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Abstract. Sequential Monte Carlo (SMC) and Variational Infer-
ence (VI) are two families of approximate inference algorithms for
Bayesian latent variable models. A body of recent work has focused
on constructing a variational family of filtered distributions using
SMC. Inspired by this work, we introduce Particle Smoothing Varia-
tional Objectives (SVO), a novel backward simulation technique and
variational objective constructed from a smoothed approximate pos-
terior. Our method sub-samples auxiliary random variables to en-
hance the support of the proposal distribution and increase particle
diversity. We demonstrate our approach on three benchmark latent
nonlinear dynamical systems tasks. SVO consistently outperforms
filtered objectives when given fewer Monte Carlo samples.

1 Introduction

Latent variable models for time series are often formalized as a set
of ordered, discrete-time measurements taken on a hidden dynami-
cal system. A collection of recent work is concerned with inferring
both the latent trajectories and latent dynamics of these systems when
transition and emission functions are nonlinear [2, 5, 11, 16, 23, 24,
27]. Variational Inference (VI) and Sequential Monte Carlo (SMC)
are two families of approximate inference algorithms for non-linear
or non-conjugate Bayesian models. Recently, connections have been
established between VI and SMC by using the latter to define a flex-
ible variational family for hidden Markov models [19, 21, 25].

Standard variational SMC methods construct a filtered estimate of
the log marginal likelihood which is used to specify a variational ob-
jective by forming a lower bound to the evidence [19, 21, 25, 26, 29].
This enables model learning and inference at the same time. In this
approach, however, both the state-sequence and the objective are es-
timated using information only up to the current time point. This re-
sults in degraded posterior estimations when there exists significant
observation noise or the system is partially observable. In contrast,
particle smoothing methods generate a state-sequence conditioned
on future observations [1, 3, 8, 15, 28]. This leads to improved in-
ferred trajectories when the hidden dynamical system is described by
a highly nonlinear or chaotic differential equation [11, 27]. For exam-
ple, neurobiologists measuring a single-dimensional voltage trace are
often interested in recovering nonlinear latent dynamics and trajec-
tories that can be characterized using systems of coupled differential
equations such as the Hodgkin Huxley [12]. However, two limita-
tions of the existing particle smoothing literature are as follows:
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i) Learning the model parameters that define the transition and
emission functions is a distinct task typically handled using an
EM algorithm.

ii) The majority of particle smoothing methods do not directly pro-
vide an unbiased estimate of the marginal likelihood [3, 15],
thus making the construction of a smoothing-based variational
objective a challenge.

We highlight the contributions of this paper as follows:

• Particle Smoothing Variational Objective: We propose Smooth-
ing Variational Objectives (SVO), a framework for performing VI
on nonlinear hidden Markov models. SVO jointly estimates the
model parameters and the marginal likelihood from the smoothed
state-sequence, analogous to the approach of the variational auto-
encoder. SVO is a novel recursive backward-sampling algorithm
and approximate smoothing posterior defined through a subsam-
pling process. This augments the support of the proposal and
boosts particle diversity.

• Unbiased Likelihood Estimator: We prove that SVO generates
an unbiased estimate of the marginal likelihood from the back-
ward state-sequence. We explore the ability of SVO to recover
nonlinear embeddings, transition and emission functions from
only the observations. To quantify the learned dynamics, we re-
peatedly apply the trained transition function in the target to prop-
agate the system forwards without input data and then use the
emission function to make observation predictions. We show that
our smoothed objective generates an improved estimate of the la-
tent state as measured by the ability of the target to more accu-
rately predict observations using the dynamics learned.

• Applications: We demonstrate our approach on to three bench-
mark latent nonlinear dynamical systems tasks, including single
cell voltage trace data. SVO outperforms filtered objectives when
given fewer Monte Carlo samples on all three tasks.

