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Abstract. Human Activity Recognition from body-worn sensor
data poses an inherent challenge in capturing spatial and temporal
dependencies of time-series signals. In this regard, the existing re-
current or convolutional or their hybrid models for activity recog-
nition struggle to capture spatio-temporal context from the feature
space of sensor reading sequence. To address this complex problem,
we propose a self-attention based neural network model that fore-
goes recurrent architectures and utilizes different types of attention
mechanisms to generate higher dimensional feature representation
used for classification. We performed extensive experiments on four
popular publicly available HAR datasets: PAMAP2, Opportunity,
Skoda and USC-HAD. Our model achieve significant performance
improvement over recent state-of-the-art models in both benchmark
test subjects and Leave-one-subject-out evaluation. We also observe
that the sensor attention maps produced by our model is able cap-
ture the importance of the modality and placement of the sensors in
predicting the different activity classes.

1 Introduction

Human Activity Recognition (HAR) has drawn extensive attention in
various areas of mobile health and context-aware computing such as
recognition of Nurse care activities [9], assessment of the quality of
physical activities or exercises performed by rehabilitation patients
or athletes [18]. HAR is defined as the automated classification of the
activities of specific subjects wearing heterogeneous sensors placed
at different body locations. In other words, HAR takes the readings
from different body-worn sensors as input and afterward, it segments
and classifies the time-series sensor signal in accordance with the ex-
tracted features. Currently, the task of assessment of quality of physi-
cal activities or exercises performed by patients is usually performed
by an expert physiotherapist. A HAR system can be used to perform
this assessment in real-time and assist the healthcare professionals.

Although HAR is the core area of wearable and ubiquitous com-
puting, it remains one of the most challenging ones. This is due to
large number of sensor modalities, noisy signals, variation in the
spatial and temporal dimension of the feature space across subjects
and even when the same subject performs the same task at different
times, and so on. Researchers from last decades introduced a num-
ber of hand-crafted signal processing equations to derive statistical
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features out of the time-series sensors data. Examples of statistical
features are mean, variance, and Fast Fourier Transform coefficients.
Then, they used several supervised classification techniques: Support
Vector Machines, Decision Trees, Bayesian classifiers to classify the
activities [3, 19]. Later, deep learning based techniques enabled the
learning of feature representations for classification tasks without in-
volving domain-specific knowledge. A number of researches have
been performed with various architectures of Convolutional Neu-
ral Network (CNN) [5, 20]. Simple physical activities (e.g., walk-
ing or cycling) and postures (e.g., sitting or standing) are automati-
cally recognized with good performance with the above-mentioned
techniques. However, recognition of many complex activities (stair-
up/down, running/jogging, watching TV, ironing) remain challeng-
ing. Moreover, sensor displacement and other sources of noise make
the HAR more error-prone.

Recently, hybrid deep learning model consisting of CNN and Re-
current Neural Network (RNN) [26, 17] has achieved better perfor-
mance with a considerable margin than the conventional CNN model
for complex activities as these models consider the activity recog-
nition as a sequence labeling problem. The convolution and recur-
rent layers (Gated Recurrent Unit or GRU [26] and Long Short-Term
Memory [17]) together capture the temporal characteristics and rela-
tionship among the different sensor modalities. More recently, [16]
explores attention module on top of the recurrent layers to improve
the performance of the models. In [27, 15], the authors explore tem-
poral attention on top of recurrent layers and attention on sensor
modality and show that the models improve the performance of HAR
on some benchmark human activity datasets.

The recurrent neural network based encoder-decoder architectures
developed for natural language processing tasks such as Neural Ma-
chine Translation (NMT) [24] are unable to capture the context from
all possible transformed feature combinations. To address this limita-
tion, several research works proposed attention-based mechanism [2]
for NMT where varying attention is given to different words of a sen-
tence. However, recurrent networks are constrained by their sequen-
tial operations. These limitations have led the researchers towards
innovating Transformer architecture [25] for NMT.

