g. using currying in func-
tional programming.

Let nc denote the number of clauses, and let the clauses be
C = {C1, . . . , Cnc}. Similarly, let S = {S1, . . . , Sns} denote all
the function and predicate symbols occurring at least once in the
given set of clauses, and T = {T1, . . . , Tnt} denote all the sub-
terms (including variables) and literals occurring at least once in the
given set of clauses. Two subterms are considered to be identical
(and therefore represented by a single node) if they are constructed
the same way using the same functions and variables. If Ti is a nega-
tive literal, the unnegated form of Ti is not automatically added to T
but all its subterms are.

The sets C,S,T represent the nodes of our hypergraph. The hy-
pergraph will also contain two sets of edges: Binary edges Ect ⊂
C×T between clauses and literals, and 4-ary oriented labeled edges
Est ⊂ S×T× (T∪ {T0})2 ×{1,−1}. Here T0 is a specially cre-
ated and added term node disjoint from all actual terms and serving
in the arity-related encodings described below. The label is present
at the last position of the 5-tuple. The set Ect contains all the pairs
(Ci, Tj) where Tj is a literal contained in Ci. Note that this encod-
ing makes the order of the literals in the clauses irrelevant, which
corresponds to the desired semantic behavior.

The set Est is constructed by the following procedure applied to
every literal or subterm Ti that is not a variable. If Ti is a negative
literal, we set σ = 1, and interpret Ti as Ti = ¬Sj(t1, . . . , tn),
otherwise we set σ = −1 and interpret Ti as Ti = Sj(t1, . . . , tn),
where j ∈ {0, . . . , ns}, n is the arity of Sj and t1, . . . , tn ∈ T.
If n = 0, we add (Sj , Ti, T0, T0, σ) to Est. If n = 1, we add
(Sj , Ti, t1, T0, σ) to Est. And finally, if n ≥ 2, we extend Est by
all the tuples (Sj , Ti, tk, tk+1, σ) for k = 1, . . . , n− 1.

This encoding is used instead of just (Sj , Ti, tk, σ) to (reasonably)
maintain the order of function and predicate arguments. For example,
for two non-isomorphic (i.e., differently encoded) terms t1 and t2,
t1 < t2 will be encoded differently than t2 < t1. Note that even this
encoding does not capture the complete information about the argu-
ment order. For example, the term f(t1, t2, t1) would be encoded the
same way as f(t2, t1, t2). We consider such information loss accept-
able. Further note that the sets Ect, Est, and the derived sets labeled
F (explained below) are in fact multisets in our implementation. We
present them using the set notations here for readability.

2.2 Message Passing

Based on the hyperparameters L (number of layers), and dic, dis,
dit for i = 0, . . . , L (dimensions of vectors), we construct vectors
ci,j ∈ R

dic , si,j ∈ R
dis , and ti,j ∈ R

dit corresponding to Cj , Sj , Tj

respectively. First we initialize c0,j , s0,j and t0,j by learned constant
vectors for every type of clause, symbol, or term. By a “type” we
mean an attribute based on the underlying task, see Section 4 for an
example. To preserve invariance under negation (see Section 3), we
initialize all predicate symbols to the zero vector.

After the initialization, we propagate through L message-passing
layers. The i-th layer will output vectors ci,j , si,j and ti,j . The values
in the last layer, that is cL,j , sL,j and tL,j , are considered to be the

output of the network. The basic idea of the message passing layer
is to propagate information from a node to all its neighbors related
by Ect and Est while recognizing the “direction” in which the in-
formation came. After this, we reduce the incoming data to a fixed
dimension using a reduction function (defined below) and propagate
through standard neural layers.5 The symbol nodes si,j need particu-
lar care, because they can represent two predicate symbols at once: if
si,j represents a predicate symbol P , then−si,j represents the pred-
icate symbol ¬P . To preserve the polarity invariance, the symbol
nodes are treated slightly differently.

In the following we first provide the formulas describing the com-
putation. The symbols used in them are explained afterwards.

ci+1,j = ReLU(Bi
c +M i

c · ci,j +M i
ct · red

a∈F
j
ct

(ti,a))

xa,b,c
i = Bi

ts +M i
ts,1 · ti,a +M i

ts,2 · ti,b +M i
ts,3 · ti,c

si+1,j = tanh(M i
s · si,j +M i

ts · red′
(a,b,c,g)∈F

j
st

(g · xa,b,c
i))

ya,b,c,g
i,d = Bi

st +M1,d
st,i · ti,a +M2,d

st,i · ti,b +M3,d
st,i · si,c · g

zi,j,d = M i
st,d · red

(a,b,c,g)∈F
j
ts,d

(ReLU(ya,b,c,g
i,d))

vi,j = M i
tc · red

a∈F
j
tc

(ci,a)

ti+1,j = ReLU(Bi
t +M i

t · ti,j + vi,j +
∑

d∈{1,2,3}
zi,j,d)

Here, all the B symbols represent learnable vectors (biases), and
all the M symbols represent learnable matrices. Note that there is no
bias in the computation of si+1,j in order to preserve the negation
invariance. The sizes of biases and matrices are listed in Fig. 1.

Bi
c : di+1

c Bi
ts : di+1

s Bi
st : d

i+1
t Bi

t : d
i+1
t

M i
c : di+1

c × dic
M i

ct : d
i+1
c × 2dit

M i
s : di+1

s × dis

M i
t : di+1

t × dit
M i

tc : di+1
t × 2dic

M i
ts : di+1

s × 2di+1
s

M i
ts,j : di+1

s × dit
M i

st,j : di+1
t × 2di+1

t

Mk,j
st,i : d

i+1
t × dit

Figure 1. Sizes of learnable biases and matrices for i = 0, . . . , L − 1 and
j, k ∈ {1, 2, 3}.

