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Polynomial Neural Networks and Taylor Maps for
Dynamical Systems Simulation and Learning

Andrei Ivanov! and Anna Golovkina? and Uwe Iben?

Abstract. The paper discusses the connection of Taylor maps and
polynomial neural networks (PNN) for numerical solving of the or-
dinary differential equations (ODEs). Having the system of ODEs, it
is possible to calculate weights of PNN that simulates the dynamics
of these equations. It is shown that proposed PNN architecture can
provide better accuracy with less computational time in comparison
with traditional numerical solvers. Moreover, neural network derived
from the ODEs can be used for simulation of system dynamics with
different initial conditions, but without training procedure. Besides,
if the equations are unknown, the weights of the PNN can be fitted in
a data-driven way. In the paper, we describe the connection of PNN
with differential equations theoretically along with the examples for
both dynamics simulation and learning with data.

1 Introduction and Related Works

Traditional methods for solving systems of differential equations im-
ply a numerical step-by-step integration of the system. For some
problems such as stiff ordinary differential equations (ODEs), this
integration procedure leads to time-consuming algorithms because
of the limitations on the time step that is used to achieve the neces-
sary accuracy of the solution. From this perspective, neural network
(NN) as a universal function approximator can be applied for the
construction of the solution in a more efficient way. This property
induces wide research and consequently large number of papers de-
voted to the neural networks design for ODEs and partial differential
equations (PDEs) solutions. We examine some of the publications
in more details and include a short review and comparison of exist-
ing approaches as well as highlight the advantages of the proposed
methodology.

Paper [16] proposes a method to solve initial and boundary value
problems using feed-forward neural networks. The solution of the
differential equation is written as a sum of two parts. The first part
satisfies the initial/boundary conditions. The second part corresponds
to a neural network output. The same technique is applied for solving
the Stokes problem in [7, 9, 28].

Paper [29] considers a neural network training to satisfy the dif-
ferential operator, initial condition, and boundary conditions for the
PDE. The authors of [31] convert a PDE to a stochastic control prob-
lem and use deep reinforcement learning for an approximation of
solution derivative with respect to the space coordinate.

Other approaches rely on the implementation of a traditional step-
by-step integrating method in a neural network framework, cf. [2,
30]. Paper [30] proposes such an architecture. After fitting, the NN
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produces an optimal finite difference scheme for a specific system.
The back-propagation technique through an ODE solver is proposed
in [8]. The authors construct a certain type of NN that is analogous
to a discretized differential equation. This group of methods requires
a traditional numerical method to simulate dynamics.

Polynomial neural networks (PNN) are also widely highlighted
in the literature, cf. [33, 32, 25]. For example, paper [33] proposes
a polynomial architecture that approximates differential equations.
The Legendre polynomial is chosen as a basis in [32]. But it should
be noted, that in all these papers, the polynomial architectures are
used as “black box” models and the authors do not indicate its con-
nection to the ODEs. Thus, the advantages of NN can be exploited
only partially.

In all the described approaches, NNs are trained to consider the
initial conditions of the differential equations. This means that a NN
has to be trained each time when the initial conditions are changed.
The above-described techniques are applicable to the general form of
differential equations but are able to provide only a particular solu-
tion of the system that is a strict limitation of applicability.

Some studies demonstrate the application of neural networks for
physical systems learning [21, 15]. But the described methods re-
quire large volumes of either measured or simulated data for training
of the NN.

In this paper, we consider nonlinear systems of ODEs with poly-
nomial right-hand side:

d,, N ik k]
X =F(t,X)= kzzop ()X, (1)

where ¢ is an independent variable, X € R" is a state vector,
and X!*I means k-th Kronecker power of vector X. For exam-
ple, for X = (x1,z2) we have X2 = (22 z120,23), X =
(23, x3x2, 123, 3) after reduction of the same terms.

Such nonlinear systems arise in different fields such as automated
control, robotics, mechanical and biological systems, chemical reac-
tions, drug development, molecular dynamics, and so on. Moreover,
it is often possible to transform a nonlinear equation (either ODE or
PDE) to a polynomial form.