Transformer leverages self-attention [14] which enables the model
to capture context within the sequence. Transformer avoids the se-
quential processing involved in recurrent architectures and depends
solely on self-attention and positional encoding technique. Trans-
former also includes multi-headed architecture in order to capture
self-attention from different perspectives. Thus, transformer archi-
tecture plays important role in capturing context through weight dis-
tribution in the temporal dimension and in computing attention in
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natural language modeling. With the similar idea, we adopt self-
attention architecture from NMT task for HAR and propose a model
incorporating self-attention with sensor and temporal attention.

In this paper, we propose that sensor’s data samples are equiva-
lent to words and windows (time window) are analogous to sentence.
Hence, the objective of this paper is to build an attention based end-
to-end system where attention is utilized in different ways to create
effective feature representation of sensor data. To do that, we intro-
duce the first attention layer on the raw input. Secondly, we adopted
self-attention and positional encoding from the transformer architec-
ture [25] for HAR to capture spatio-temporal dependencies of sensor
signals and their modalities. After a number of self attention blocks,
we add another layer of attention that facilitates learning of global
attention from the context. Finally, a fully connected layer is placed
to classify the activity.

In this work, we have experimented with four benchmark hu-
man activity recognition datasets: PAMAP2 [21], USC-HAD [28],
Opportunity [22], and SKODA [23] and compared our results with
the current state-of-the-art techniques namely DeepConvLSTM [17]
and Convolutional Autoencoder (ConvAE) [10] to demonstrate the
effectiveness of the proposed approach. We observe that the pro-
posed model outperforms the DeepConvLSTM and ConvAE for both
sample-wise and window-wise experimental setup on benchmark
test-cases from the aforementioned datasets. We also perform leave
one subject out cross validation experiments to show the superiority
of our proposed model for generalization across subjects. Hence, our
contributions are enlisted below:

1. We propose a self-attention based non-recurrent neural network
architecture for HAR.

2. We incorporate sensor modality attention and global temporal at-
tention at different layers. The attention layers capture the spatio-
temporal context in the sensor signal to construct feature repre-
sentation for classification.

3. We compare our model with other state of the art models on four
publicly available HAR datasets in terms of both benchmark test
sets and leave one subject out tests. In addition, we analyze the
impact of various window-size on the proposed and other existing
models.

4. We construct sensor-level attention maps that are intuitively ex-
plainable and thus demonstrates interpretability of the modules of
the architecture.

The rest of this paper is organized as follows. Section 2 introduces re-
lated works on HAR using deep learning and various attention mod-
els. We describe the technical details of our proposed model in Sec-
tion 3. In Section 4 and 5, we describe the datasets and the setup
of the experiments, respectively. Comparative results with existing
models and other experiments are presented in Section 6. Finally, we
conclude the paper in Section 7.

2 Related Works

Plethora of research has been conducted in the area of human ac-
tivity recognition since 2000. Recently, Haresamudram et al. [10]
presented a comprehensive review of deep learning based feature
extraction and recognition models for HAR using sensor data. In
the last decade, most of the wearable device-based HAR involves
hand-crafted features from domain-specific knowledge in the case of
shallow machine learning models. These models depend on statisti-
cal features [4, 19] and distribution-based features [13, 7]. Statistical

features are calculated using different statistical characteristics equa-
tions [4]. There also has been efforts to use LSTM with attention on
statistical and geometric features in the context of HAR based on 3D
skeleton data [9, 29]. On the other hand, distribution-based feature
representations are obtained from signal processing approaches [11]
such as wavelet or Fourier transformation.

Recently, end-to-end deep learning based techniques for HAR
have gained more popularity among the machine learning commu-
nities. As the deep learning based techniques find the most appro-
priate feature representations for the HAR with supervised fashion,
they have eliminated human-intervened feature crafting and data rep-
resentation tuning through simultaneous representation learning and
classifier optimization [10]. Convolutional neural network [6] and its
combination with recurrent networks (DeepConvLSTM) [17] have
shown notable performance in capturing spatial-temporal features
from the sensor signal data.