By a reduction operation redi∈I(ui), where all ui are vectors of
the same dimension n, we mean the vector of dimension 2n ob-
tained by concatenation of maxi∈I(ui) and avgi∈I(ui). The maxi-
mum and average operation are performed point-wise. We also use
another reduction operation red′ defined in the same way except tak-
ing maxi∈I(ui)+mini∈I(ui) instead of just maximum. This makes
red′ commute with multiplication by−1. If a reduction operation ob-
tains an empty input (the indexing set is an empty set), the result is
the zero vector of the expected size.

We construct sets F jc
ct and F jt

tc based on Ect, and F js
st and F jt

ts,d

based on Est, where jc = 1, . . . , nc, js = 1, . . . , ns, jt =
1, . . . , nt, and d = 1, 2, 3. Informally, the set Fj

xy contains the in-
dices related to type y for message passing, given the j-th receiving

5 Mostly implemented using the ReLU activation function.

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning1396

node of type x. Formally:

F j
ct = {a : (Cj , Ta) ∈ Ect}

F j
tc = {a : (Ca, Tj) ∈ Ect}

F j
st = {(a, b, c, g) : (Sj , Ta, Tb, Tc, g) ∈ Est}

F j
ts,1 = {(a, b, c, g) : (Sc, Tj , Ta, Tb, g) ∈ Est}

F j
ts,2 = {(a, b, c, g) : (Sc, Ta, Tj , Tb, g) ∈ Est}

F j
ts,3 = {(a, b, c, g) : (Sc, Ta, Tb, Tj , g) ∈ Est}

Since Est can contain a dummy node T0 on the third and fourth
positions, following F j

st or F j
ts,d in the message passing layer may

lead us to a non-existing vector ti,0. In that case, we just take the zero
vector of dimension dit.

After L message passing layers, we obtain the embeddings cL,j ,
sL,j , tL,j of the clauses Cj , symbols Sj and terms and literals Tj

respectively.

3 Invariance Properties

By the design of the network, it is apparent that the output is invariant
under the names of the symbols. Indeed, the names are used only for
determining which symbol nodes and term nodes should be the same
and which should be different.

It is also worth noticing that the network is invariant under re-
ordering of literals in clauses, and under reordering of clauses. More
precisely, if we reorder the clauses C1, . . . , Cnc , then the values
ci,1, . . . , ci,nc are reordered accordingly, and the values si,j , ti,j do
not change if they still correspond to the same symbols and terms
(they could be also rearranged in general). This property is clear
from the fact that there is no ordered processing of the data, and
the only way how literals are attributed to clauses is through graph
edges which are also unordered. Finally, the network is also designed
to preserve the symmetry under negation.

Theorem 1. If every occurrence of a predicate symbol Sx is replaced
by the predicate symbol ¬Sx in every clause Cj , and every literal
Tj . Then the vectors ci,j , ti,j do not change, the vectors si,j do not
change either for all j �= x, and the vector si,x is multiplied by −1.

Proof. We show this by induction on the layer i. For layer 0, this is
apparent since the Sx is a predicate symbol, so s0,x = �0 = −s0,x.
Now, let us assume that the claim is true for a layer i. We follow the
computation of the next layer. The symbol vectors si are not used
at all in the computation of ci+1,j , so values ci+1,j do not change.
For si+1,j where j �= x, we don’t use si,x in the formula, and the
signs have not changed in F j

st. Therefore, values si+1,j for x �= j do
not change as well. When computing ti+1,j , we multiply every si,c
with the appropriate sign (denoted g in the formula). Since we have
replaced every occurrence of Si by ¬Si and kept the other symbols,
the sign g is multiplied by −1 if and only if c = x, and therefore the
product does not change. Finally, when computing si+1,x, we follow
the formula below:

si+1,x = tanh(M i
s · si,x +M i

ts · red′
(a,b,c,g)∈Fx

st

(g · xa,b,c
i))

where xa,b,c
i depends only on values ti,j , and therefore was not

changed. We can rewrite the formula as

si+1,x = − tanh(M i
s · (−si,x) +M i

ts · red′
(a,b,c,g)∈Fx

st

((−g) · xa,b,c
i))

This is because tanh, addition, matrix multiplication, and the reduc-
tion function red′ are compatible with multiplication by −1. In fact,
except tanh they are all linear, thus compatible with multiplication
by any constant, and tanh is an odd function. The second formula
for si+1,x can be also seen as a formula for minus the value of the
original si+1,x since −si,x is the original value of si,x, and (−g) is
the original value of g. Therefore si+1,x was multiplied by −1.

4 Guiding a Connection Tableaux Prover

One of the most important uses of machine learning in theorem
proving is guiding the inferences done by the automating theorem
provers. The first application of our proposed model is to guide the
inferences performed by the leanCoP prover [37]. This line of work
follows our previous experiments with this prover using the XGBoost
system for guidance [27]. In this section, we first give a brief descrip-
tion of the leanCoP prover, then we explain how we fit our network
to the leanCoP prover, and finally discuss the interaction between
the network and the Monte-Carlo Tree Search that we use.

The leanCoP prover attempts to prove a given first-order logic
problem by first transforming its negation to a clausal form and
then finding a set of instances of the input clauses that is unsatis-
fiable. leanCoP proves the unsatisfiability by building a connection
tableaux, i.e. a tree,6 where every node contains a literal of the fol-
lowing properties.