2 Preliminaries

Inference in State Space Models Let X ≡ {x1, . . .xT } denote
a sequence of T observations of a R

dx -dependent random variable.
State space models (SSMs) posit a generating process for X through
a sequence Z ≡ {z1, . . . zT }, zt ∈ R

dz of unobserved latent vari-
ables, that transitions according to a stochastic evolution law. The
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Figure 1. Summary of the Fitzhugh-Nagumo results: the observation is one-dimensonal while the phase space and latent variables are two-dimensional; (left)
ground truth dynamics and trajectories for the original system; (center) latent dynamics and trajectories inferred by SVO; Initial points (denoted by markers)
located both inside and outside the limit cycle are topologically invariant in the SVO reconstruction; (right) R2

k for various models on the dimensionality
expansion task. Results are averaged over 3 random seeds.

joint density then factorizes:

pθ(X,Z) = Fθ(Z) ·
T∏

t=1

gθ(xt|zt) , (1)

where gθ(x|z) is an observation model, and Fθ(Z) is a prior repre-
senting the evolution in the latent space. In this work, we focus on
the case of Markov evolution with Gaussian conditionals:

Fθ(Z) = f1(z1)
T∏

t=2

fθ(zt|zt−1) ,

f1 = N (
ψ1,Q1

)
, zt ∼ N (

ψθ(zt−1), Q
)
. (2)

Inference in SSMs requires marginalizing the joint distribution with
respect to the hidden variables Z,

log pθ(X) =

∫
log pθ(X,Z) dZ. (3)

This procedure is intractable when ψθ(zt) is a nonlinear function or
when gθ(xt|zt) is non-Gaussian.

Variational Inference VI describes a family of techniques for ap-
proximating log pθ(X) when marginalization is analytically impos-
sible. The idea is to define a tractable distribution qφ(Z|X) and then
optimize a lower bound to the log-likelihood:

log pθ(X) ≥ LELBO(θ, φ,X) = E
q

[
log

pθ(X,Z)

qφ(Z|X)

]
. (4)

Tractability and expressiveness of the variational approxima-
tion qφ(Z|X) are contrasting goals. Auto Encoding Variational
Bayes [14] (AEVB) is a method to simultaneously train qφ(Z|X) and
pθ(X,Z). The expectation value in Eq. (4) is approximated by sum-
ming over samples from the recognition distribution; which in turn
are drawn by evaluating a deterministic function of a φ-independent
random variable (the reparameterization trick). Building upon this,
the Importance Weighted Auto Encoder [4, 6] (IWAE) constructs
tighter bounds than the AEVB through mode averaging as opposed
to mode matching. The idea to achieve a better estimate of the log-
likelihood is to draw K samples from the proposal and to average
probability ratios.

Filtering SMC SMC is a family of techniques for inference
in SSMs with an intractable joint. Given a proposal distribu-
tion qφ(Z|X), these methods operate sequentially, approximating
pθ(z1:t|x1:t) (the target) for each t by performing inference on a
sequence of increasing probability spaces. K samples (particles) are
drawn from a proposal distribution and used to compute importance
weights:

zkt ∼ qφ(z
k
t |zkt−1,xt) , wk

t :=
fθ(z

k
t |zkt−1)gθ(xt|zkt )

qφ(zkt |zkt−1,xt)
. (5)

A resampling strategy ensures that particles remain on regions of
high probability mass. SMC accomplishes this goal by resampling
the particle indices (ancestors) according to their weights at the pre-
vious time step:

ak
t−1 ∼ CATEGORICAL(·|w̄1

t−1, · · · , w̄K
t−1) , (6)

wk
t :=

fθ(z
k
t |za

k
t−1

t−1 )gθ(xt|za
k
t−1

t )

qφ(zkt |z
ak
t−1

t−1 ,xt)
.

The posterior can be evaluated at the final time step. The functional
integral is approximated below where δzk

1:T
(z1:T ) is the Dirac mea-

sure:

K∑
k=1

w̄k
T δzk

1:T
(z1:T ) where w̄k

T = wk
T /

K∑
j=1

wj
T . (7)

The SMC algorithm is deterministic conditioning on (z1:K1:T , a1:K
1:T−1)

[21, 19]. This implies that the proposal density can be reparameter-
ized to act as a variational distribution that can be encoded:

QSMC(Z
1:K
1:T ,A1:K

1:T−1) :=

(
K∏

k=1

q1,φ(z
k
1)

)
(8)

×
T∏

t=2

K∏
k=1

qt,φ(z
k
t |za

k
t−1

1:t−1) · CATEGORICAL(ak
t−1|w̄1:K

t−1).