Furthermore, the utilization of attention mechanism for HAR has
been explored in [16, 8] by combining it with recurrent networks.
In particular, the DeepConvLSTM architecture proposed in [17] has
been augmented with an attention layer in [16]. This layer learns pa-
rameters to compute the relative weights for the hidden state outputs
of the preceding LSTM layer. Attention layer is used to create con-
text vector using linear combination of past and current hidden states
in contrast to [17] which uses the last hidden state as context. Integra-
tion of continuous temporal and modality attention with LSTM has
been proposed in [27]. In the same way, the augmentation of attention
in two capacities [15] is proposed to compute the relative weight of
sensor modality for specific activity window and to encapsulate the
temporal context of the salient features of specific sensor signal. This
approach, based on attention augmented GRU and ConvNet architec-
ture, makes use of overlapping sliding window of Fast Fourier Trans-
formed spectrogram from sensor signals. This recurrent architecture
based attention model [15] is referred to as AttnSense and obtains
notable performance in temporal context capturing. In this regard,
the existing attention models for HAR exhibits notable performance
in adapting inter and intra activity class variance with adaptive du-
ration of attention within activity sequence. Zheng et al. [30] has
proposed uniqueness attention based LSTM architecture which cap-
tures atomic features in temporal context. However, no architecture
has been proposed yet which incorporates self-attention to capture
spatial context of the feature sequence along with temporal context
capturing.

3 Proposed Self-attention Model

Our objective is to build a self-attention based model without any
recurrent architectures. Hence, the proposed model foregoes recur-
rent networks and utilizes sensor modality attention, self attention
blocks, global temporal attention to construct feature representation
used for classification as illustrated in Figure 1. We briefly describe
the model architecture below and provide detailed specification in
the subsequent section.

The input to the model is a time-window of sensor values. Firstly,
sensor modality attention is applied to the inputs to get a weighted
representation of the sensor values according to their attention score.
Thus, the learned attention score represents the contribution of each
of the sensor modalities in the feature representation used by the sub-
sequent layers. Afterwards, we convert the weighted sensor values to
d size vectors using 1-D convolution over single time-steps. Similar
to [25], we encode positional information of the samples in the se-
quence by adding values based on sine and cosine functions to the
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obtained d size vectors. This enables the model to take the temporal
order of samples into account. This representation is scaled by

√
d

and passed to the self attention blocks. Self attention blocks use dot
product-based attention score to transform the feature value for each
time step. The representation generated from the self attention blocks
is used by global temporal attention layer. As shown in Figure 1, this
layer learns parameters to set varying attention across the temporal
dimension to generate the final representation which is used by the fi-
nal fully connected and softmax layers. We discuss details of sensor
modality attention, self attention blocks, global temporal attention
modules in the following subsections.

3.1 Sensor Modality Attention

To capture the varying levels of contribution from sensors at different
modalities for classification, we use the sensor modality attention
layer. For example, in order to recognize the activity ’ironing’, the
sensors placed at the subject’s ankle do not provide much meaningful
information. Sensor attention layers learn such relationships by using
2-d convolution across time-step and sensor values to capture their
dependencies.

Firstly, the input is reshaped to produce single channel image.
Then, k convolutional filters are applied to the input with padding
which outputs image with k channels. This is then converted back to
a single channel by applying 1×1 convolution. Sensor-wise softmax
as defined in (1) provides the attention score for individual sensors.
In addition to providing a weighted version of the input according to
their learned importance for the self attention layer, this mechanism
allows us to plot feature maps making the model more interpretable.

s(ti)κ =
exp(q

(ti)
κ )

Σκ exp(q
(ti)
κ )

(1)

κ in (1) indicate individual sensors.