• The root of the tree is an instance of a given initial clause.
• The children of every non-leaf node form an instance of an input

clause (we call such clauses axioms). Moreover, one of the child
literals must be complementary to the node.

• Every leaf node is complementary to an element of its path.

Figure 2. Example of a closed connection tableaux, adapted from [32].

The tree is built during the proof process which involves automatic
computation of substitutions using unification. Therefore the only de-
cisions that have to be made are “which axiom should be used for
which node?”. In particular, leanCoP starts with the initial clause
and in every step, it selects the left-most unclosed (open) leaf. If the
leaf can be unified with an element of the path, the unification is ap-
plied. Otherwise, the leaf has to be unified with a literal in an axiom,
and a decision, which literal in which axiom to use, has to be made.
The instance of the axiom is then added to the tree and the process
continues until the entire tree is closed (i.e., the prover wins, see Fig.
2), or there is no remaining available move (i.e., the prover loses).
As most branches are infinite, additional limits are introduced and
the prover also loses if such a limit is reached. In our experiments,
this limit is set to 200 steps and we use a version of the prover with
two additional optimizations: lemmata and regularization, originally
proposed by Otten [36].

6 In some implementations this is a rooted forest, as there can be multiple
literals in the start clause.

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning 1397

Figure 3. A state in the leanCoP solving process

To guide the proof search (Fig. 3), i.e. to select the next action,
we use Monte Carlo Tree Search with policy and value, similar to
the AlphaZero [43] algorithm. This means that the trainable model
should take a leanCoP state as its input, and return estimated value
of the state, i.e., the probability that the prover will win, and the ac-
tion logits, i.e., real numbers assigned to every available action. The
action probabilities are then computed from action logits using the
softmax function.

To process the leanCoP state with our network, we first need to
convert it to a list of clauses. If there are A axioms, and a path of
length P , we give the network the A + P + 1 clauses: every axiom
is a clause and every element in the path is a clause consisting of
one literal. The last clause given to the network consists of all the
unfinished goals, both under the current path and in earlier branches.
This roughly corresponds to the set of clauses from which we aim
to obtain the contradiction. The initial labels of the clauses can be
therefore of 3 types: a clause originating from a goal, a member of
a path, or an axiom. Each of these types represent a learnable initial
vector of dimension 4.

The symbols can be of two types: predicates and functions, their
initial value is represented by a single real number: zero for predi-
cates, and a learnable number for functions. For term nodes, variables
in different axioms are always considered to be different, and they
are also considered to be different from the variables in the tableaux
(note that unification performs variable renaming). Variables in the
tableaux are shared among the path and the goals. Every term node
can be of four types: a variable in an axiom, a variable in the tableaux,
a literal, or another term. The term nodes have initial dimension 4.

Afterwards, we propagate through five message passing layers,
with dimensions dic = dit = 32, dis = 64, obtaining c5,j , s5,j and
t5,j . Then we consider all the c5,j vectors, apply a hidden layer of
size 64 with ReLU activation to them, apply the red reduction and
use one more hidden layer of size 64 with ReLU activation. The final
value is then computed by a linear layer with sigmoid activation.

Given the general setup, we now describe how we compute the
logit for an action corresponding to the use of axiom Ci, and com-
plementing its literal Tj with the current goal. Let Ck represents the
clause of all the remaining goals. We concatenate c5,i, t5,j and c5,k,
process it with a hidden layer of size 64 with ReLU activation, and
then use a linear output layer (without the activation function).

With the leanCoP prover, we perform four solving and training
iterations. In every solving iteration, we attempt to solve every prob-
lem in the dataset, generating training data in the meantime. The
training data are then used for training the network, minimizing the
cross-entropy with the target action probabilities and the MSE of the
target value of every trained state. Every solving iteration therefore
produces the target for action policy, and for value estimation, that
are used for the following training.

The solving iteration number 0 (we also call it “bare prover”) is
performed differently from the following ones. We use the prover
without guidance, performing random steps with the step limit 200

repeatedly within a time limit. For every proof we find, we run the
random solver again from every partial point in the proof, estimat-
ing the probabilities that the particular actions will lead to a solution.
This is our training data for action probabilities. In order to get train-
ing data for value, we take all the states which we estimated during
the computation of action probabilities. If the probability of finding a
proof is non-zero in that state, we give it value 1, otherwise, we give
it value 0.

Every other solving iteration is based on the network guidance in
an MCTS setting, analogously to AlphaZero [43] and to the rlCoP
system [27]. In order to decide on the action, we first built a game
tree of size 200 according to the PUCT formula

U(s, a) = log

(
1 +N(s) + cbase

cbase

)
·

√
N(s)

1 +N(s, a)
,

where the prior probabilities and values are given by the network,
and then we select the most visited node (performing a bigstep). This
contrasts to the previous experiment with a simpler clasifier [27]
where every decision node is given 2000 new expansions (in addi-
tion to the expansions already performed on the node). Additionally
a limit of game steps of 200 has been added. The target probabili-
ties of any state in every bigstep is proportional the number of visit
counts of the appropriate actions in the tree search. The target value
in these states is boolean depending on whether the proof was ulti-
mately found or not.