An unbiased estimate for the marginal likelihood and the correspond-
ing objective are defined below:

ẐSMC :=

T∏
t=1

[ 1

K

K∑
k=1

wk
t

]
, LSMC := E

QSMC

[
log ẐSMC

]
. (9)
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Figure 2. ELBO convergence across epochs for SVO using exclusive parameters θ, φ and shared parameters θ, ϕ, φ; (left) log ẐSV O across epochs as
K increases using shared evolution network; (center) log ẐSV O across epochs as K increases using independent evolution networks; (right) log ẐSV O

convergence for shared vs independent evolution networks with K = 16 highlighting faster convergence to a higher ELBO.

Particle Smoothing with Backward Simulation Forward Filter-
ing Backward Simulation (FFBSi) [8] is an approach to approximate
the smoothing posterior which admits the following factorization

p(z1:T |x1:T ) = p(zT |x1:T )

T−1∏
t=1

p(zt|zt+1:T ,x1:T ) , (10)

where, by Markovian assumptions, the conditional backward kernel
can be written as:

p(zt|zt+1,x1:T ) ∝ p(zt|x1:t)f(zt+1|zt). (11)

FFBSi begins with filtering to obtain {z1:K1:T , w1:K
1:T } which provides

a particulate approximation to the backward kernel:

p(zt|zt+1,x1:T ) ≈
K∑
i=1

wk
t|t+1δzit(zt), (12)

where wi
t|t+1 =

wi
tf(zt+1|zit)

K∑
j=1

wj
tf(zt+1|zjt)

.

Backward simulation generates states in the reverse-time direction
conditioning on future states by choosing z̃t = zit with probability
wi

t|T . This corresponds to a discrete resampling step in the backward
pass. As a result the backward kernel is approximated from particles
that are drawn from the proposal q(zt|zt−1) in the forward pass.
The FFBSi can only generate trajectories suppported by the forward
filtering particles, thus limiting the expressiveness of the variational
distribution.

3 Related Work

AESMC [19], FIVO [21] and VSMC [25] are three closely related
methods that form a lower bound to the log marginal likelihood
which is estimated using filtering SMC, however without condition-
ing the latent state on future observations they may fail to capture
long-term dependencies. VSMC draws a single sample at the final
time step to produce a trajectory from the corresponding ancestral
path. While this heuristic produces one sample conditioned on all
observations, the resulting path is not used to construct the surrogate
ELBO which is filtered.

Particle Smoothing Particle smoothing methods include the pre-
viously discussed FFBSi [8] and the Two Filter Smoother (TFS) [28].
The FFBSi defines a posterior over an entire trajectory and gives a

way to sample the trajectory backward in time. In contrast, TFS de-
fines a posterior only at a single time step. Additionally they differ
in their methods. For TFS, the backward filtering is independent of
the forward filtering. However, our backward simulation is condi-
tional on forward filtering, where the subweight depends on the for-
ward system. Unlike standard particle smoothing methods, SVO is a
framework for performing VI on state-space models, jointly for the
states and the model itself, analogous to the approach of the varia-
tional auto-encoder [14]. The proposal and the target distribution are
trained from the observation sequence.

Computational Complexity Particle smoothing methods incur a
cost that is quadratic in the number of particles due to the pair-
wise interactions to be defined in Eq (13). For SVO, smoothing in-
curs a cost of O(TK2Mdz) operations in contrast to O(TGdz)
in AESMC (where G denotes the number of particles). For a fair
comparison in the experiments to follow we give AESMC the cor-
responding extra particles. Empirically, SVO with small K and M
(4 or 8) can provide a more accurate posterior approximation than
AESMC with a much larger value of G. For the FHN task, SVO with
K = M = 32 outperforms AESMC with G = 1024 (see Fig 1); For
the Lorenz task SVO with K = M = 2 also outperforms AESMC
with G = 256 (see Fig 3). SVO also works with larger T , K, and
M (with T = 1000 on the Allen data). All the experiments were
run on 16 core CPU machines. Despite the O(TK2M) complexity,
the main cost is evaluating the neural network ψ(·) and its gradients
for f(·|zjt−1) = N (·|ψ(zjt−1),Σ). The computation is O(TK) here
and O(TKM) in the emission term. The O(TK2M) is fast relative
to the evaluation of the neural network.

