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Abstract. Many binary prediction situations involve imbalanced
datasets where the ratio of the minority class over the majority class
is very low. This is especially true when dealing with problems look-
ing to use machine learning to better detect fraud, errors or excep-
tions. In this paper, we address the problem of extreme imbalance,
i.e. where the imbalance ratio of majority over minority instances ex-
ceeds 500. Given the scarcity of minority examples, oversampling is
not sensible due to expensive computational cost. Hence, we explore
and expand undersampling approaches. Specifically, we propose a
modeling framework (i.e., sequence of modeling steps) that seeks to
leverage as much training data as possible. Our results indicate the
better trade-off between the false positives and false negatives, which
makes it more suitable for real-life application.

1 Introduction

In binary classification, a dataset is considered to be suffering from
class imbalance problem when the population of one class largely
outnumbers another class. It is equivalent to having imbalance ratio
above 1, which is defined to be the number of majority instances di-
vided by the minority instances. Training on such dataset without ad-
dressing this issue can lead to excellent levels of accuracy overall and
for the majority class but poor performance for minority classes due
to the bias towards the majority instances introduced to the models
[16]. This is a common problem for real-life datasets in a variety of
domains such as fraud detection [26], network intrusion [6] and med-
ical diagnosis [23]. The simplest and most popular way to deal with
this challenge is data sampling, which aims at balancing the class
representation by either undersampling the majority or oversampling
the minority [22]. We can tackle this problem from the model per-
spective by assigning higher penalisation cost to the wrongly classi-
fied minority instances [1, 28]. Embedding data-sampling techniques
to the ensemble models is also a popular solution [14].

In real world situations, it is not unusual to encounter datasets that
are considered extremely imbalanced, where the imbalance ratio is
higher than 500. This is especially true in fraud detection where huge
number of normal transactions take place on a daily basis, with min-
imal number of fraudulent cases due to the preventative systems in
place. Despite the scarcity of fraudulent cases however, the conse-
quence of failing to detect such cases can be quite detrimental. This
highlights the importance of developing a strategy to deal with such
problem. Likewise, this is a common problem in medical diagnosis
of the rare disease where the impact of the error is critical to the pa-
tients. Other contexts, for instance the detection of errors in highly
reliable processes - the initial motivation for this work - also yields
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imbalance ratios that can be one or two orders of magnitude over
500.

The difficulty of extremely imbalanced dataset is not limited to the
highly diluted minorities within the dataset, but also to the ensuing
size of the associated dataset. A dataset with an imbalance ratio of
10,000 with 1,000 minority instances contains 10 million instances.
Oversampling the minority to balance the data will lead to almost
doubling the dataset size and the computational cost from both sam-
pling and model training perspective may become prohibitively ex-
pensive [9]. This leaves us with little choice but to use undersampling
or ensemble methods that leverage on undersampling.

The most common way of using undersampling is to randomly
select majority instances so as to obtain the same number of minor-
ity instances and to use this much smaller dataset for training. The
biggest downfall of random undersampling in extreme imbalanced
context is that a large number of majority instances are discarded
from the dataset, leading to the loss in valuable information. More-
over, the sample size of the majority class is inconsequential in com-
parison to the overall population. Therefore, the composition of the
sampled dataset differ greatly at each sampling step, leading to high
variance in the model prediction [7]. To alleviate this problem, un-
dersampling with ensemble methods is regarded as the best option,
with some research on applying such models in a context of highly
imbalanced data, i.e., where the imbalance ratio is above 10 [13, 27].
Nevertheless, the proposals have not been tested on extremely imbal-
anced datasets. Through our initial experiments for an error detection
task, we observed that these methods detected a good number of true
positives, yet the high number of false positives made the model im-
practical in real-life scenario. We believe this is caused by too many
majority instances still being discarded.