5 DeepMath Experiments

DeepMath is a dataset developed for the first deep learning exper-
iments with premise selection [2] on the Mizar40 problems [25].
Unlike other datasets such as HOLStep [21], DeepMath contains
first-order formulas which makes it more suitable for our network.
We used the dataset for two experiments – premise selection (Sec-
tion 5.1) and recovering symbol names from the structure, i.e. symbol
guessing (Section 5.2). The dataset also contains the equality pred-
icate which we handle the same way as any other binary predicate
(contrary to leanCoP experiments, in which we added equality ax-
ioms for consistency).

5.1 Premise Selection

DeepMath contains 32524 conjectures, and a balanced list of positive
and negative premises for each conjecture. There are on average 8
positive and 8 negative premises for each conjecture. The task we
consider first is to tell apart the positive and negative premises.

For our purposes, we randomly divided the conjectures into 3252
testing conjectures and 29272 training conjectures. For every conjec-
ture, we clausified the negated conjecture together with all its (nega-
tive and positive) premises, and gave them all as input to the network
(as a set of clauses). We kept the hyperparameters from the lean-
CoP experiment. There are two differences. First, there are just two
types of clause nodes: negated conjectures and premises. Second, we
consider just one type of variable nodes.

To obtain the output, we reduce (using the red function introduced
in Section 2) the clause nodes belonging to the conjecture and we do
the same also for each premise. The two results are concatenated
and pushed through a hidden layer of size 128 with ReLU activation.
Finally, an output layer (with sigmoid activation) is applied to obtain
the estimated probability of the premise being positive (i.e., relevant
for the conjecture).

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning1398

5.2 Recovering Symbol Names from the Structure

In addition to the standard premise selection task, our setting is also
suitable for defining and experimenting with a novel interesting task:
guessing the names of the symbols from the structure of the formula.
In particular, since the network has no information about the names
of the symbols, it is interesting to see how much the trained system
can correctly guess the exact names of the function and predicates
symbols based just on the problem structure.

One of the interesting uses is for conjecturing by analogies [15],
i.e., creating new conjectures by detecting and following alignments
of various mathematical theories and concepts. Typical examples in-
clude the alignment between the theories of additive and multiplica-
tive groups, complex and real vector spaces, dual operations such as
join and meet in lattices, etc. The first systems used for alignment
detection have been so far manually engineered [14], whereas in our
setting such alignment is just a byproduct of the structural learning.

There are two ways how a new unique symbol can arise during
the clausification process. Either as a Skolem function, or as a new
definition (predicate) that represents parts of the original formulas.
We performed two experiments based on how such new symbols are
handled. We either ignore them, and train the neural network on the
original (labeled) symbols only, or we give to all the new symbols
the common labels skolem and def. Table 1 shows the frequen-
cies of the five most common symbols in the DeepMath dataset after
the clausification. Note that the newly introduced skolems and defi-
nitions account for almost 40% of the data.

TPTP name def skolem = m1 subset 1 k1 zfmisc 1
Mizar name N/A N/A = Element bool
Frequency 21.5% 17.3% 2.0% 1.7% 1.2%

Table 1. The most common symbols in the clausified DeepMath.

6 Experimental Results

6.1 Guiding leanCoP

We evaluate our neural guided leanCoP against rlCoP [27]. Note
however, that for both systems we use 200 playouts per MCTS deci-
sion so the rlCoP results presented here are different from [27]. We
start with a set of leanCoP states with their values and action proba-
bilities coming from the 4595 training problems solved with the bare
random prover.

After training on this set, the MCTS guided by our network man-
ages to solve 11978 training (160.7% more) and 1322 (159.2% more)
testing problems, in total 13300 problems (160.5% more – Fig. 4).
This is in total 49.1% more than rlCoP guided by XGBoost which in
the same setup and with the same limits solves 8012 training prob-
lems, 908 testing problems, and 8920 problems in total. The im-
provement in the first iteration over XGBoost on the training and
testing set is 49.5% and 45.6% respectively.

Subsequent iterations are also much better than for rlCoP, with
slower progress already in third iteration (note that rlCoP also loses
problems, starting with 6th iteration [26]). The evaluation ran 100
provers in parallel on multiple CPUs communicating with the net-
work running on a GPU. Receiving the queries from the prover takes
on average 0.1 s, while the message-passing layers alone take around
0.12 s per batch. The current main speed issue turned out to be the
communication overhead between the provers and the network. The
average inference step in 100 agents and one network inference took

on average 0.57 sec. It took approximately 6 hours to train the net-
work on a single GPU, and the evaluation took 8 days on a 60 CPU
and 1 GPU for each iteration.

invariant net guided bare iter. 1 iter. 2 iter. 3
overall 5105 13300 14042 14002
training 4595 11978 12648 12642
testing 510 1322 1394 1360
rlCoP bare iter. 1 iter. 2 iter. 3
overall 5105 8920 10030 10959
training 4595 8012 9042 9874
testing 510 908 988 1085

Figure 4. Comparison of the number of problems solved by leanCoP guided
by the invariant-preserving GNN and by XGBoost.

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc
ur
ac
y

train
test

Epoch

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Figure 5. Testing and training accuracy on the premise selection task on the
DeepMath dataset.

6.2 Premise Selection

In the first DeepMath experiment with Boolean classification, we ob-
tained testing accuracy of around 80%. We trained the network in
100 epochs on minibatches of size 50. A stability issue can be spotted
around the epoch 60 from which the network quickly recovered. We
cannot compare the results to the standard methods since the dataset
is by design hostile to them – the negatives samples are based on
the KNN, so KNN has accuracy even less than 50%. Simpler neural
networks were previously tested on the same dataset [30] reaching
accuracy 76.45% .