Variational Methods Two variational smoothing methods for in-
ference in non-conjugate SSMs are GfLDS [7, 2] and VIND [11].
These methods simultaneously train generative models and varia-
tional approximations analogous to proposal and target distributions
in SVO. GfLDS is a generative model and approximation for linear
latent dynamics together with nonlinear emission densities. Building
upon this, VIND is governed by nonlinear latent dynamics and emis-
sions. GfLDS and VIND both require inverting a block-tridiagonal
matrix which mixes components of state space through the inverse
covariance. This incurs a complexity of O(Td3z) where T is the
length of the time series and dz is the state dimension. An alterna-
tive approach is to directly modify the target distribution in SMC to
achieve smoothing [10]. TVSMC [18] and SMC-Twist [20] augment
the intermediate target distribution with a twisting function, which
in turn is approximated with deterministic algorithms such as tem-
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poral difference learning and Laplace approximation. When applied
to nonlinear time series it was reported that TVSMC underperforms
relative to filtering using VSMC [18].

4 Particle Smoothing Variational Objectives

We will utilize the smoothing posterior in Eq. (10) to define a back-
ward proposal distribution and sample trajectories to construct a vari-
ational objective. We propose a novel approximate posterior to over-
come the limitation of the FFBSi by augmenting the support of the
backward kernel through the subsampling of auxiliary random vari-
ables.

Overview We provide an overview of Particle Smoothing Varia-
tional Objectives (SVO) before presenting a detailed derivation and
description in Algorithm 1 (we have annotated the overview with
steps from the algorithm). Smoothing is based on filtering SMC
which provides the forward weights and particles {z1:K1:T , w1:K

1:T } (step
1). With outputs from filtering SMC, SVO proceeds to generate back-
ward trajectories. This is done by approximating a sequence of back-
ward posteriors through a process of self-normalized importance
sampling. At time T , for each trajectory we will draw M subpar-
ticles from a continuous-domain conditional kernel (step 3). While
the final time step requires some care, these subparticles will be used
to initialize subweights relative to the conditional kernel (step 4). The
subweights in turn, are used to update the corresponding particle by
drawing a backward index from a resampling process (step 5). The
trajectory is initialized with the selected particle and extended se-
quentially (step 6). SVO iterates by drawing M subparticles from a
continuous-domain backward proposal for each of the K trajectories
at the current time step (step 9). SVO then computes subweights for
each subparticle (step 10) in order to select a single backward particle
from the set of M candidates (step 11). Finally the backward kernel
is evaluated using the chosen resampled particle (step 13). The out-
put of this procedure is a collection of particle trajectories from the
smoothing posterior that are used to define a variational objective.

Objective Function We introduce a continuous reverse-dynamics
proposal q(zt|zt+1,x1:T ) that is used to sample M subparticles for
each k ∈ {1, · · · ,K}, z̃k,1:Mt ∼ q(zt|z̃kt+1,x1:T ). These samples
are used to define subweights as follows

p(z̃k,mt |z̃k,mt+1 ,x1:T )/q(z̃
k,m
t |z̃kt+1,x1:T )

∝
∫

p(zt−1, z̃
k,m
t |x1:t−1)dzt−1

f(z̃kt+1|z̃k,mt )g(xt|z̃k,mt )

q(z̃k,mt |z̃kt+1,x1:T )

≈
[

K∑
j=1

w̄j
t−1f(z̃

k,m
t |zjt−1)

]
f(z̃kt+1|z̃k,mt )g(xt|z̃k,mt )

q(z̃k,mt |z̃kt+1,x1:T )

:= ωk,m
t|T . (13)

A single particle is selected by sampling an index with
probability proportional to the subweight ωt|T : bkt ∼
CATEGORICAL(bkt |ωk,1

t|T , · · · , ωk,M
t|T ), z̃kt ← z̃

k,bkt
t . This modi-

fied particulate distribution now generates hidden states from a
continuous domain given the future state and all observations.
Repeating this process sequentially in the reverse-time direction
produces K i.i.d. sample trajectories, {z̃1:K1:T } (see Algorithm 1).