In this work, we propose a new novel approach designed specif-
ically for extremely imbalanced datasets. The key idea behind our
approach is to utilise as much of the training dataset as possible. Our
approach should be thought more as an architecture for sequencing
and combining models rather than fully specified model. Therefore,
it is versatile in the sense that it allows to choose variety of tech-
niques, including oversampling. The inspiration behind the proposal
is ensembling the ensemble models from the EasyEnsemble algo-
rithm [21]. The proposed architecture consists of two main stages.
In the first step, we obtain a base undersampling embedded ensem-
ble model with high recall score to filter out the obvious majority
elements from the training dataset. In the second step, we use the
reduced training dataset to look for an improved way to combine
the ensemble the models from the first step. Benefits of the reduced
dataset is the reduction in imbalance ratio and the possibility to use
methods with higher computational cost during the second stage. To
summarise, the main contributions of our research are as follows:
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• A novel modification to EasyEnsemble which introduces extra
model to maximise the utilisation of the dataset and ensembles
the sub-models more effectively.

• A mechanism to filter the obvious majority instances within the
intermediate step of the pipeline.

• The ability to use other techniques dealing with imbalanced ratio
with lower computational cost.

The remainder of this paper is organised as follows. In Section 2,
we provide more context into the existing literature related to highly
imbalanced prediction problems. Section 3 describes our proposed
method to tackle such problem in detail. We then test our approach
on the extreme imbalanced dataset and rigorously analyse the result
in Section 4, with the comparison against other approaches and dis-
cussion on the possible next steps.

2 Related Work

Data sampling is a common technique to deal with class imbalance
problems. It involves either replicating minority class instances to
add them to the training dataset (oversampling) or removing major-
ity class instances (undersampling) from the training dataset, thus
balancing the ratio of these two classes.

Random undersampling (RUS) is the most straightforward and
computationally cheap undersampling technique. Variations to the
random undersampling have been proposed to sample in a smarter
way, such as using the nearest neighbour of the clustering centres
for sampling [20]. However, many majority examples are discarded
from the training dataset, especially with extreme imbalanced cases.
In addition to losing valuable information on the majority instances,
the variance of the prediction for the model with the same setting but
different undersampled dataset will be very high [7].

Random oversampling is not considered as a viable option as the
duplication of the same points can lead to overfitting. Synthetic mi-
nority oversampling technique (SMOTE) [4] is the common over-
sampling technique which adds synthetic minorities by interpolat-
ing several pre-existing minorities that lie close to each other. Once
again, alternatives to create synthetic minorities have also been pro-
posed, such as Modified SMOTE (MSMOTE) [17]. As mentioned
previously however, the resulting training dataset will approximately
double in size for the extreme imbalanced dataset which will make
the process computationally expensive. Not to mention the concep-
tual problem related to training with hundreds of replications of the
same data points.

Another method to deal with imbalanced dataset problem is to em-
bed data sampling techniques within ensemble models [14]. RUS-
Boost [24] and SMOTEBoost [5] are variants of AdaBoost which
applies RUS and SMOTE respectively to the training dataset at each
iteration to learn base learners. EasyEnsemble [21] produces a single
ensemble from multiple AdaBoost models trained with RUS-applied
dataset. A slight adaptation to EasyEnsemble, called BalanceCascade
[21] filters out the redundant majority class samples whilst train-
ing each AdaBoost sub-models to be ensembled. This leads to a re-
stricted sample space of the majority instances for each sub-models,
thus forcing them to explore as much useful information as possible.
However, it is noted that the performance of BalanceCascade is infe-
rior to EasyEnsemble on harder tasks, possibly due to the overfitting.

Recently, other interesting alternatives have been proposed which
do not clearly fall into any of the traditional categories. Two sam-
ple representation (s2s) [11] involves representing the training set in
such way that two arbitrary samples are considered at the same time

during the training of the model. Disadvantage of this approach is the
quadratic increase in the number of training samples, which makes
it unsuitable for large datasets. Uncorrelated cost-sensitive multiset
learning (UCML) [27] uses multiset feature learning (MFL) on mul-
tiple subsets of the data created from undersampling.