3.2 Self Attention Block

Each block consists of two sub layers - multi-headed self attention
and position-wise feed forward layer. Self attention is used to deter-
mine relative weights for each time-step in the sequence by consider-
ing its similarity to all the other time-steps. Subsequently, these rela-
tive weights are used to transform the representation of each time-
step with relevant information from other time-steps according to
their importance.

f
(hj)
sa (q,k,v) = softmax(

q · kT

√
dk

)v (2)

The terms (q, k, v) in (2) are learned linear transformation of the
input to the layer and referred as key, query and value respectively.
In this regard, the query can be considered to the transformed vector
of a particular time-step that is compared to the key vector of ev-
ery other time-step using dot product. Afterwards, the dot product
value is scaled and softmax normalized which indicates the attention
scores. Finally, the attention values are used to get a weighted repre-
sentation of the value vectors for each of the time-steps. However, the
entire operation is implemented as a matrix multiplication operation
as indicated in (2).

Moreover, we utilize multi-headed self attention since different at-
tention heads are able to capture distinct aspects of the input signal.
In this regard, hj in (2) represents output from attention head j. For
computing the key, query and value used in (2), each one of the n

Figure 1: Attention based model incorporating self-attention and
global temporal attention

attention heads use distinct parameters. The outputs from the distinct
attention heads are concatenated and converted back to the dimen-
sion of single attention head using learned parameter Wo as defined
in (3).

smha = Wo · concat(f (h1)
sa , ..... ,f (hn−1)

sa , f (hn)
sa ) (3)

Position-wise feed forward layer is applied independently to each
position in a block. In this case, the weights are for each position in
a block but different across the blocks.

Each of the sub-layer contains a residual connection and is fol-
lowed by layer normalization.

3.3 Global Temporal Attention

We use the representation generated by the self attention blocks for
each time-step and learn parameters to rank them according to their
respective importance for predicting the corresponding class label for
the window. The ranking (attention score) obtained in (5) is used to
create a weighted average of the representations of all the time-steps
in an activity window which is used as feature vector by the feed
forward layers for classification.

g(ti) = tanh (Wga · s(ti) + bga) (4)
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α(ti) =
exp((g(ti))T · gs)∑

t
exp(g(ti)gs)

(5)

ci =
∑

t

α(ti)s(ti) (6)

The terms Wga and bga in (4) refer to parameters learned during
training to get a hidden representation from each of the vectors s(ti)

generated from self attention blocks. The parameter gs in (5) helps
to capture temporal context while learning to compute the attention
score. A weighted summation according to the relative importance
of respective time steps is generated as the feature vector in (6).

For regularization, dropout has been used in the self attention
blocks, the fully connected layers, and after the addition of positional
encoding.

4 Dataset Description

We use four commonly used benchmark datasets [10] to evaluate the
performance of our model and to compare it with that of state of
the art models. However, we did not use Daphnet Freezing of Gait
Dataset [1] as this is particular to specific gait recognition for pa-
tients with Parkinson’s disease. Below We give brief description of
the datasets used in our experiments.

PAMAP2 dataset [21] incorporates the hardware setup of 3 In-
ertial Measurement Units (IMU) placed over the wrist of dominant
arm, on chest and at ankle and the data has been sampled at the fre-
quency of 100Hz. The whole data included annotated human activity
class of 9 subjects with particular physical description. Majority of
the subjects are male with right dominant hand. In fact, PAMAP2
contains only one female subject and one left handed subject with id
102 and 108 respectively. This benchmark dataset contains 18 human
activity classes altogether. In our experiments, data from one of the
accelerometers (±16g scale) and gyroscope contained in each IMU
have been used.

OPPORTUNITY dataset [22] includes the annotated data of
body-worn sensors and ambient sensors to specify particular human
activity. The dataset has been formed incorporating the reading of
motion sensors and classified with ”modes of locomotion”. The sen-
sors have been able to capture 5 high-level human activity classes
along with 17 mid-level gesture classes and 13 low-level actions. We
focus on the mid-level gestures and remaining are considered null
class which comprises more than 75% of the data making the dataset
highly imbalanced in terms of class distribution.