Based on the Taylor mapping technique, it is possible to build a
PNN that approximates a general solution of (1). The weights of the
PNN are calculated at once directly from the system of ODEs. By a
Taylor map we mean transformation M : Xo = X(to) — X(¢1) in
form of

X(t) =Wo+WiXo+Wa X + ...+ W X1, @

where X € R", and matrices WW; are weights. Transformation (2) is
linear in weights W; and nonlinear with respect to Xo.
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In the literature, this map M can be referred to Taylor maps and
models [19], tensor decomposition [10], matrix Lie transform [3],
exponential machines [22], and others. In fact, the transformation (2)
is just a polynomial regression with respect to the components of X.

Though many numerical solvers for (1) can be considered as maps,
they are commonly based on small time steps At and weight matri-
ces W; = W;(At, Xo) that depend on X. In this paper, by map-
ping approach we mean transformation (2) with the weight matri-
ces W; = W;(t1 — to) that are estimated for a larger time interval
t1 — to > At and do not depend on Xo. The greatest advantage
of the mapping approach is the computational performance. Instead
of step-by-step integration with numerical solvers, one can apply a
map (2) that estimates dynamics in a large time interval for different
initial conditions X at the same accuracy.

In the paper, we briefly describe an algorithm for calculating of
weight matrices W; in (2) for an arbitrary time step 1 — to. Consid-
ering map (2) as a neuron (Fig. 1), it is possible to design a PNN that
simulates the dynamics of the given differential equation. While the
PNN is connected to differential equations, it is also possible to use
this architecture for data-driven identification of physical systems.

Figure 1. Polynomial neuron of third order nonlinearity

The rest of the paper is organized as follows. Sec. 2 describes
the general approach for building Taylor maps for the systems of
ODEs. Sec. 3 corresponds to the PNNs weights calculating for dy-
namics simulation of applied physical systems. Sec. 4 is devoted to
training PNN. The regularization method along with the examples
of data-driven dynamics learning without equation consideration are
described.

2 Taylor maps for the system of ODEs

The solution of (1) with the initial condition X (o) = X during the
time interval ¢ — % in its convergence region can be presented in the
power series [4, 3],

X(t) = M(t —to) o Xo = > M™ ()X}, 3)

k=0

Theoretical estimations of accuracy and convergence of the truncated
series in solving of ODEs can be found in [6]. In [5], it is shown
how to calculate matrices M** by introducing new matrices P¥.

The main idea is replacing (1) by the equation
d k
ik ij ik .
M (t)sz WYM* (), 1 <i<k. 4)
Jj=1

The last equation does not depend on X and should be solved at
once with initial condition M**(to) = I™ MI*(t5) = 0,5 #
k, where [ is the identity matrix. The truncated solution of (4) for
desirable time interval t; —to yields Taylor map (2) with W; = M**.

One of the advantages of the described approach is simulation per-
formance. Indeed, instead of step-by-step integration of the equation
(1) with a small time step At every time when the initial condition
X is changed, one should integrate map M (t) at once for the unique
initial condition and the whole desirable time interval ¢; — ¢o. Then
the same map can be applied for different initial conditions.

3 Simulation of dynamical systems

Since the Taylor mapping approach is commonly used in accelerator
physics [13, 26], we demonstrate the proposed method with the sim-
plified example of charged particle motion. We also introduce deep
PNN for simulation and control of charged particle beam dynamics,
and discuss a shallow PNN architecture for simulation of a stiff ODE.

3.1 Charged particle dynamics

The particle dynamics in the electromagnetic fields can be described
by a system of ODEs that has a complex nonlinear form. For sim-
plicity, let us consider an approximation [27] of a particle motion in
cylindrical deflector written in form of (1):

/

xr =
S ®
y =—2x+2z"/R,
where R is the equilibrium radius of particle bending, « is a deviation
from this radius, and 2’ = y is a derivative on the bending angle.
For example, let us consider a deflector with R = 10 m that ro-
tates a reference particle with initial conditions z = 0, 2 = 0 on
angle /4. For simulation, we investigate dynamics of particle with
nontrivial initial conditions that lead to particle oscillation.
Traditional approach to solve system (5) is step-by-step integra-
tion with numerical solvers. For this purpose, we use Runge—Kutta
method of fourth order with fixed time step. To control the numeri-
cal error in this example, we use integrating angle 30 times smaller
than bending angle. Larger steps introduce nonphysical dissipation
in particle motion. In step-by-step integration, to track particle in-
side the deflector, one has to do 30 steps. In contrast to this, mapping
technique allows to calculate output state in single step (see Fig. 2).