Although many methods have been motivated by the need to solve
imbalanced or highly imbalanced dataset, not much work address im-
balance ratio to such extremity as we require for instance in our error
detetcion task. Oversampling the minority based on the distribution
of the majority instances have been proposed [25] to overcome ex-
tremely imbalanced data, as opposed to other oversampling method
which are based solely on the minority examples. However, this does
not solve the issue regarding the computational cost and reliance on
artificially produced data. Otherwise, proposals looking into highly
imbalanced dataset do not get tested on the extremely imbalanced
dataset. Abalone19 dataset in KEEL repository was the dataset with
the highest imbalance ratio of 129 in almost all of the works [11, 27],
with a clear deterioration in results observed as the imbalance ratio
increased. In fact, a study on big data with imbalance ratio between
100 and 10000 [19] mentions that there are significant gaps in the
current research in this topic. Currently, dealing with such problem
mainly involves applying a MapReduce framework to the traditional
algorithms or data-sampling methods [12] but the results indicate that
it is inadequate to deploy such methods in practice.

The key focus of this paper is to propose a model architecture
that specifically looks at extremely imbalanced datasets, with a ratio
above 500. This is done by seeking to utilise minority and majority
classes instance in a smarter way.

3 Proposed Approach

Our proposed approach to extreme imbalance dataset consists of two-
step model strategy where first model filters out the obvious majority
instances and the second model learns how to distinguish more chal-
lenging majority instances from the minority instances by leveraging
results from previous step.

3.1 Mathematical Formulation

Before the description of the proposal, we set out the mathematical
notation that will be used. Consider a binary classification problem
with the imbalanced dataset D;

D =
{
(Xi, yi) | i = 1, ..., N,Xi ∈ IRd, yi ∈ {0, 1}

}
(1)

where 0 and 1 corresponds to the majority and minority class label
respectively. Xi refers to a d dimensional feature vector. Let N0 and
N1 be the number of majority and minority instances such that N0+
N1 = N and we define the dataset to be suffering from extreme
imbalance class if the imbalance ratio, defined as N0/N1, is larger
than 500. Also note that 0 and 1 can be described as ’negative’ and
’positive’ instances. We finally denote Dtrain and Dtest to be the
training and testing dataset, which are subsets of D with Dtrain ∩
Dtest = ∅.

3.2 Training the Filtering Models

Ideally, we want to minimise the number of minority instances incor-
rectly filtered out after the first step so we need our first model to have
the lowest possible false negative rate. Furthermore, it is common for
extreme imbalance dataset to have a big data characteristic.
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Figure 1. Architecture of our proposal.

We have chosen EasyEnsemble [21] as the model to be used in
our first step. EasyEnsemble is an ensemble of AdaBoost sub-models
where each uses randomly undersampled dataset. Amongst the tradi-
tional ensemble and hybrid boosting models , EasyEnsemble was the
model reported to achieve the optimal performance indicator scores
with the dataset that has higher imbalance ratio [14]. We also felt
that there were obvious modifications that could be made to make
the model more suitable in extreme imbalanced cases.

Formally speaking, let fm, where m = 1, ...,M , be the mth Ad-
aBoost sub-model that returns the probability of the data belonging
to the minority class. Each fm is trained with dataset Dm, randomly
undersampled from the training dataset Dtrain, that has the same
number of majority and minority instances. The model that makes
the overall prediction, f , is the average of the probabilities from the
sub-models, i.e.

f(Xi) =

M∑

m=1

fm(Xi) (2)

The overall classifier for our first step, C1, is then

C1 (Xi) = 1If(Xi)>0.5 (3)

where 1I is an indicator function.