USC-HAD dataset [28] incorporates six readings from body-worn
3-axis accelerometer and gyroscope sensor through Motion-Node de-
vice. The dataset has been created with equally distributed (7 each)
14 male and female subjects with defined physical specification and
age. The sampling rate of sensor data is 100 Hz and includes one of
12 activity class labels for each time-step in the dataset.

USC-HAD dataset poses an inherent challenge in feature repre-
sentation learning and segmentation due to the sensor placement and
variation in the activity classes. Here, the single accelerometer and
gyroscope reading is obtained from the motion node attached to the
right hip of specific subject and thus does not contribute much in
the feature space transformation. Moreover, the activity classes in-
volve orientation such as walking forward or left or right and even
elevator up or down which are generally not captured only through
accelerometer and gyroscope reading.

SKODA dataset [23] is a special purpose dataset to track the ac-
tivity of workers in the manufacturing assembly-line scenario. This

dataset incorporates accelerometer reading from 10 different posi-
tions on the subject’s arms and is labeled with specific activity class
including a null class. Following the standard procedure, we use 80%
of the data for training and 10% for validation and test respectively.

The benchmark test subjects and the summary of the datasets have
been included in Table 1.

5 Experiment Setup

In this section we describe the preprocessing of the datasets, the
architecture of the models, evaluation procedure, and performance
measures used in our experiments.

5.1 Preprocessing

Since the datasets involved in the experiments have varied sampling
rates, alignment of the frequencies through downsampling facili-
tates reasonable comparison of performance. Similar to the previous
works in [10] and [27], we down-sampled PAMAP2, USC HAD and
Skoda to close 30 Hz to align with the Opportunity dataset.

Window based representation: The proposed approach utilizes
sliding window based feature extraction. Window size is the number
of samples that is considered at a time to construct a feature represen-
tation used for classification. The activities under consideration are
diverse in terms of duration and complexity which makes the choice
of window size an important hyper-parameter. Likewise, the choice
of how much overlap there should be between the consecutive win-
dows is also an important factor to consider.

Figure 2: Activity window for walking activity in PAMAP2 dataset
where timespan = 1 Sec

The activity recognition window is constructed like an image with
time-steps and heterogeneous sensor readings as the two dimensions.
The activity label is determined through majority voting in the sam-
ples constituting the window. The activity window with specific class
label has been demonstrated in Figure 2.

The time-series sensor data indicates activities spanning varied
time-span and to capture this sequence within the activity recogni-
tion window, the sliding of windows is done with a fixed percentage
of overlap. The percentage of overlap has been tuned as a hyperpa-
rameter and deployed in the training accordingly.

5.2 Implementation of Existing Architectures

We perform extensive experiments with the Convolutional Autoen-
coder (ConvAE) and Deep Convolutional LSTM (DeepConvLSTM)
[17]. Experiments presented in [10] show that these models perform
well for different benchmark datasets. We also report the experimen-
tal results for newly published attention based HAR models from the
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Table 1: Summary of experimental setup for the datasets. Here A = Accelerometer, G = Gyroscope, M = Magnetometer

Dataset
Number of
Activities

Benchmark Test
Subject ID

Down-
sampling

Sliding Window
Overlap

Sensors Used

PAMAP2 12 106 1/3 50% A, G

Opportunity 18
2, 3

(Run 4 & 5)
1 50%

A, G, M (upper body)
& sensors in shoes

USC-HAD 12 13, 14 1/3 50% A, G

Skoda 11 1 1/3 50% A

respective papers. Below we provide detailed description of the Con-
vAE and DeepConvLSTM models specified in [10] pertaining to our
experiments.

