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Abstract. Deep generative models enhanced by Wasserstein dis-
tance have achieved remarkable success in recent years. Wasserstein
Auto-Encoders (WAEs) are auto-encoder based generative models
that aim to minimize the Wasserstein distance between the data dis-
tribution and the generated distribution. The quality of generated
samples of WAE depends on the distance between the data distri-
bution and the generated distribution. However, WAE actually min-
imizes a Wasserstein distance between the data distribution and the
reconstructed distribution in data space plus a penalty divergence be-
tween the aggregated posterior and the prior in latent space, leading
a gap between theory and practice. Consequently, the quality of gen-
erated samples of WAE is not satisfactory. In this paper, we propose
a novel dual rejection sampling method to improve the performance
of WAE on the generated samples in the sampling phase. The pro-
posed method first corrects the generative prior by a discriminator
based rejection sampling scheme in latent space and then rectifies
the generated distribution by another discriminator based rejection
sampling method in data space. Our method is validated, both qual-
itatively and quantitatively, by extensive experiments on three real-
world datasets.

1 INTRODUCTION

Generative models, one of the most promising research fields in ma-
chine learning, have recently achieved impressive success for many
real-world applications, e.g., image synthesis [5, 17, 28], video gen-
eration [29, 33] and image classification [6, 7]. Generative models
aim to learn the distribution of high-dimensional complex data and
imply a generated distribution. With deep learning dominating gener-
ative models, Variational Auto-Encoders (VAEs) [19] and Generative
Adversarial Networks (GANs) [11] are two well-known deep latent
variable generative models, also known as implicit models. VAE is a
theoretically elegant approach that maximizes a lower bound of the
log-likelihood of data, leading to minimizing the Kullback–Leibler
(KL) divergence between the data distribution and the generated dis-
tribution. GAN is designed as a minimax game between a generator
and a discriminator. The valina GAN approximately minimizes the
Jensen-Shannon (JS) divergence between the data distribution and
the generated distribution. Many other divergences included by f -
divergences can also be applied to GAN’s framework by modifying
its objective function [25]. However, those divergences are often suf-
fered from gradient vanishing problem when two probability distri-
butions have no intersecting supporting domain [1], which is com-
mon in high-dimensional data space.
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Wasserstein distance, introduced by Optimal Transport (OT) prob-
lem [35], provides a much weaker topology than many other di-
vergences, including KL divergence, JS divergence, and other f -
divergences. The weaker topology makes the Wasserstein distance
have meaningful gradients wherever two probability distributions lie
on. Wasserstein GAN (WGAN) [2] and WGAN-gp [13] are two
GAN based generative models that minimize the Wasserstein-1 dis-
tance, also known as Earth-Mover (EM) distance, between the data
distribution and the generated distribution from the dual form of
OT cost. Nevertheless, they lack the inference mechanism and are
notorious to train in literature [9, 30]. Wasserstein Auto-Encoders
(WAEs) [32] aim to learn auto-encoder based generative models by
trying to minimize the Wasserstein distance between the data dis-
tribution and the generated distribution from the modified primal
form of OT cost. The primal form allows WAE to optimize many
Wasserstein distances defined by different cost function, but the dual
form cannot own this flexibility, which makes WGANs limited to
Wasserstein-1 distance. WAE also has an inference mechanism due
to the existence of the encoders and stable training processes by
avoiding adversarial training in high-dimensional data space. The
theory of WAE requires that the aggregated posterior induced by en-
coders and the generative prior must be precisely the same, which is
a hard constraint that is not feasible to optimize using stochastic gra-
dient descent. So WAE relaxed the constraint to a penalty divergence
between the aggregated posterior and the prior. However, the relaxed
objective function does not minimize the exact Wasserstein distance
between the data distribution and the generated distribution anymore.
The practical compromise deviates from the theoretical goal of WAE,
resulting in unsatisfactory quality of the generated samples.

In this paper, we first analyze that the objective optimized by
WAE actually consists of a Wasserstein distance between the data
distribution and the reconstructed distribution plus an arbitrary di-
vergence between the aggregated posterior and the prior. We then
present a novel Dual Rejection Sampling method for Wasserstein
Auto-Encoders (DRSWAE) to improve the quality of generated sam-
ples of WAE by encouraging the generated distribution closer to the
data distribution in the sampling phase. DRSWAE contains two re-
jection sampling schemes located in latent space and in data space,
respectively. The first rejection sampling in latent space aims to make
the prior matching the aggregated posterior better by rejecting some
latent codes with a probability according to a discriminator, which
discriminates latent codes from the aggregated posterior rather than
the prior. We argue that the corresponding generated distribution gen-
erated from the resampled prior through the decoder becomes closer
to the reconstructed distribution, which is also closer to the data dis-
tribution than the originally generated distribution intuitively, lead-
ing a better quality of generated samples. The second rejection sam-
pling in data space seeks to push the resampled generated distribution
matching the data distribution further by rejecting unreal samples in

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200218

1190



agreement with the probability given by another discriminator, which
discriminates data samples from the data distribution rather than the
resampled generated distribution. We conduct extensive experiments
on three real-world datasets: MNIST, CelebA, and SVHN. The qual-
itative and quantitative results demonstrate the effectiveness and su-
periority of our proposed DRSWAE over baselines: WAE and two
single rejection sampling methods for WAE in latent or data space
and their oppositions.