S
.
bl/?’\'glej_‘_
e
.
3 Step-by-step m \\‘
/ Integrating mapping

Figure 2. Step-by-step numerical integrating and Taylor mapping
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Let us find a third order Taylor map (2) that transforms initial par-
ticle state Xo = (zo;yo) at the entrance of the deflector to the re-
sulting state X1 = (x1;y1) at the end of it:

3

2 Zo
x Zo o :C(Q)yo
=W + Wa | woyo | + W3 2o (6
Yy Yo 2 ZoYo
Yo 3
Yo
Combining this map with (5), one can write
3
z\’ T 23 ;go
() :W{<O)+W2/ zoyo | + Wi | U
g 4 Vi ol
Yo @)

2
2\ (0 1\ [« L(0 00 i
y) “\=2 o) \y 1/R00y§
Grouping the terms with o and yo in the same powers for the last
system, one can obtain a system of ODEs that does not depend on
Xo = (%0; yo) and represents dynamics of weight matrices
Wi = fi(Wr, Wa, W3), Wi(0) =1,
Wy = fo(Wi, Wa, Ws), W2(0) =0, 3)
W3 = fa(Wr, Wa, Ws), Ws(0) =0,
where f; is function arising after same power terms grouping. By

integrating this system during the interval [0;7/4], we can receive
the desired map. For example, the map up to two digits is

1\ 0.44 0.63 (zo N
y1)  \—0.13-10 0.44) \yo

2

0.23-107* 0.12-107! 0.26-1072 ;0 n
0.40-10"' 0.35-10"' 0.12-107" offo
Yo

3

0.21-107°0.17-107°0.47 - 107*0.56 - 107°\ [ @30
<0.83 -107%0.95 - 10730.32 - 10730.47 - 10*4> Zoyl
Yo
Using this polynomial transformation, one can calculate state of
the particle at the end of the deflector for arbitrary initial conditions
Xo = (zo0;yo). The simulation in this case is 160 times faster than
the Runge—Kutta based simulation.
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Figure 3. Deep PNN for simulation of a charged particle accelerator

For long-term charged particle dynamics investigation, the tradi-
tional step-by-step numerical methods are not suitable because of

their performance limitations. Instead of solving differential equa-
tions directly, one can estimate Taylor maps of high orders nonlin-
earity for each control element in the accelerator. By combining such
maps consequently, one can obtain a deep PNN that represents the
whole accelerator lattice (see Fig. 3). In such PNN, each layer is rep-
resented by a Taylor map and corresponds to the physical element in
the charged particle accelerator.

The described approach is used for simulation of nonlinear spin-
orbit dynamics in electric dipole moment (EDM) search project
[26, 13]. The particle dynamics was described by a nine-dimensional
state vector. The deep PNN architecture has more than 100 poly-
nomial layers that represent lattice of the accelerator. The compu-
tational performance is increased in 1500 times in comparison with
traditional step-by-step integration.

Along with the computational performance, another advantage of
the proposed model is the possibility to take into account uncertain-
ties. It is easy to represent misalignments and field errors in phys-
ical accelerator by introducing additional polynomial layers inside
the PNN. This feature may be essential for control of accelerators,
while the PNN architecture provides a possibility to fit layers with
measured data.

3.2 The Rayleigh-Plesset equation

The Rayleigh-Plesset equation governs the dynamics of a spherical
gas bubble in an infinite body of in-compressible liquid. It is derived
from the conservation of mass and momentum, which results in a
highly nonlinear second order ODE for the bubble radius R. The
pressure inside the bubble is denoted by pp, and the pressure outside
and far away from the bubble is denoted by p... The density p of the
surrounding liquid is assumed to be constant. The equation of motion
has the form

R 3 _(dR\® 1
Rdt2 +§R (E) —;(pB—p)- (9)

Viscous terms as well as surface tension are neglected. Provided that
ps(t) is known and pe(t) is given, the Rayleigh-Plesset equation
can be used to find the time-varying gas bubble radius R(t) which
includes collapses (R — 0) and rebounds.

Because we study the numerical solvers for the Rayleigh-Plesset
equation, we assume that the pressure difference between pp and poo
is constant, say pp = 2300 Pa and poo = 1 x 10° Pa for simplicity.
The solution contains very strong gradients during the collapse phase
and the following rebound phase, i.e. it is a stiff ODE. In order to
guarantee the accuracy of the numerical solution, very small time
steps and a high order of the solver must be used. The Rayleigh-
Plesset equation (9) is reformulated in a system of first-order ODEs
with a polynomial right-hand side

dy
dt

dy2 (pB — D) 3 5
2. _ b o H), 2 1
i P Ys — 52, (10)
dys
dt

= Y2,

2
= —YsYy2,

where y1 = R, y2 = R, y3 = 1/R, and the initial conditions are
y1(0) = R(t = 0) = Ro, y2(0) = 0, and y3(0) = 1/y1(0).