Convolutional Autoencoder (ConvAE) includes an encoder and
a decoder part with a bottleneck layer in between. The encoder con-
sists of four convolutional blocks each containing two 3 × 3 con-
volution layers with the same number of filters followed by batch
normalization. Each of the convolutional blocks contain a 2×2 max-
pooling operation at the end. The output from the last convolutional
block is flattened and passed to a fully connected bottleneck layer.
The feature vector from the bottleneck layer is used by the decoder
to reconstruct the input by inverting the encoding process sequen-
tially. We followed the description of the decoder in [10] and used
up-sampling, convolution and appropriate padding or cropping to
match the input dimension during the inversion process. Similar to
the encoder, we used the same number of 3 × 3 filters in the four
blocks of the decoder. We used relu activation throughout the model
and hyperbolic tangent activation for the output. The feature repre-
sentation from the bottleneck layer is used by Multi-layer Perceptron
(MLP) [10] to classify the activity label for the respective input win-
dow. The dimension of the bottleneck layer has been set to 500, 1000,
1500 and 2000 for PAMAP2, Opportunity, Skoda and USC HAD re-
spectively since the best results for the respective datasets have been
reported at that particular dimension in [10].

DeepConvLSTM has four successive convolution layers and two
layers of LSTMs. Each convolutional layer has 64 filters with size
of 5 × 1. The 5 × 1 filter is used to perform convolution along the
time-steps. Using the 5×1 filter, multiple sensor information are kept
separate. The output from the first convolution layer is fed to the 2nd
convolution layer and so on. Then the output of the final convolution
layer is applied to a two-layer LSTM, each with 128 hidden units.
The final output vector is connected to a fully connected layer. After
performing the softmax operation on fully connected layer output,
activity class probability is available in the final output of the model.
We use a dropout with probability of 0.5 in the fully connected layer.

Detailed description of the architectures of the attention based
models namely, DeepConvLSTM with Attention, LSTM with con-
tinuous Attention and AttnSense can be found in [16, 27, 15] respec-
tively.

5.3 Training and Test Procedures

For the segmentation of activity data, we have the choice of predict-
ing class label each individual sample in a sequence or for a fixed-
length time window. However, we need to analyze a sequence win-
dow of some length in both cases.
Sample-wise: During training, we slide the window by one time-step
forward and provide the ground truth label for each time step. Then

we slide the window right by one time step. During the testing, we
follow the same technique. We take the output label of the window
and set this output to corresponding last time-step of the window.
Hence, we obtain sample-wise output during test.
Window-wise: We create the window with predefined window size
and continue to slide the window with 50% overlap. During the train-
ing, we will assign the most frequent activity in this window as the
ground truth label of that window. In testing, the model produces one
output label for each window. For test, no overlap is used. In the case
where a window contains samples with a different label, we pad the
window by repeating the last few samples and the next window starts
from the differently labeled sample.
Training and Hyperparameters: For the proposed model, we set
the number of self attention blocks to 2 for all of the datasets except
USC-Had where 3 blocks are used. For construction of fixed size
input for self attention as described in Section 3, d was set to 128.
Similar to [25], the number of units in position-wise feed forward
layer was set to 4 times d. We used Adam optimizer with the default
parameters discussed in [12] and learning rate 0.001 for training of
the models.

5.4 Evaluation Metric

We use macro average F1-score as metric to compare the perfor-
mance of the proposed approach with other methods. In this regard,
we calculate F1-score for each class according to (7) as follows:

Macro F1-Score =
1

|C| ∗
C∑

i=1

2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(7)

Here, |C| in 7 indicates number of classes and F1-score for each
class is given the same weight irrespective of their number of in-
stances and i = 1, ..., C is considered as the set of classes considered
for experiment.

6 Results

In this section, we present the results of the experiments as described
in the previous section. First, we discuss the performance on the
benchmark test subjects for the datasets. Then, we describe the Leave
One Subject Out Cross Validation (LOSO-CV) results for all sub-
jects. We conclude this section with discussion of the results from
window size variation experiments and the attention maps that we
generate from the sensor attention layer.