6.3 Recovering Symbol Names from the Structure

For guessing of symbol names, we used minibatches consisting only
of 10 queries, and trained the network for 50 epochs. When train-
ing and evaluating on the labeled symbols only, the testing accuracy
reached 65.27% in the last epoch. Note that this accuracy is mea-
sured on the whole graph, i.e., we count both the symbols of the con-
jecture and of the premises. When training and evaluating also on the
def and skolem symbols, the testing accuracy reached 78.4% in
the last epoch – see Fig. 7.

We evaluate the symbol guessing (without considering def and
skolem) in more detail on the 3252 test problems7 and their con-
jectures. In particular, for each of these problems and each conjec-
ture symbol, the evaluation with the trained network gives a list of
7 The separation of the data is available at https://github.com/
JUrban/deepmath

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning 1399

https://github.com/JUrban/deepmath
https://github.com/JUrban/deepmath

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50

A
cc
ur
ac
y

Epoch

test
train

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6. Testing and training accuracy on the label guessing task on the
DeepMath dataset.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 5 10 15 20 25 30 35 40 45 50

A
cc
ur
ac
y

train
test

Epoch

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Figure 7. Testing and training accuracy on the label guessing task including
labels def and skolem on the DeepMath dataset.

candidate symbol names ranked by their probability. We first com-
pute the number of cases where the most probable symbol name as
suggested by the trained network is the correct one. This happens in
22409 cases out of 32196, i.e., in 70% cases.8 A perfect naming of
all symbols is achieved for 544 conjectures, i.e., in 16.7% of the test
cases. Some of the most common analogies measured as the common
symbol-naming mistakes done on the test conjectures are shown in
Table 2.

We briefly analyze some of the analogies produced by the net-
work predictions. In theorem XBOOLE 1:259 below, the trained net-
work’s best guess correctly labels the symbols as binary intersection
and union (both with probability ca 0.75). Its second best guess is
however also quite probable (p = 0.2), swapping the union and inter-
section. This is quite common, probably because dual theorems about
these two symbols are frequent in the training data. Interestingly, the
second best guess results also in a provable conjecture, since it easily
follows from XBOOLE 1:25 just by symmetry of equality.
theorem :: XBOOLE_1:25
for X, Y, Z being set holds ((X ∧ Y) ∨ (Y ∧ Z)) ∨ (Z ∧
X) = ((X ∨ Y) ∧ (Y ∨ Z)) ∧ (Z ∨ X)

second guess:
for X, Y, Z being set holds ((X ∨ Y) ∧ (Y ∨ Z)) ∧ (Z ∨
X) = ((X ∧ Y) ∨ (Y ∧ Z)) ∨ (Z ∧ X)

In theorem CLVECT 1:7210 the trained network has consistently
decided to replace the symbols defined for complex vector spaces

8 This differs from the testing accuracy of 65.27% mentioned above, because
we only consider the conjecture symbols here.

9 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/xboole_1#T25

10 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/clvect_1#T72

Table 2. Some of the common analogies

count original Mizar symbol Mizar analogy

129 Relation-like Function-like
69 void empty
53 Abelian add-associative
47 total -defined
45 0 1
40 + *
39 reflexive transitive
38 Function-like FinSequence-like
33 - +
31 trivial empty
28 >= =
27 associative transitive
26 infinite Function-like
25 empty degenerated
24 real natural
23 sigma-multiplicative compl-closed
20 REAL COMPLEX
18 transitive reflexive
18 RelStr TopStruct
18 Category-like transitive
17 = c=
16 initial infinite
16 [Graph-like] Function-like
16 associative Group-like
16 0 {}
16 / *
15 add-associative associative
15 - *
13 width len
13 integer natural
13 in c=
12 ∩ ∪
11 c= >=
10 with infima with suprema
10 ordinal natural
9 closed open
8 sup inf
8 Submodule Subspace
7 Int Cl

with their analogs defined for real vector spaces (i.e., those symbols
are ranked higher). This is most likely because of the large theory
of real vector spaces in the training data, even though the exact the-
orem RLSUB 1:5311 was not among the training data. This again
means that the trained network has produced RLSUB 1:53 as a new
(provable) conjecture.
theorem :: CLVECT_1:72
for V being ComplexLinearSpace for u, v being VECTOR of V
for W being Subspace of V holds
(u in W iff v + W = (v - u) + W)

theorem :: RLSUB_1:53
for V being RealLinearSpace for u, v being VECTOR of V
for W being Subspace of V holds
(u in W iff v + W = (v - u) + W)

Finally, we show below two examples. The first one illustrates on
theorems LATTICE4:1512 and LATTICE4:2313 the network find-
ing well-known dualities of concepts in lattices (join vs. meet, upper-
bounded vs. lower-bounded and related concepts). The second one is
an example of a discovered analogy between division and subtraction
operations on complex numbers, i.e, conjecturing MEMBER 1:13014

from MEMBER 1:7715.
theorem :: LATTICE4:15
for 0L being lower-bounded Lattice
for B1, B2 being Finite_Subset of the carrier of 0L holds
(FinJoin B1) "∨" (FinJoin B2) = FinJoin (B1 ∨ B2)