The approximate posterior and variational objective are defined
below via Algorithm 1. Note again that the following expectations

Algorithm 1: Particle Smoothing Variational Objectives

1. Perform forward filtering to obtain {z1:K1:T , w1:K
1:T }

2. Initialization. For k = 1, · · · ,K :

3. Sample M subparticles: {z̃k,mT }Mm=1 ∼ q(·|x1:T )

4. Initialize subweight for each subparticle:

ωk,m
T |T ∝

[∑
j

w̄j
T−1f(z̃

k,m
T |zjT−1)

] g(xT |z̃m,k
T )

q(z̃k,mT |x1:T )

5. Sample index: bkT ∼ CATEGORICAL(·|ωk,1
T |T , · · · , ωk,M

T |T )

6. Set backward particle: z̃kT ← z̃
k,bmt
T , ωk

T |T ← ω
k,bkT
T |T

7. Evaluate the backward proposal:
Ωk

T := M · ωk
T |T · q(z̃kT |x1:T ),

8. Backward Simulation.
For t = T − 1, · · · , 1 and k = 1, · · · ,K:

9. Sample M subparticles from reverse-dynamics proposal:
{z̃k,mt }Mm=1 ∼ q(·|z̃kt+1,x1:T )

10. Compute subweights:

ωk,m
t|T ∝ ∑

j

w̄j
t−1f(z̃

k,m
t |zjt−1)×

f(z̃kt+1|z̃k,m
t )g(xt|z̃k,m

t )

q(z̃
k,m
t |z̃kt+1,x1:T )

11. Sample index. bkt ∼ CATEGORICAL(·|ωk,1
t|T , · · · , ωk,M

t|T )

12. Set backward particle: z̃kt ← z̃
k,bmt
t , ωk

t|T ← ω
k,bkt
t|T

13. Evaluate the backward proposal:
Ωk

t = M · ωk
t|T · q(z̃kt |z̃kt+1,x1:T )

14. return

z̃1:K1:T , L̂SV O(x1:T ) := log

(
1

K

K∑
k=1

p(z̃k1:T ,x1:T )∏T
t=1 Ω

k
t

)

are also conditioned on the forward filtering system.

LSV O := E
q

[
log ẐSV O

]
, ẐSV O :=

1

K

K∑
k=1

p(z̃k1:T ,x1:T )

q(z̃k1:T |x1:T )
,

(14)
where q(z̃k1:T |x1:T ) :=

MT · ωk
T |T · q(z̃kT |x1:T )

T−1∏
t=1

[
ωk
t|T · q(z̃kt |z̃kt+1,x1:T )

]
. (15)

We note that while the sequence of target distributions is filtered, our
objective is constructed using samples from a smoothing posterior.
This heuristic facilitates smoothing the target when performing VI
to simultaneously train p(Z|X) and q(Z|X) by pulling p(Z|X) →
q(Z|X). This functional dependence motivates sharing the transition
function between proposal and target.

Theorem 1. ẐSV O is an unbiased estimate of p(x1:T ).

E
Q(ẑ

1:K,1:M
1:T

)

[
1

K

K∑
k=1

p(ẑk1:T ,x1:T )∏T
t=1 Ω

K
t

]
= p(x1:T ),

where Q(ẑ1:K,1:M
1:T ) denotes the sampling distribution of ẑ1:M1:T ac-

cording to Algorithm 1.
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Proof. We will define auxiliary variables λ and distributions q(λ|x),
q(z|λ, x), and r(λ|z, x) such that

ẐSV O ≡ p̂(x) =
p(x, z)r(λ|z, x)

q(z, λ|x) =
p(x, z)r(λ|z, x)
q(z|λ, x)q(λ|x) ,

where z, λ ∼ q(z, λ|x). For a treatment of auxiliary random vari-
ables see [6, 17]. Here the auxiliary latent variables are the unselected
subparticles,

λ = {z̃¬b1:K1:T
1:T }.

For convenience, we omit the conditioning on the forward system.
To further simplify notation, we will rearrange particles to omit the

backward ancestor indices by defining ẑk,1t ← z̃
k,bkt
t , ω̂k

t|T ← ω
k,bkt
t|T

and ẑk,2:Mt ← z̃
k,¬bkt
t , ω̂k,2:M

t|T ← ω
k,¬bkt
t|T . By the linearity of expec-

tation, it suffices to show the case of K = 1 (as a result, for clarity,
we will omit k, in the superscripts):

Eẑ1:M
1:T

[
p(ẑ11:T ,x1:T )∏T

t=1 Ωt

]
= p(x1:T )

We begin by expressing the generative distribution of the sampling
process for the rearranged particles ẑ1:M1:T as factorizing:

Q(ẑ1:M1:T |x1:T ) = Q(ẑ1:MT |x1:T )

T−1∏
t=1

Q(ẑ1:Mt |ẑ1t+1,x1:T ).