Performance on benchmark test subject: Table 2 shows the per-
formance comparison between the proposed model and the existing
models for the benchmark test subjects described in Table 1.
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Table 2: Macro F1-score for benchmark test subject

Architecture

Proposed Model DeepConvLSTM ConvAE
DeepConvLSTM

+ Attention

LSTM
+ Continuous

Attention
AttnSense

Dataset � � � � � � � � �

PAMAP2 0.95 0.96 0.71 0.70 0.52 0.80 0.88 0.90 0.89
Opportunity 0.61 0.67 0.66 0.58 0.60 0.60 0.71 - -
USC-HAD 0.50 0.55 0.42 0.38 0.42 0.46 - - -
Skoda 0.93 0.97 0.96 0.88 0.82 0.79 0.91 0.94 0.93

� Sample-wise � Window-wise

Table 3: Average Macro F1-score for leave one subject out experi-
ment

Architecture
Proposed Model DeepConvLSTM ConvAE

Dataset � � � � � �

PAMAP2 0.92 0.96 0.61 0.52 0.47 0.48
Opportunity 0.39 0.42 0.44 0.41 0.41 0.42
USC-HAD 0.60 0.67 0.59 0.50 0.58 0.63

� Sample-wise � Window-wise

With regards to the sample-wise classification scores, our pro-
posed model achieves significant improvement over DeepConvL-
STM and ConvAE for PAMAP2 and USC-HAD. However, our
model obtains slightly lower sample-wise score for Opportunity
and Skoda with DeepConvLSTM. Specifically, F1 macro has been
decreased to 0.61 from 0.66 (DeepConvLSTM) for Opportunity
dataset. Since the proposed model is fundamentally designed for
window based output, we notice the significant improvement while
we perform window-based tests for Opportunity.

However, we can observe more obvious and significant improve-
ment in terms of the window-wise scores for the proposed model.
In particular, the window-wise macro F1-score has been improved
to 0.67 from 0.58 (DeepConvLSTM) and 0.60 (ConvAE) for the
Opportunity dataset. Thus, it can be noted that our model works
more accurately (0.67) on the Opportunity (datasets containing com-
plex activities) compared to other methods. In terms of the window-
based scores, our model also outperforms other models. Therefore,
we can conclude that the proposed model can better capture the
spatio-temporal characteristics of sensor-data more effectively than
the DeepConvLSTM and ConvAE.

As discussed in Section 4, USC-HAD is a particularly challenging
dataset due to the sensor setup. However, our model performs bet-
ter (0.50 sample-wise and 0.55 window-wise) than the other models
(DeepCpnvLSTM: 0.42 & 0.38; ConvAE: 0.42 & 0.46).

It is evident from the data in Table 2 that the proposed model also
performs better than other attention based models: DeepConvLSTM
+ Attention, LSTM + Continuous Attention [27] and AttnSense [15]
for PAMAP2 benchmark test set. We only compare the sample-wise
results as the aforementioned models published sample-wise ones
only. The macro F1-score for our model for PAMAP2 is higher
than the corresponding scores for the other attention-based mod-
els e.g DeepConvLSTM + Attention, LSTM + Continuous Atten-
tion, and AttnSense. For Skoda, our model also outperformed (0.93)
DeepConvLSTM + Attention (0.91) and equally performed with

AttnSense(0.93). However, our model consistently outperformed the
other attention-based models in terms of window-wise test scores on
all the datasets considered except Opportunity.

Performance on LOSO-CV: In order to demonstrate the robust-
ness of the proposed model in terms of sensitivity to specific test sub-
jects, we conduct LOSO-CV experiments for each dataset containing
activities of multiple subjects. In this regard, we hold the data from
one of the subjects out during training and use that data for evaluating
the model. This process is repeated for each subject for the particular
dataset and the average score is reported. Note that, Skoda contains
activities performed by only one subject and is excluded from these
experiments.

As can be seen from Table 3, the macro F1-scores for the proposed
method are consistently higher for both sample-wise and window-
wise tests compared to the corresponding scores for DeepConvL-
STM and ConvAE for LOSO-CV experiments. Thus, the results in-
dicate that the proposed method is capable of modeling the inter-
subject variability better. In other words, our model has more gener-
alization capability than the others.