11 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/rlsub_1#T53

12 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/lattice4#T15

13 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/lattice4#T23

14 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/member_1#T130

15 http://grid01.ciirc.cvut.cz/˜mptp/7.13.01_4.181.
1147/html/member_1#T77

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning1400

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xboole_1#T25
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xboole_1#T25
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/clvect_1#T72
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/clvect_1#T72
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/rlsub_1#T53
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/rlsub_1#T53
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattice4#T15
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattice4#T15
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattice4#T23
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattice4#T23
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/member_1#T130
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/member_1#T130
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/member_1#T77
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/member_1#T77

similar to:
theorem Th23: :: LATTICE4:23
for 1L being upper-bounded Lattice
for B1, B2 being Finite_Subset of the carrier of 1L holds
(FinMeet B1) "∧" (FinMeet B2) = FinMeet (B1 ∨ B2)

theorem :: MEMBER_1:77
for a, b, s being complex number holds
{a,b} -- {s} = {(a - s),(b - s)}

similar to:
theorem :: MEMBER_1:130
for a, b, s being complex number holds
{a,b} /// {s} = {(a / s),(b / s)}

7 Related Work

Early work on combining machine learning with automated theorem
proving includes, e.g., [10, 8, 41]. Machine learning over large for-
mal corpora created from ITP libraries [46, 35, 22] has been used
for premise selection [45, 48, 31, 2], resulting in strong hammer sys-
tems for selecting relevant facts for proving new conjectures over
large formal libraries [1, 4, 12]. More recently, machine learning
has also started to be used to guide the internal search of the ATP
systems. In saturation-style provers this has been done by feedback
loops for strategy invention [47, 18, 40] and by using supervised
learning [19, 34] to select the next given clause [38]. In the sim-
pler connection tableau systems such as leanCoP [37] used here,
supervised learning has been used to choose the next tableau exten-
sion step [49, 23], using Monte-Carlo guided proof search [11] and
reinforcement learning [27] with fast non-deep learners. Our main
evaluation is done in this setting.

Deep neural networks for classification of mathematical formu-
lae were first introduced in the DeepMath experiments [2] with 1D
convolutional networks and LSTM networks. For higher-order logic,
the HolStep [21] dataset was extracted from interactive theorem
prover HOL Light. 1D convolutional neural networks, LSTM, and
their combination were proposed as baselines for the dataset. On this
dataset a Graph-based neural network was for the first time applied to
theorem proving in the FormulaNet [50] work. FormulaNet, like our
work, also represents identical variables by a single nodes in a graph,
being therefore invariant under variable renaming. Unlike our net-
work, FormulaNet glues variables only and not more complex terms.
FormulaNet is not designed specifically for first-order logic, there-
fore it lacks invariance under negation and possibly reordering of
clauses and literals. The greatest difference is however that our net-
work abstracts over the symbol names while FormulaNet learns them
individually.

A different invariance property was proposed in a network for
propositional calculus by Selsam et al. [42]. This network is invari-
ant under negation, order of clauses, and order of literals in clauses,
however this is restricted to propositional logic, where no quantifiers
and variables are present. In the first-order setting, Kucik and Ko-
rovin [30] performed experiments with basic neural networks with
one hidden layer on the DeepMath dataset. Neural networks reap-
peared in state-of-the-art saturation-based proving (E prover) in the
work of Loos et al. [33]. The considered models included CNNs,
LSTMs, dilated convolutions, and tree models. The first practical
comparison of neural networks, XGBoost and Liblinear in guiding
E prover was done by Chvalovsky et al. [6].

An alternative to connecting an identifier with all the formulas
about it, is to perform definitional embeddings. This has for the
first time been done in the context of theorem proving in Deep-
Math [2], however in a non-recursive way. A fully recursive, but
non-deep name-independent encoding has been used and evaluated

in HOLyHammer experiments [24]. Similarity between concepts has
been discovered using alignments, see e.g. [13]. Embeddings of par-
ticular individual logical concepts have been considered as well, for
example polynomials [3] or equations [29].

8 Conclusion

We presented a neural network for processing mathematical formulae
invariant under symbol names, negation and ordering of clauses and
their literals, and we demonstrated its learning capabilities in three
automated reasoning tasks. In particular, the network improves over
the previous version of rlCoP guided by XGBoost by 45.6% on the
test set in the first iteration of learning-guided proving. It also outper-
forms earlier methods on the premise-selection data, and establishes
a strong baseline for symbol guessing. One of its novel uses proposed
here and allowed by this neural architecture is creating new conjec-
tures by detecting and following alignments of various mathematical
theories and concepts. This task turns out to be a straightforward ap-
plication of the structural learning performed by the network.

Possible future work includes for example integration with state-
of-the-art saturation-style provers. An interesting next step is also
evaluation on a heterogeneous dataset such as TPTP where symbols
are not used consistently and learning on multiple libraries – e.g.
jointly on HOL and HOL Light as done previously by [13] using a
hand-crafted alignment system.

9 Acknowledgements

Olšák and Kaliszyk were supported by the ERC Project SMART
Starting Grant no. 714034. Urban was supported by the AI4REASON
ERC Consolidator grant number 649043, and by the Czech project
AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 and the Euro-
pean Regional Development Fund.

REFERENCES

[1] J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban,
‘Premise selection for mathematics by corpus analysis and kernel meth-
ods’, J. Autom. Reasoning, 52(2), 191–213, (2014).

[2] A.A. Alemi, F. Chollet, N. Eén, G. Irving, C. Szegedy, and J. Urban,
‘DeepMath - deep sequence models for premise selection’, in Advances
in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, eds., D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, pp. 2235–2243, (2016).

[3] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. Sutton, ‘Learning
continuous semantic representations of symbolic expressions’, in Pro-
ceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, eds., D. Precup
and Y. Teh, volume 70 of Proceedings of Machine Learning Research,
pp. 80–88. PMLR, (2017).