Consider the sampling process last time step,

Step 1. Sample {z̃mT }Mm=1 ∼ q(·|x1:T ), and compute the associ-
ated weights ω̃1:M

T |T as outlined in Algorithm 1
Step 2. Sample bT ∼ CATEGORICAL(·|ω̃1

T |T , · · · , ω̃M
T |T )

Step 3. Set ẑ1T ← z̃bTT , ẑ2:MT ← z̃¬bTT , and ω̂1
T |T ← ω̃bT

T |T ,

ω̂2:M
T |T ← ω̃¬bTT |T

The marginal distribution of ẑ1:MT is obtained as follows:

Q(ẑ1:MT |x1:T )

=

∫ ⎡
⎢⎣ M∏

m=1

q(z̃mT |x1:T )︸ ︷︷ ︸
Step 1

⎤
⎥⎦
⎡
⎢⎣ M∑

bT=1

p(bT |z̃1:MT )︸ ︷︷ ︸
Step 2

p(ẑ1:MT |z̃1:MT , bT )︸ ︷︷ ︸
Step 3

⎤
⎥⎦ dz̃1:MT

=
M∑

bT=1

∫ [
M∏

m=1

q(z̃mT |x1:T )

]
·

ω̃bT
T |T

ω̃bT
T |T +

∑
i∈¬bT ω̃i

T |T

· δ(ẑ1T − z̃bTT )δ(ẑ2:MT − z̃¬bTT )dz̃1:MT

Collapsing all possible cases to bT = 1 by symmetry,

= M

∫ [
M∏

m=1

q(z̃mT |x1:T )

]
· ω̃1

T |T
ω̃1
T |T +

∑
i=2:M ω̃i

T |T

· δ(ẑ1T − z̃1T )δ(ẑ
2:M
T − z̃2:MT )dz̃1:MT

Integrating over the Dirac measures:

= M

[
M∏

m=1

q(ẑmT |x1:T )

]
ω̂1
T |T∑M

i=1 ω̂
i
T |T

,

Similarly, we have the following for t = 1, . . . , T − 1,

Q(ẑ1:Mt |ẑ1t+1,x1:T ) =

[
M∏

m=1

q(ẑmt |ẑ1t+1,x1:T )

]
·M · ω̂1

t|T∑M
m=1 ω̂

m
t|T

.

Therefore,

Q(ẑ1:M1:T |x1:T )

=

[
T∏

t=1

Ωt

]
︸ ︷︷ ︸
q(z|λ,x)

·
M∏

m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
︸ ︷︷ ︸

q(λ|x)

.

Now, define the target distribution to be:

P (ẑ1:M1:T ,x1:T ) = p(ẑ11:T ,x1:T )r(λ|x1:T , z1:T )

where

r(λ|x1:T , z
1:M
1:T ) = q(λ|x1:T )

=

M∏
m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
.

Overall,

EQ(ẑ1:M
1:T

)[ẐSV O] = EQ(ẑ1:M
1:T

)

[
p(ẑ11:T ,x1:T )∏T

t=1 Ωt

]

Writing the augmented target and proposal explicitly:

= E
Q

⎡
⎢⎢⎣
p(ẑ11:T ,x1:T )×

M∏
m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
T∏

t=1

Ωt ×
M∏

m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
⎤
⎥⎥⎦

= E
Q

[
P (ẑ1:M1:T ,x1:T )

Q(ẑ1:M1:T )

]

=

∫
P (ẑ1:M1:T ,x1:T )dẑ

1:M
1:T

=

∫
p(ẑ11:T ,x1:T )

×
[∫ M∏

m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
dẑ2:M1:T

]
dẑ11:T

=

∫
p(ẑ11:T ,x1:T )dẑ

1
1:T

= p(x1:T ).