3.3 Constructing the Training Dataset for the
Prediction Model

The downfall of EasyEnsemble in extreme imbalanced class con-
text is that many majority instances are left unused. Indeed, the ratio
of sampled majority instances to the total is approximately N0/N1,
meaning in extreme imbalanced scenario, we need we need signifi-
cantly large number of AdaBoost sub-models (M parameter) to be

averaged to utilise all the majority instances. However, the bene-
fit by increasing the number of sub-models is minimal against the
trade-off of memory and computational cost. Furthermore, we be-
lieve that EasyEnsemble can benefit from having another machine
learning model which learns how to aggrgate the probabilities from
each sub-models rather than just a simple averaging, given that we
still have unused dataset to use.

Formally speaking, let D′
train ⊂ Dtrain be the training dataset

that has not been used to train EasyEnsemble model from the first
step, i.e.

D′
train ∩

(
∪M

m=1Dm

)
= ∅ (4)

We note that D′
train does not have any minority instances in the set so

fron this point onward, we also include all of the minority instances
to D′

train.
Let X ′

i be the feature vector in D′
train which can be used to obtain

probabilistic outputs from the sub-models trained already, fm (X ′
i)

for m = 1, ...,M . These will be the feature vector for our new,
reduced training dataset for our second-step model, Etrain. In other
words,

Etrain =
{
(Fk, yk) | k ∈ I, Fk ∈ IRM

}
(5)

where the jth entry of the feature vector Fk is fj(Xk) and I is the
set of the indices of the dataset in Dtrain that were not used to train
the first model.

3.3.1 Filter Obvious Majority Instances

As mentioned above, the utilisation of majority instances is very
small in extreme imbalance, meaning size reduction in Etrain com-
pared to the original dataset Dtrain is still minimal. We would need
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to reduce the size further to make it feasible to use oversampling or
class weight.

We recall that during our prediction, we use the first model to fil-
ter out the obvious majority instances. Therefore, there is no reason
why we cannot use the first model to also filter out the obvious ma-
jority instances from Etrain as the majority instances in this train-
ing dataset were not seen during the training stage. Filtered training
dataset, E′

train would then be

E′
train = {(Fk, yk) | C1 (Xk) = 1, k ∈ I} (6)

We observed during our experiments that this step can significantly
reduce the dataset size to the level where oversampling and weight
balance become feasible option for the second model. Another ben-
efit of this approach is that we only present the majorities that are
more difficult to distinguish from the minorities which prevents the
second model to lazily overfit on the obvious instances.

We note that the notion of filtering out the obvious majority in-
stances in our proposal is similar to the BalanceCascade algorithm
[21]. The key difference is the timing of the filtering: for Balance-
Cascade, filtering is performed a priori for each sub-models i.e., be-
fore they are ensembled whereas in our proposal, it is applied in a
second step after the first model for filtering out obvious examples
has been fully trained. We believe that this difference addresses the
pitfall of the former approach. It is likely that the majority instances
that are regarded as obvious by weak sub-models may have happened
by chance rather than from truly learning the characteristics of obvi-
ous majority examples. As the sub-models trained afterwards do not
have access to such majorities, they can suffer from missing out on
the useful information. This explanation may also explain the poorer
performance of BalanceCascade in harder tasks identified in [21].

3.4 Making Prediction on Test Dataset

Once we have two trained classifiers, C1 and C2, we can then make
a prediction on the test dataset Dtest. This is done in the same way
as constructing the training dataset in 3.3 where you use the final
prediction from C2 only if the data is predicted as the minority by
C1. If no filter is applied, then we simply take the result from C2,
regardless of what C1 has predicted.

4 Experiment

Table 1. Summary of the datasets used for the experiment.

Dataset # Minority # Majority Imbalance Ratio

Cashout 674 11,317,134 16,791
Credit Fraud 492 284,807 578
Forest 2,747 578,265 211
Walking Activity 911 148,421 163
Abalone 32 4,142 129

4.1 Datasets

To evaluate our proposed modelling approach, we conducted the
experiments on three datasets: two extremely imbalanced ones
(Cashout and Credut Fraud) and three ’highly’ imbalanced one
(Walking Activity, Forest and Abalone19). We describe each one in
further details in the following sections.