[4] J. Blanchette, D. Greenaway, C. Kaliszyk, D. Kühlwein, and J. Urban,
‘A learning-based fact selector for Isabelle/HOL’, J. Autom. Reasoning,
57(3), 219–244, (2016).

[5] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban, ‘Hammering to-
wards QED’, J. Formalized Reasoning, 9(1), 101–148, (2016).

[6] K. Chvalovský, J. Jakubuv, M. Suda, and J. Urban, ‘ENIGMA-NG: ef-
ficient neural and gradient-boosted inference guidance for E’, in Auto-
mated Deduction - CADE 27 - 27th International Conference on Auto-
mated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, ed.,
P. Fontaine, volume 11716 of Lecture Notes in Computer Science, pp.
197–215. Springer, (2019).

[7] M. Davis, A. Fehnker, A. McIver, and A. Voronkov, eds. Logic for Pro-
gramming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Pro-
ceedings, volume 9450 of Lecture Notes in Computer Science. Springer,
2015.

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning 1401

[8] J. Denzinger, M. Fuchs, C. Goller, and S. Schulz, ‘Learning from Pre-
vious Proof Experience’, Technical Report AR99-4, Institut für Infor-
matik, Technische Universität München, (1999).

[9] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. Adams, ‘Convolutional
networks on graphs for learning molecular fingerprints’, in Advances
in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, eds., C. Cortes, N. Lawrence, Daniel D.
Lee, M. Sugiyama, and R. Garnett, pp. 2224–2232, (2015).

[10] W. Ertel, J. Schumann, and C. Suttner, ‘Learning heuristics for a
theorem prover using back propagation’, in 5. Österreichische Artifi-
cial Intelligence-Tagung, Igls, Tirol, 28. bis 30. September 1989, Pro-
ceedings, eds., J. Retti and K. Leidlmair, volume 208 of Informatik-
Fachberichte, pp. 87–95. Springer, (1989).

[11] M. Färber, C. Kaliszyk, and J. Urban, ‘Monte Carlo tableau proof
search’, in Automated Deduction - CADE 26 - 26th International Con-
ference on Automated Deduction, Gothenburg, Sweden, August 6-11,
2017, Proceedings, ed., L. de Moura, volume 10395 of Lecture Notes
in Computer Science, pp. 563–579. Springer, (2017).

[12] T. Gauthier and C. Kaliszyk, ‘Premise selection and external provers for
HOL4’, in Certified Programs and Proofs (CPP’15), LNCS. Springer,
(2015). http://dx.doi.org/10.1145/2676724.2693173.

[13] T. Gauthier and C. Kaliszyk, ‘Sharing HOL4 and HOL light proof
knowledge’, In Davis et al. [7], pp. 372–386.

[14] T. Gauthier and C. Kaliszyk, ‘Aligning concepts across proof assistant
libraries’, J. Symb. Comput., 90, 89–123, (2019).

[15] T. Gauthier, C. Kaliszyk, and J. Urban, ‘Initial experiments with sta-
tistical conjecturing over large formal corpora’, in Joint Proceedings
of the FM4M, MathUI, and ThEdu Workshops, Doctoral Program, and
Work in Progress at the Conference on Intelligent Computer Mathe-
matics 2016 co-located with the 9th Conference on Intelligent Com-
puter Mathematics (CICM 2016), Bialystok, Poland, July 25-29, 2016,
eds., A. Kohlhase, P. Libbrecht, B. Miller, A. Naumowicz, W. Neuper,
P. Quaresma, F. Tompa, and M. Suda, volume 1785 of CEUR Workshop
Proceedings, pp. 219–228. CEUR-WS.org, (2016).

[16] C. Goller and A. Küchler, ‘Learning task-dependent distributed rep-
resentations by backpropagation through structure’, in Proceedings of
International Conference on Neural Networks (ICNN’96), Washington,
DC, USA, June 3-6, 1996, pp. 347–352. IEEE, (1996).

[17] G. Gottlob, G. Sutcliffe, and A. Voronkov, eds. Global Conference
on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia, October 16-19,
2015, volume 36 of EPiC Series in Computing. EasyChair, 2015.

[18] J. Jakubův and J. Urban, ‘Hierarchical invention of theorem proving
strategies’, AI Commun., 31(3), 237–250, (2018).

[19] J. Jakubuv and J. Urban, ‘ENIGMA: efficient learning-based inference
guiding machine’, in Intelligent Computer Mathematics - 10th Inter-
national Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017,
Proceedings, eds., H. Geuvers, M. England, O. Hasan, F. Rabe, and
O. Teschke, volume 10383 of Lecture Notes in Computer Science, pp.
292–302. Springer, (2017).

[20] J. Jakubuv and J. Urban, ‘Hammering Mizar by learning clause guid-
ance’, in 10th International Conference on Interactive Theorem Prov-
ing, ITP 2019, September 9-12, 2019, Portland, OR, USA, eds., J. Harri-
son, J. O’Leary, and A. Tolmach, volume 141 of LIPIcs, pp. 34:1–34:8.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019).

[21] C. Kaliszyk, F. Chollet, and C. Szegedy, ‘HolStep: A machine learning
dataset for higher-order logic theorem proving’, in 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
(2017).

[22] C. Kaliszyk and J. Urban, ‘Learning-assisted automated reasoning with
Flyspeck’, J. Autom. Reasoning, 53(2), 173–213, (2014).

[23] C. Kaliszyk and J. Urban, ‘FEMaLeCoP: Fairly efficient machine learn-
ing connection prover’, In Davis et al. [7], pp. 88–96.