Since the equation is a stiff ODE, we use an adaptive map-
ping approach. This means that we build Taylor maps of sev-
enth order for different time intervals ranging from At =



A. Ivanov et al. / Polynomial Neural Networks and Taylor Maps for Dynamical Systems Simulation and Learning 1233

1x107%sec to At = 1x107"sec. Then we apply maps
based on the relative error during the simulation. For this ap-
proach, the polynomial neurons can be organized in a shallow ar-
chitecture that offers the possibility of simulating of a bubble mo-
tion with control of accuracy. To compare the computational per-
formance, we run simulations for three initial conditions Rg €
{0.85 x 1073m, 1 x 1072 m, 1.15 x 10> m}, Ry = 0 up to the
collapsing time. The adaptive mapping approach is 2.5 times faster
than the ode45 solver for stiff differential equations from [20] with
similar accuracy (see Fig. 4, 5).

Figure 4. Adaptive mapping technique in a shallow PNN architecture

3.3 The Burgers’ equation

The Burgers’ equation is a fundamental PDE that is used in vari-
ous areas, such as fluid mechanics, nonlinear acoustics, gas dynam-
ics, and traffic flow. This equation is also often used as a benchmark
for numerical methods. In [12], a feed-forward NN is trained to sat-
isfy Burgers’ equation and certain initial conditions, but the compu-
tational performance of the approach is not estimated. In this section,
we demonstrate how to build a PNN that solves the Burgers’ equation
and does not require training to satisfy different initial conditions.
The Burgers’ equation has a form

Ou(t, x)

ot

2
u(t, x) 8ug;x) = 1/8 ZSQ’ m) (1)

Following [1] for benchmarking, we use an analytic solution

_ L, v
ui(t,x) = 2(15(:‘,,9:) e + 4,

_ —(x — 4t)? —(x — 4t — 27)?
YD =y TP )

and a traditional numerical method

n+1 n n n
U Uy +ul Ui — Uj—q
At !

n n n
™ 2ui + Ui

Az Azx? (12

where n stands for the time step, and ¢ stands for the grid node.

The equation (12) presents a finite difference method (FDM)
that consists of an Euler explicit time discretization scheme for the
temporal derivatives, an upwind first order scheme for the nonlin-
ear term, and finally a centered second order scheme for the dif-
fusion term. The time step for benchmarking is fixed to At =
2.5 x 10™*sec with the uniform spacing of Az = 2m/1000,
v = 0.05m?/sec. Thus, for the numerical solution for times from
t = Osectot = 0.5sec on z € [0, 2], the method requires the
mesh with 1000 steps on space coordinate « and 2000 time steps.

1% 10°
——— TN
0.9 ™~ / ™.
/ \
0 0.61 \
3 \
o adaptive mapping 7th order
0.3 ——oded45 adaptive step
0 L
0 0.0005 0.001

Time

Figure 5. Simulation of the Rayleigh-Plesset equation: blue line for ode45,
orange circles for PNN

It is indicated in [1] that the FDM introduces a dispersion error
in the solution (see Fig. 6). Such error can be reduced by increasing
the mesh resolution, but then the time step should be decreased to
respect the stability constraints of the numerical scheme.

To build a PNN for solving the Burgers’ equation we translate
(11) to a system of ODEs and build a Taylor map in accordance with
Sec. 2. Assuming that the right-hand side of (11) can be approxi-
mated by a function f(z, u(t, z)) and considering this approximated
equation as a hyperbolic one, it is possible to derive the system of

ODEs

d (X U

el — 13

dt <U> (f(x,U)) ’ (13)
where U = (ui,...,u%1000), wi(t) = wu(t,z;), and X =
(z1,...,x1000) is vector of discrete stamps on space. This trans-

formation from PDE to ODE is well known and can be derived using
the method of characteristics and direct method [11]. If f(z, u(¢, z))
is the same discretization as in (12), then the equation (13) leads to
the system of 2000 ODEs

1»‘; = U, u; = f(V, Wit1, Ui, Uim1, Tit1, Ti, Tio1),
which can be easily expanded to the power series with respect to the
X and U up to the necessary order of nonlinearity.