4.1.1 Cashout

A cashout error is defined as an erroneous payment sent to a given
counterparty. Examples of error include sending the wrong amount,
sending a payment to the wrong counterparty and late payment. Erros
are mainly caused by so called fat finger (human processing error)
or IT issues. The impact of such erroneous payments can include
significant reputational damage. Whilst it is important to detect as
many of them as possible, we also have to consider the operational
cost associated with checking a large number of false positives. To
the best of our knowledge, no research has been done related to such
extreme imbalance ratios. For our experiment, we trained the model
using the transaction dataset with labels from 3 consecutive months
and tested our model on the following month.

4.1.2 Credit Fraud

This dataset was obtained from OpenML3, which contains transac-
tions record asscoaited with credit cards payments over two days in
September 2013 [8]. The minority class in this dataset corresponds
to fraudulent payments. We have split the dataset into half by the fea-
ture ’Time’ where we have earlier half as the training and later half
as the testing dataset.

4.1.3 Forest

This dataset was obtained from UCI Repository [10] which consists
in information about different forest cover types for a given observa-
tion based on the US Geological Survey and US Forest Service data.
There are 7 different forest cover types in total and to make this a bi-
nary classification problem with imbalance issue, we have relabelled
the cover type 4, the least represented class, as the positive instance
and the rest as the negative instances. The scores are the average of
the five-fold cross validation via random selection.

4.1.4 Walking Activity

This dataset consists in a collection of data points from Android
smartphones. It corresponds to accelerometer information from
phones positioned in the chest pocket of their owners for 22 partic-
ipants walking in the wild over a predefined path [3]. Similar to the
Forest dataset, the target variable, the participant numbered between
1 to 22, has been transformed so that the participant 7, which had the
least amount of the data, is labelled as the positive and the rest as the
negative.

4.1.5 Abalone19

Abalone19 comes from the KEEL repository4. It is an imbalanced
version of the Abalone dataset where minority examples belong to
the class 19 [10].

Despite Abalone19 being the dataset with the highest imbalanced
ratio for almost all of the research efforts that deal with ’highly’ im-
balanced datasets [11, 27], its imbalance ratio, along with Forest and
Walking Activity data, is significantly lower than our scope of inter-
est. However, we still include it within our experiments to determine
whether our proposed approach remain relevant and also as a refer-
ence point. The scores are the average of five-fold cross validation

3 https://www.openml.org/d/1597
4 https://sci2s.ugr.es/keel/dataset.php?cod=115
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via random selection. It is worth noting that there are only 32 mi-
nority instances in this dataset which is very small number for the
machine learning model to learn from, meaning approximately 25 of
them were present in the training dataset per fold. So even if the im-
balance ratio is lower than the other dataset, we expect this dataset to
yield lower scores.

4.2 Evaluation Metrics

By considering minority and majority instances as the positive and
negative instances respectively, we have four possible outcomes from
the prediction; True Positive (TP ), True Negative (TN ), False Posi-
tive (FP ) and False Negative (FN ). To quantify the performance of
the model, we use precision, recall and F1-score as our metrics. The
definitions of these metrics are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× Precision × Recall
Precision + Recall

(9)

4.3 Configuration

As mentioned previously, the first classifier used is EasyEnsemble,
with M = 100 AdaBoost sub-models. We will use logistic regres-
sion (LR) as our second step model classifier, C2, applied with fil-
tering from 3.3.1 with one of undersampling, SMOTE and weight
balance to handle the class imbalance in E′

train. For different class
weight, we use the imbalance ratio as the weight of the minority.
We also experiment with the option not to apply the filter on ob-
vious majority instances (NF), although note that only undersam-
pling has been used for this case due to the expensive computa-
tional cost for other methods. We benchmark our proposal against
three traditional undersampling-based techniques; random under-
sampling(RUS), RUSBoost and EasyEnsemble(EE).