Implementation Details

In the forward filtering pass, we define the proposal distribution as
follows:

qφ,ϕ(z
k
1:T |x1:T ) ∝ fϕ(z

k
1)︸ ︷︷ ︸

initial state

T∏
t=1

hφ(z
k
t |xt)︸ ︷︷ ︸

encoding

(16)

T∏
t=2

CATEGORICAL(ak
t−1|w̄1:K

t−1)︸ ︷︷ ︸
resampling

fϕ(z
k
t |za

k
t−1

t−1 )︸ ︷︷ ︸
transition

,

where the proposal density factorizes into evolution and encoding
functions,

fϕ(zt|zt−1) = N (ψ(zt−1),Σ), hφ(zt|xt) = N (γ(xt),Λ).
(17)
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Figure 3. Summary of the Lorenz results: (left) latent trajectories inferred from nonlinear 10D observations; (center) log ẐSV O as K, M increase (legend on
the right). Larger K,M produce higher ELBO values; (right) R2

k on the dimensionality reduction task illustrating near-perfect reconstruction at 20 steps ahead
on the validation set. Results averaged over 3 random seeds.

We define ψ : Rdz → R
dz and γ : Rdx → R

dz as nonlinear time
invariant functions represented with deep neural networks. The co-
variances Σ and Λ are taken as time invariant trainable parameters or
nonlinear functions of the latent space. This proposal choice allows
the transition term of the inference network fϕ(zt|zt−1) to share the
parameters ϕ defining {ψ,Σ} with the transition term fϕ(zt|zt−1)
of the target defined in Eq. (1) [19, 21, 25]. The evolution term of
the variational posterior is exact, retaining both tractability and ex-
pressiveness.

The transition and emission densities are specified as follows:

fϕ(zt|zt−1) = N (ψ(zt−1),Σ), gθ(xt|zt) = N (υ(zt),Γ) .
(18)

The decoding term is defined using a deterministic nonlinear rate
function υ : R

dz → R
dx represented with a deep network and a

noise model that need not be conjugate. Without loss of generality
we consider a Gaussian emission density. The backward proposal
defining the smoothing distribution below

q(zt|zt+1,x1:T ) ∝ r(zt|ζ(zt+1))e(zt|χ(x1:T )), (19)

is specified using nonlinear time invariant functions ζ : Rdz → R
dz

and χ : RdX → R
dz which we take as deep networks.

5 Experimental Results

In order to quantify the performance of the trained dynamics, we
compute the k-step mean squared error (MSE) and its normalized
version, the R2

k. To do so, the trained transition function is applied
to the latent state without any input data over a rolling window of k
steps into the future. The emission function is then used to obtain a
prediction x̂t+k which we compare with the observation xt+k.

MSEk =

T−k∑
t=1

(xt+k − x̂t+k)
2 (20)

R2
k = 1− MSEk∑T−k

t=1 (xt+k − x̄k)
2
,

where x̄k is the average of xk+1:T . We note that the ELBO is not a
performance statistic that generalizes across models. In contrast, the
R2

k provides a metric to quantify the inferred dynamics. This proce-
dure is defined in [11]. In all experiments, SVO is only given access
to the observation sequence, and not the equations that govern the
nonlinear systems. The latent trajectories and dynamics, transition,
emission and encoding functions are all inferred.

Fitzhugh-Nagumo

The Fitzhugh-Nagumo (FN) system is a two dimensional simplifi-
cation of the Hodgkin-Huxley model. The FN provides a geometric
interpretation of the dynamics of spiking neurons and is described by
two independent variables Vt and Wt with cubic and linear functions,

V̇ = V − V 3/3−W + Iext (21)

Ẇ = a(bV − cW ).

Eq. (21) was integrated over 200 time points with Iext = 1 held
constant and a = 0.7, b = 0.8, c = 0.08. The initial state was
sampled uniformly over [−3, 3]2 to generate 100 trials using 66 for
training, 17 for validation and 17 for testing. We emphasize that di-
mensionality expansion is intrinsically harder than dimensionality re-
duction due to a loss of information. A one-dimensional Gaussian
observation is defined on Vt with xt = N (Vt, 0.01). SVO is used
to recover the two dimensional phase space and latent trajectories
zt = (Vt,Wt) of the original system. This task requires using in-
formation from future observations to correctly infer the initial state.
Fig. 1 shows the results of the FN experiment. The left panel displays
the original system. The center panel displays the learned dynamics
and inferred trajectories on the test set using SVO to perform di-
mensionality expansion. Initial points (denoted with markers) located
both inside and outside of the limit cycle in the original system are
topologically invariant in the reconstruction. The right panel shows
the R2

k comparison across models. AESMC with K = 1024 gives
an R2

30 = 0.954 in contrast to SVO with K = 32,M = 32 which
gives an R2

30 = 0.993. SVO outperforms AESMC and GfLDS.