Since there are only first and second order approximations in the
benchmarking FDM scheme, we build a Taylor map of only the first
order in a time interval At = 1.25 x 1072 sec. This time step is
five times larger than that is used in the benchmarks. The numerical
solution provided by the resulting PNN is presented in Fig. 6, and the
accuracy and performance are compared in Tab. 1.

Table 1. Comparison of the simulation of the Burgers’ equation by FDM

and PNN
Method Time Elapsed MSE for
step time u1(0.5,x)
FDM 2.50 x 10~ % sec 0.055 sec 8.0-10~2
PNN 1.25 x 10~ 3 sec 0.016 sec 5.5-1073

The PNN numerically estimates dynamics in a larger time interval
and provides better accuracy with less computational time in com-
parison with FDM of the same order of derivative approximations. If
the FDM scheme is adjusted to a higher accuracy, the computational
time will be increased even more. Accuracy is calculated as a mean
square error (MSE) metric between the numerical solution and its
analytic form at final time ¢ = 0.5 sec.

Since the derived from the differential equation PNN is an approx-
imation of the general solution, it can be used for simulation of the
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—== PNN, dt=1.25e-3
—— FDM, dt=2.50e-4
Analytic

4.2 ) ) 4.8

Figure 6. Burgers’ equation: blue line for FDM, red dashed line for PNN,
blue dashed line for analytic solution

dynamics with different initial conditions without weight modifica-
tion. For example, for another analytic solution

uz(t,z) = (1 + exp(0.5(x — 0.5t)/v) ",

the same PNN provides a numerical solution in time £ = 0.5 sec with
MSE error 7.2 x 1078 sec, while FDM yields 1.2 x 10~ sec. The
elapsed times are the same since the mesh sizes are not changed.
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Figure 7. Numerical schemes for FDM, At = 2.5 — 4sec (top Fig.) and

PNN, At = 1.25 x 1073 sec for (11)

4 Learning dynamical systems from data

In this section, we discuss the training of PNN. We demonstrate how
one can adjust weights of the PNN for certain initial conditions of the
Burgers’ equation by additional training of the PNN derived from
the equation. We also introduce a regularization of the PNN based
on combinatorial binary optimization and demonstrate the proposed
methods in a practical application of a data-driven system learning.

4.1 Training the PNN for certain initial conditions

The PNN derived from differential equation works for any initial
condition with the same level of accuracy. The accuracy depends on
the size of the PNN, namely the order of nonlinearities in the map
(2). But it is still possible to train PNN for certain initial conditions.
In order to train the PNN for the Burgers’ equations, we consider
a deep architecture with 400 layers with shared weights. Each layer
M is defined by the Taylor map (2) for time dt = 1.25 x 107 sec:

ult=0,2) > M — ... > M — u(t =0.5,x).

The loss function is defined as the inconsistency of the numerical
solution with differential equations. The initial values of weights are
calculated from the PDE with the corresponding Taylor map.

Initially, the PNN has 4 - 10° weights with only 5 - 10® of them
not equal to zero. The point of training is to adjust these weights to
achieve better accuracy for the given initial conditions. We imple-
mented a simplified training based on a coordinate descent method
that yields a three-fold increase in accuracy.

4.2 Regularization of the PNN

It is common for physical systems that a Taylor map is presented by
sparse matrices W;. So it is important to identify non-zero weights
in the polynomial neural network. Classical L1 and Lo regularization
terms do not work in this case since they tend to decrease weight. The
weights in PNN can be large by absolute value but the total amount of
non-zero weights should be as small as possible. To solve this issue,
one can introduce a binary mask B; that is applied to the weight
matrices:

X1 = (Bo* Wo) + (Br* W)X+ (Be « W) XP 4+ (14)

where (B; * W;) means element-wise multiplication.

During the fitting of weight matrices W, it is also necessary to find
an optimal mask B;. If the weights W; are fixed after each training
epoch, the map (14) becomes linear for the components of B;.

-3
10
\
\
'\ . Loss without regularization
5 \A . .
o 10 ! A Loss with QUBO regularization
§ l‘\ ;" I‘.‘ Loss with L1 regularization
=~ - [ |
2 - \
= “ \
0 3\ \ 7}
g - \, | \ \
~ 10 1 \
\ | |
S L
N A \\
10 N\
10
0 40 100

number of training epochs

Figure 8. Loss functions and number of epochs for training PNN for the
Van der Pol oscillator: without regularization (blue line), with L1
regularization (green line), and with the proposed QUBO-based

regularization.