4.4 Result

The results from our experiments are provided in Table 2. For ex-
treme imbalance dataset (Cashout and Credit Fraud), we observe
that our proposal always achieves better F1 score than any of the
traditional undersampling-based models regardless of the sampling
techniques used in the second step. Even with just highly imbal-
anced dataset, our proposal with weight balance achieves the best
F1 score. This is because from the minority class perspective, the
dramatic improvement in the precision of the models occured with
a comparatively small trade-off with the recall. This is exactly what
we want from a practical standpoint; our proposal reduces the num-
ber of false positives to minimise the operational cost to carry out
the verifications without losing too much of the ability to pick out
the true positives. High recall but very low precision for the tradi-
tional undersampling-based approaches means they are unrealistic to
be implemented in practice.

Table 3 demonstrates that this benefit comes from having second
step model where we can observe the ratio of the increase in precision
from first to second model larger than the ratio of reduction in recall
for almost all cases. The strength of such characteristic is particularly
highlighted in the credit fraud dataset.

We also note that the best F1 score across all datasets was achieved
(with an exception for the Walking Activity) when we applied

Table 2. Results from the experiments rounded to 3 decimal places.

Cashout Precision Recall F1

RUS 0.001 0.814 0.001
RUSBoost 0.001 0.725 0.001

EE 0.001 0.857 0.001

EE+LR (NF) 0.001 0.647 0.003

EE+LR (RUS) 0.003 0.349 0.006
EE+LR (SMOTE) 0.004 0.151 0.007

EE+LR (Weight) 0.003 0.403 0.006

Credit Fraud Precision Recall F1

RUS 0.035 0.900 0.067
RUSBoost 0.041 0.888 0.078

EE 0.040 0.897 0.076

EE+LR (NF) 0.223 0.857 0.354

EE+LR (RUS) 0.743 0.816 0.778
EE+LR (SMOTE) 0.820 0.798 0.809
EE+LR (Weight) 0.827 0.794 0.810

Forest Precision Recall F1

RUS 0.183 0.994 0.310
RUSBoost 0.150 0.979 0.261

EE 0.191 0.998 0.320

EE+LR (NF) 0.395 0.983 0.563

EE+LR (RUS) 0.653 0.951 0.774
EE+LR (SMOTE) 0.660 0.948 0.778

EE+LR (Weight) 0.654 0.950 0.774

Walking Activity Precision Recall F1

RUS 0.280 0.998 0.426
RUSBoost 0.253 0.771 0.380

EE 0.259 0.998 0.411

EE+LR (NF) 0.461 0.998 0.616

EE+LR (RUS) 0.935 0.897 0.976

EE+LR (SMOTE) 0.910 0.969 0.939
EE+LR (Weight) 0.906 0.968 0.936

Abalone19 Precision Recall F1

RUS 0.015 0.656 0.029
RUSBoost 0.038 0.429 0.070

EE 0.020 0.818 0.040

EE+LR (NF) 0.018 0.593 0.034

EE+LR (RUS) 0.030 0.274 0.054
EE+LR (SMOTE) 0.031 0.098 0.047
EE+LR (Weight) 0.045 0.185 0.072
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Table 3. Ratio of the increase in precision and reduction in recall between
the first and second model within the pipeline in the extreme imbalance

dataset. Benefit ratio is defined as the former divided by the latter.

Cashout Increase in Pre. Reduction in Rec. Benefit

EE+LR (NF) 2.01 1.32 1.52
EE+LR (RUS) 3.87 2.46 1.57

EE+LR (SMOTE) 4.99 5.68 0.88
EE+LR (Weight) 4.30 2.13 2.02

Credit Fraud Increase in Pre. Reduction in Rec. Benefit

EE+LR (NF) 6.35 1.05 6.05
EE+LR (RUS) 21.17 1.10 19.25

EE+LR (SMOTE) 23.37 1.13 20.68
EE+LR (Weight) 23.56 1.13 20.85

SMOTE or weight in the second step, unlike EasyEnsemble used in
the first step where the architecture is based on random undersam-
pling. We believe this observation is due to the different imbalanced
data handling technique used between the first and second model step
in the pipeline, thus reducing the overfitting of the model.