Specifically, LOSO-CV experiments with the PAMAP2 dataset
shows that the proposed model significantly outperforms the other
models under comparison for subject 102 (female subject). In this re-
gard, the proposed model obtains F1-scores 0.93 (sample-wise) and
0.98 (window-wise) respectively. On the other hand, DeepConvL-
STM achieves F1-scores of 0.47 (sample-wise) and 0.33 (window-
wise) in the LOSO-CV experiment involving this subject. For Con-
vAE, the corresponding score is 0.35 in both cases.

Moreover, for subject 108 (male, left-handed), our model achieves
F1 scores of 0.79 (sample-wise) and 0.88 (window-wise) whereas
DeepConvLSTM gets 0.27 and 0.28, respectively. ConvAE performs
slightly better than DeepConvLSTM, the scores for ConvAE are 0.40
(sample-wise) and 0.47 (window-wise).

Performance of proposed model on window sizes: As differ-
ent activities have different repetitive periods, we conducted exper-
iments to analyze the impact of window-size variations on the pro-
posed model’s performance. In this regard, we train different models
while varying the window-size and use the benchmark test subjects
defined in Table 1 as the test set. Figure 3 demonstrates the change
in performance for different window-size and it can be concluded
from the figure that the proposed model is less sensitive to changes
in window-size than the other models in terms of performance. It is
evident that datasets involving complex activities require relatively
longer time-span for sliding window for capturing correct activity
label.

Feature Map for Sensor Modality Attention: Sensor modality
attention layer described in Section 3.1 has been utilized to deter-
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Figure 3: Performance measure against different window sizes

(a) Ironing (b) Ascending stairs (c) Lying

(d) Cycling (e) Vacuum cleaning (f) Walking

Figure 4: Attention weights on different sensor modality based on predicted class label in PAMAP2 dataset (e.g. Ironing involves higher
attention weight for hand accelerometer, moderate attention for chest accelerometer and relatively low weights for other sensor placements)

mine the impact of sensors’ placements on the classification task.
In Figure 4, feature attention maps incorporate average attention on
specific sensor modality listed in the x - axis over all activity win-
dow. The vertical axis indicates timestep within a specific window. If
we consider the feature maps visualizing attention weights on sen-
sor modality, it can be derived that while ironing, sensors placed
at hand get greater attention weights which is visualized in Figure
4a. On the other hand, during ascending stairs, hand accelerometer
and ankle accelerometer obtain relatively higher attention weight in
feature segmentation which is evident in Figure 4b. Moreover, the
attention map in Figure 4c exhibits that gyroscope placed at chest
obtains higher attention weight than other sensor placements. The
activity cycling involves simultaneous movement of different body
parts which is captured through sensor modality attention and evi-

dent in the attention weight distribution in Figure 4d. Vacuum clean-
ing activity in 4e indicates that hand is the dominant body part in
detecting this particular activity. The attention map illustrates similar
weight distribution as ascending stairs in the case of walking.

Figure 4 demonstrates the higher emphasis on particular sen-
sor modality in predicting class label. Here, the proposed model
automatically distributes attention weight on heterogeneous sensor
modalities and this weight is intuitively explainable with respect to
the predicted class label.

7 Conclusion

In this paper we propose a self-attention-based deep learning ar-
chitecture for Human Activity Recognition (HAR). The model is
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adapted from the transformer architecture proposed for machine
translation. The proposed model foregoes recurrent layers and uti-
lizes attention mechanisms to generate feature representation used
for classification. We perform experiments on leave one subject out
cross validation on four benchmark datasets - PAMAP2, Oppor-
tunity, Skoda, and USC-HAD. We perform both sample-wise and
window-wise classification. Compared with existing state-of-the art
methods, we show that our proposed attention based model outper-
forms existing models in case of the benchmark test subject for all
datasets except Opportunity for sample wise classification. In case of
window-wise classification our model outperforms Deep Convolu-
tional LSTM and Convolutional Autoencoder models. One limitation
of our experiments is that we did not perform window-wise classifi-
cation on the newly published models. In future, we intend to extend
our model with a decoder network and perform more extensive ex-
periments to compare with all existing models.
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