It is possible to formulate regularization as a high-order binary op-
timization problem and translate it into a quadratic unconstrained bi-
nary optimization (QUBO). For example, the loss function || X;4+1 —
(B * M) oX;|| translates directly to QUBO, while loss function that
is introduced for Burgers’ equation translates to the high-order un-
constrained binary optimization problem. By introducing additional
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binary variables it is possible finally to formulate regularization as
QUBO.

To demonstrate the advantage of QUBO-based regularization, we
implement a simplified example with the Van der Pole oscillator.
The equation is widely used in the physical sciences and engineering
and can be used for the description of the pneumatic hammer, steam
engine, periodic occurrence of epidemics, economic crises, depres-
sions, and heartbeat. The equation has well-studied dynamics and is
widely used for testing of numerical methods, e.g., [24].

The Van der Pol oscillator is defined as the system of ODEs z”/ =

x’ — x — 22’ that can be presented in the form of
=y

,_ 2 (15)

Yy =y—z—2a’y.

We generate a training data as a particular solution {X; };—1.n of
the system (15) with the initial condition Xo = (—2,4). After this
solution was generated, the equation is not used further.

-4 -3 -2 -1 o 1 2 3

Figure 9. Training data for the NN as a numerically generated particular
solution

Having this training data set (Fig. 9 ), the proposed PNN can be
fitted with the mean squared error (MSE) as a loss function based on
the norm

3

Z;
2
||Xi+1—MoXi\|:\|< +1)—W0—...—W3 Yl
Yi+1 TilYi
Y3

We implement the described technique in Keras/TensorFlow and
fit a third order PNN with an Adamax optimizer. After each training
epoch we applied QUBO-based regularization for the weights of the
PNN.

Fig. 8 shows that QUBO-based regularization can significantly
decrease the number of epochs required to achieve an appropriate
level of accuracy. However, the time required to solve the QUBO
problem is longer then training without regularization. It should be
noted that using special hardware (e.g., quantum or digital annealers)
instead of classical QUBO-solvers can potentially provide additional
improvement in computation time.

The generalization property of the network can be investigated by
examining prediction not only from the training data set but also for
new initial conditions. Fig. 10 demonstrates predictions that are cal-
culated starting also at the new points (1, 2), (2, —2), and (—3, —3)
that are not presented to the PNN during fitting. For the prediction
starting from the training initial condition, the mean relative error of

Figure 10. Prediction for new initial condition that are not presented
during training

the predictions is 4.8 - 10~°. For the new initial conditions, the mean
error is even less than or equal to 9.8 - 1075,

4.3 Data-driven identification of a zinc-air energy
storage system

Zinc-air batteries are one of the most promising energy storage sys-
tems. An effective mathematical model is a key part of a battery man-
agement system, responsible for its operational control and internal
state evaluation. The model-based analysis is an effective tool in the
design and manufacture of power supplies, as well as in the analysis
of their behavior under different operating conditions [17].

There are several approaches for building a dynamic model of a
battery. At present, the studies are mostly focused on mathematical
models of zinc-air batteries derived from the electrochemical princi-
ples of the batteries’ functioning. This implies utilization of compli-
cated nonlinear PDEs that describe the battery behavior precisely but
require time-consuming numerical procedures for their solution.

Another type is a “black box”, or data-driven model, that is
formed by analyzing experimental data using artificial neural net-
works. Since this approach does not imply the presence of state equa-
tions in the model, it works only on data that is similar to what the
NN is trained on. This requires the availability of operational data
from real environments of sufficient volume and quality, which in
practice cannot always be guaranteed.

Thus, state space models with lumped parameters are more suit-
able for analysis, control, and optimization of power supplies since in
this case, they include battery general characteristics such as voltage,
current, state of charge, and so on. In the most general form without
specification of any details, it can be presented as follows:

z(k+1) fa(k), u(k)),
y(k) = gla(k),u(k)). (16)

It should be noted that real power sources exhibit strongly nonlin-
ear effects that are to be included as a nonlinear part of the f(-) and
g(+) functions of the mathematical model (16) from [23]. This im-
plies manual derivation of the equations for dynamics description and
identification of its parameters. In this work we take an alternative ap-
proach with a data-driven construction of a mathematical model from
a set of controlled experiments [18]. We investigate whether it is pos-
sible to extract features from current and voltage measurements col-
lected during battery discharge in various fixed loading conditions.