Table 4. Size of the extreme imbalanced training dataset at each step with
imbalance ratio in bracket.

Dataset First step Second step (NF) Second step

Cashout 9,012,239 8,605,650 859,972
(21,663) (20,685) (2187)

Credit Fraud 142,404 117,894 2611
(528) (437) (9)

Table 2 and 3 clearly demonstrate the be benefit of the filtering step
before the second classification. By comparing no filter against the
filter applied with RUS (selected the same data-sampling technique
for fairness), F1 score and benefit ratio were larger with the filtering
than without. We can also see from Table 4 that both the size of the
training dataset and imbalance ratio reduces significantly when the
filter is applied after the first step. This means also that we are able
to apply SMOTE or weight balance more efficiently and thus allows
for more variations in the balancing technique. Another interesting
aspect linked to filtering is that the imbalanced ratio for Credit Fraud
data actually went below the threshold for extreme imbalanced ratio
after the filter is applied. This may explain why the performance on
this dataset of our model is quite strong.

4.5 Discussion

Many of the works which tested their proposal on the dataset we have
used only reported the Area Under the ROC Curve (AUC) as their
performance metric so we could not benchmark our results against
theirs. AUC score in extreme imbalanced setting is not suitable be-
cause it does not get affected by the disproportionate representation
of the classes. This can mask the poor performances of the models
[18], hence the avoidance of using AUC in our experiment.

We note that s2s reports an F1 score of 0.08 for the Abalone19
[11], which was 0.01 higher than our proposal. However, the im-
provement of their model is relatively limited considering the sig-
nificant increase in computational cost due to the quadratic increase
in the dataset size. Whilst the Abalone19 dataset is small enough
for computers to handle the larger computational cost, it may not be

straightforward for larger datasets such as Cashout and Credit Fraud,
thus highlighting a clear advantage of our architecture.

Although we were able to maximise the use of the majority in-
stances and made best effort to minimise the risk of overfitting, this
meant that the same minority instances were shown to all of the sub-
models and to the the second step model. The repeated use of the
such instances can lead to the overfitting to these specific examples.
Therefore, it would be interesting to think about how we can add
variation for the minority instances, not just the imbalanced dataset
handling technique. One possible method could be to mix the mi-
nority instances with the SMOTE samples in each subset of the data
used to train the sub-models.

It will also be interesting to explore other architectures for the
second-step model. The most natural next step from logistic regres-
sion would be neural network due to their similarities. Various works
have been done to handle imbalance classes in neural network con-
text, such as particle swarm optimisation (PSO) [2, 15] and apply
them in the real-life dataset [23]. Given the big data characteristics of
the extreme imbalanced dataset, aforementioned method could lead
to further improvement.

Finally, we have applied undersampling process for the first model
C1 such that the number of the samples of the majorities matched the
minorities exactly. Alternatively, we could look at increasing the im-
balanced ratio for each sampled dataset and study the effect. This
would mean that even more majority instances will be used during
the first step which will lead to a further reduction in the imbalanced
ratio for the second step. Moreover, there will be a smoother transi-
tion in the imbalance ratio between the first and the second step due
to the smaller difference in the imbalanced ratio.

5 Conclusion

In this paper, we proposed a two-step model architecture to address
the challenges related to extreme imbalance dataset. The purpose of
the first model, the ensemble model, is to filter out the obvious ma-
jority instances, and doing so to reduce the size of the training dataset
and the imbalance ratio. Second model then utilised the smaller, un-
used dataset to find a better way to combine the outcomes from the
sub-models in the first step. This approach also allowed us to use dif-
ferent tactics that were not feasible with the initial dataset due to the
computational cost. The experiments with the extreme imbalanced
dataset demonstrated our proposal’s ability to achieve significantly
better balance between precision and recall than the existing method.
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