[24] C. Kaliszyk and J. Urban, ‘HOL(y)Hammer: Online ATP service for
HOL Light’, Mathematics in Computer Science, 9(1), 5–22, (2015).

[25] C. Kaliszyk and J. Urban, ‘MizAR 40 for Mizar 40’, J. Autom. Reason-
ing, 55(3), 245–256, (2015).

[26] C. Kaliszyk, J. Urban, H. Michalewski, and M. Olšák, ‘Reinforce-
ment learning of theorem proving’, in Advances in Neural Informa-
tion Processing Systems 31, eds., S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, 8836–8847, (2018).

[27] C. Kaliszyk, J. Urban, H. Michalewski, and M. Olšák, ‘Reinforcement

learning of theorem proving’, in Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pp. 8836–8847, (2018).

[28] C. Kaliszyk, J. Urban, and J. Vyskocil, ‘Efficient semantic features for
automated reasoning over large theories’, in IJCAI, pp. 3084–3090.
AAAI Press, (2015).

[29] K. Krstovski and D. Blei, ‘Equation embeddings’, CoRR,
abs/1803.09123, (2018).

[30] A. Kucik and K. Korovin, ‘Premise selection with neural networks and
distributed representation of features’, CoRR, abs/1807.10268, (2018).

[31] D. Kühlwein, T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T. Hes-
kes, ‘Overview and evaluation of premise selection techniques for
large theory mathematics’, in IJCAR, eds., B. Gramlich, D. Miller, and
U. Sattler, volume 7364 of LNCS, pp. 378–392. Springer, (2012).

[32] R. Letz, K. Mayr, and C. Goller, ‘Controlled integration of the cut rule
into connection tableau calculi’, Journal of Automated Reasoning, 13,
297–337, (1994).

[33] S. Loos, G. Irving, C. Szegedy, and C. Kaliszyk, ‘Deep network guided
proof search’, in LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, eds., T. Eiter and
D. Sands, volume 46 of EPiC Series in Computing, pp. 85–105. Easy-
Chair, (2017).

[34] S. Loos, G. Irving, C. Szegedy, and C. Kaliszyk, ‘Deep network guided
proof search’, in LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, eds., T. Eiter and D. Sands, volume 46 of EPiC Series
in Computing, pp. 85–105. EasyChair, (2017).

[35] J. Meng and L. Paulson, ‘Translating higher-order clauses to first-order
clauses’, J. Autom. Reasoning, 40(1), 35–60, (2008).

[36] J. Otten, ‘Restricting backtracking in connection calculi’, AI Commun.,
23(2-3), 159–182, (2010).

[37] J. Otten and W. Bibel, ‘leanCoP: lean connection-based theorem prov-
ing’, J. Symb. Comput., 36(1-2), 139–161, (2003).

[38] R. Overbeek, ‘A new class of automated theorem-proving algorithms’,
J. ACM, 21(2), 191–200, (April 1974).

[39] Handbook of Automated Reasoning (in 2 volumes), eds., J. Robinson
and A. Voronkov, Elsevier and MIT Press, 2001.

[40] S. Schäfer and S. Schulz, ‘Breeding theorem proving heuristics with
genetic algorithms’, In Gottlob et al. [17], pp. 263–274.

[41] S. Schulz, Learning search control knowledge for equational deduction,
volume 230 of DISKI, Infix Akademische Verlagsgesellschaft, 2000.

[42] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. Dill,
‘Learning a SAT solver from single-bit supervision’, in 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, (2019).

[43] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., ‘Mastering
the game of go without human knowledge’, Nature, 550(7676), 354,
(2017).

[44] G. Sutcliffe, ‘The TPTP world - infrastructure for automated reason-
ing’, in LPAR (Dakar), eds., Edmund M. Clarke and Andrei Voronkov,
volume 6355 of LNCS, pp. 1–12. Springer, (2010).

[45] J. Urban, ‘MPTP - Motivation, Implementation, First Experiments’, J.
Autom. Reasoning, 33(3-4), 319–339, (2004).

[46] J. Urban, ‘MPTP 0.2: Design, implementation, and initial experiments’,
J. Autom. Reasoning, 37(1-2), 21–43, (2006).

[47] J. Urban, ‘BliStr: The Blind Strategymaker’, In Gottlob et al. [17], pp.
312–319.

[48] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskočil, ‘MaLARea SG1 -
Machine Learner for Automated Reasoning with Semantic Guidance’,
in IJCAR, eds., A. Armando, P. Baumgartner, and G. Dowek, volume
5195 of LNCS, pp. 441–456. Springer, (2008).

[49] J. Urban, J. Vyskočil, and P. Štěpánek, ‘MaLeCoP: Machine learning
connection prover’, in TABLEAUX, eds., K. Brünnler and G. Metcalfe,
volume 6793 of LNCS, pp. 263–277. Springer, (2011).

[50] M. Wang, Y. Tang, J. Wang, and J. Deng, ‘Premise selection for theorem
proving by deep graph embedding’, in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, eds.,
I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, pp. 2786–2796, (2017).

M. Olšák et al. / Property Invariant Embedding for Automated Reasoning1402

http://dx.doi.org/10.1145/2676724.2693173

	Introduction
	Network Architecture for Invariant Embedding
	Hypergraph Construction
	Message Passing

	Invariance Properties
	Guiding a Connection Tableaux Prover
	DeepMath Experiments
	Premise Selection
	Recovering Symbol Names from the Structure

	Experimental Results
	Guiding leanCoP
	Premise Selection
	Recovering Symbol Names from the Structure

	Related Work
	Conclusion
	Acknowledgements