For demonstration of this approach, we consider only the voltage
dynamics for discharge currents 600 mA, 700 mA, and 800 mA and
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Figure 11. The input data (lines) and predictions (dots) provided by PNN

solve an identification problem only for regions where voltage de-
creases over time.

Initial data taken from the open source [18] is filtered with a simple
moving average window and aligned to a constant time stamp of 1
msec. To present dynamics of the voltage decrease, we use a PNN
with three layers (see Fig. 11). Each layer is represented by a Taylor
map, where T'M; and T'M3 are Taylor maps of second order, and
T M is a Taylor map of fifth order.

Vi — — —
TM:| |TM-
C— — —

TMs |~ Vits

Figure 12. The PNN architecture for learning voltage dynamics

To train the PNN, the vector of voltage at the given time stamp
and the value of discharge current are used as input data, and voltage
after three time stamps is used as output data. Also, the regularization
described above is used.

After training, the dynamics of the voltage decrease is calculated
as the consequent prediction performed by the PNN. Starting with
initial voltage Vy at time ¢ = 0, we calculate the dynamics using the
formula:

Vo - W1 :PNN(VO) —...—=> WV :PNN(kal).

In this way, the PNN plays the role of a model of the system that can
calculate dynamics with different initial conditions V5.

Fig. 11 shows the results of the voltage dynamics simulation with
the trained PNN. While additional features such as derivatives of
voltage or power can potentially increase the accuracy, the built PNN
preserves physical properties of the dynamics. For example, the PNN
successfully predicts the lower level of voltage that is the same for all
currents in contrast to simple function approximations that can give
aberrant negative values of voltage [23].

One of the advantages of polynomial architectures in comparison
with other machine learning methods is its consistency with con-
sistency of dynamical systems and differential equations. A PNN

trained with data can provide a mathematical model with physical
properties preservation. For example, in [14] it is shown that MLP
and LSTM simply memorize data for simplified physical systems.
They cannot predict dynamics for data that is not presented during
fitting. The PNN architecture allows for extrapolation of dynamics
of new initial conditions and preservation of physical properties of
the dynamical systems.

5 Supplementary code

The program code contains the considered examples and can be
found in the following GitHub repositories.

github.com/andiva/DeepLieNet: implementation of PNN in
Keras/TensorFlow (sec. 1, 3.3, 3.2, and 4.3):

/demo/Deflector: cylindrical deflector simulation
/demo/accelerator.ipynb: storage ring simulation

/demo/Ray _Ples: simulation of the Rayleigh-Plesset equation
/demo/Battery: trained PNN for voltage dynamics
github.com/andiva/AQCC: PNN for simulation of the Burg-
ers’ equation (Sec. 3.3), training PNN for the Burgers’ equation
(Sec. 4.1), QUBO-based regularization and training of PNN for the
Van der Pol oscillator (Sec. 4.2).

6 Conclusion

Since the Taylor maps and PNN have strong connections to systems
of differential equations, these methods can be used for physical sys-
tem simulation and data-driven identification. If the differential equa-
tions for the system are known, it is possible to calculate weights of
the PNN with the necessary level of accuracy. In this way, the built
PNN can be used for simulation of the dynamics instead of the tra-
ditional numerical solvers. It is shown that Taylor mapping and the
PNN provide the same or even better accuracy with less computa-
tional time in comparison to step-by-step integration of the equations.

If the equations of the system are not known, the PNN can be
trained from scratch with the available data. One can define an ar-
chitecture of the PNN and fit weights directly with data. Instead of
fitting of parametrized equations, this approach allows for fitting of
weights of the PNN directly.

In the paper, we consider simulation of dynamical systems arising
in practical applications with the PNN. For training the PNN, we
introduce QUBO-based regularization and demonstrate data-driven
dynamics learning with a simplified Van der Pol oscillator and apply
these methods to the problem of battery development.

We do not consider the problem of accuracy, PNN architecture
selection, or optimization methods for training in detail. This work
should be done in further research. With the provided examples, we
instead demonstrate the applicability of Taylor mapping methods that
are commonly used in dynamical systems investigation to the theory
of NN and data-driven system learning.
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