Parameterizing the Transition Function

We study the effect of sharing the transition function between the
proposal and target distribution. Fig. 2 illustrates the ELBO conver-
gence as the number of particles K is increased. The left panel plots
ELBO for SVO with network parameters shared between proposal
and target. Increasing K produces a faster convergence and lower
stochastic gradient noise. The center panel illustrates separate evolu-
tion networks for the proposal and the target. In contrast to sharing
the transition function, separate evolution networks require a larger
number of epochs for corresponding value of K. The ELBO obtains
a lower value with larger stochastic gradient noise. The right panel
juxtaposes shared and separate transition functions for K = 16 par-
ticles.
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Figure 4. Summary of the Allen results: (left) two trials from the dataset illustrating different spiking dynamics; (center) the data against the predicted
observation value using the dynamics learned over a rolling window ten steps ahead on the validation set. Hyperpolarization and depolarization nonlinearities
are predicted by the inferred dynamics; (right) R2

k with K,M = 8 particles. SVO outperforms GfLDS and AESMC with K = 64. Results are averaged across
3 random seeds.

Lorenz Attractor

The Lorenz attractor is a chaotic nonlinear dynamical system defined
by 3 independent variables,

ż1 = σ(z2 − z1) ,

ż2 = z1(ρ− z3)− z2 , (22)

ż3 = z1z2 − βz3 .

The system describes a mathematical model for atmospheric convec-
tion and produces nonlinear and non-periodic solutions. Eq. (22) is
integrated over 250 time points with σ = 10, ρ = 28, β = 8/3
by generating randomized initial states in [−10, 10]3. A z-dependent
neural network is used to produce ten dimensional nonlinear Gaus-
sian observations with 100 trials, 66 for training, 17 for validation
and 17 for testing. Fig. 3 provides the results of the Lorenz exper-
iment. The left panel provides the inferred latent paths illustrating
the attractor. The center plot provides log ẐSV O as K, M increase
(legend on the right). Larger K,M produce higher ELBO values.
The right panel displays the R2

k comparison with dz = 3. Results
are averaged over 3 random seeds. Increasing K,M produces R2

k

improvements. SVO with K,M = 2 gives a higher R2
k than both

GfLDS and AESMC using K = 256.

Single Cell Electrophysiology Data

Neuronal electrophysiology data was downloaded from the Allen
Brain Atlas [13]. Intracellular voltage recordings from primary Vi-
sual Cortex of mouse, area layer 4 were collected. A step-function
input current with an amplitude between 80 and 151pA was applied
to each cell. A total of 40 trials from 5 different cells were split into
30 trials for training and 10 for validation. Each trial was divided
into five parts and down-sampled from 10,000 time bins to 1,000
time bins in equal intervals. Each trial was normalized by its max-
imal value. Fig. 4 summarizes the Allen experiment. The left panel
provides two trials of the 1D observations from the training set il-
lustrating different spiking dynamics. The center panel plots the pre-
dicted observation using the dynamics learned over a rolling window
ten steps ahead on the validation set. SVO captures hyperpolarization
and depolarization nonlinearities when appying the inferred dynam-
ics. The right panel displays the R2

k comparison with dz = 3. SVO
outperforms AESMC and GfLDS.

6 Conclusion

We have introduced SVO, a framework for performing VI on state-
space models jointly for hidden state inference and model param-
eter learning. SVO defines a novel backward simulation algorithm
and approximate posterior obtained by sub-samping auxiliary ran-
dom variables through a process of self normalized importance sam-
pling. This augments the support of the proposal and boosts particle
diversity. We have analyzed the resulting estimator theoretically and
empirically, proving that SVO generates an unbiased estimate of the
marginal likelihood constructed from the smoothed state sequence.
Unlike standard particle smoothing methods, SVO simultaneously
trains both the proposal and the target distribution from the observa-
tion sequence. SVO recovers nonlinear transition and emission func-
tions in addition to latent states. Highlights include the ability to pro-
duce accurate long-range forecasts given smooth initial conditions
from noisy, nonlinear differential equations using the trained latent
dynamics. SVO consistently outperforms filtered objectives on all
three experiments given fewer Monte Carlo samples. SVO is written
in TensorFlow. An implementation is publicly available online.
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