The main contributions of this paper are summarized as follows:

• We show that the practical goal of WAE is to minimize a Wasser-
stein distance between the data distribution and the reconstructed
distribution plus a divergence between the aggregated posterior
and the prior.

• We present a novel dual rejection sampling method to improve the
quality of generated samples of a trained WAE.

• We conduct extensive experiments on three real-world datasets.
The qualitative and quantitative results demonstrate the effective-
ness of our method.

• We perform ablation study to verify the superiority of dual rejec-
tion sampling compared with single rejection sampling in latent
or data space.

In the rest of this paper, we first introduce the necessary con-
cepts in Section 2. We then present our novel dual rejection sampling
method for WAE in Section 3. We conduct extensive experiments
and analyze the qualitative and quantitative results in Section 4. We
introduce the most related work and discuss the relationship between
us in Section 5. Finally, we conclude this work and point out future
work directions in Section 6.

2 BACKGROUND

2.1 Wasserstein Auto-Encoders

Wasserstein Auto-Encoders (WAEs) are auto-encoder based gener-
ative models by trying to minimize the Wasserstein distance be-
tween data distribution PX and generated distribution PG theoreti-
cally [32]. Wasserstein distance is induced by OT problem. The Kan-
torovich’s formulation of the problem is given by [35]

Wc(PX , PG) = inf
τ∈P(X∼PX ,Y ∼PG)

E(X,Y )∼τ [c(X,Y )], (1)

where c(X,Y ) : X ,X → R
+∪{0} represents any cost function and

P(X ∼ PX , Y ∼ PG) is a set of all joint distributions of (X,Y )
with marginals PX and PG respectively.

Given the generated probability pG(x) =
∫
Z pG(x|z)p(z)dz in-

duced by a deterministic generative model pG(x|z) = δ(x−G(z)),
where G represents the generator, the Kantorovich’s formulation of
OT problem can be converted into [24]

Wc(PX , PG) = inf
Q:QZ=PZ

EPXEQZ|X [c(X,G(Z))], (2)

by introducing an inferenced distribution QZ|X with the encoder Q,
and QZ is its marginal distribution (the aggregated posterior) with
probability q(z) =

∫
X q(z|x)p(x)dx. PZ is the prior distribution.

Unfortunately, it is difficult to optimize objectives with hard con-
straints. WAE relaxed the constraint by adding a penalty into its ob-
jective function

DWAE(PX , PG) = inf
QZ|X∈Q

EPXEQZ|X [c(X,G(Z))]+λ·DZ(QZ , PZ),

(3)

where Q is a set of non-parametric encoder function, DZ is an arbi-
trary divergence function between two distributions in latent space,
and λ > 0 is a hyper-parameter.

2.2 Discriminator Rejection Sampling

Discriminator Rejection Sampling (DRS) performs a rejection sam-
pling using the GAN discriminator to approximately correct errors
in the GAN generator distribution [3]. Rejection sampling is a sam-
pling method that can recover a target distribution QX , which cannot
be sampled directly but can access the probability q(x), by sampling
from an easily sampled proposal distribution PX . First, one can find
a finite number M such that Mp(x) ≥ q(x) for ∀x ∈ X , where
X is the domain of QX and PX (assume that QX and PX have the
same domain). Then a proposal sample x drawn from PX will be
accepted for a finally generated sample with acceptance probability
q(x)/Mp(x), and be rejected otherwise.

As one of the prerequisites for rejection sampling, the ratio of two
probabilities q(x)/p(x) is obtained by utilizing an optimal discrimi-
nator in DRS. A discriminator is defined with a sigmoid function to
discriminate two classes and can be written as

D(x) = σ(d(x)) =
1

1 + e−d(x)
, (4)

where D(x) is the final discriminator output, and d(x) is the logit.
From the Proposition 1 in the original GAN paper [11], for any fixed
generator, the ratio can be derived from the optimal discriminator
that discriminate a sample x ∼ QX from the prior PX :

D∗(x) =
q(x)

q(x) + p(x)
⇒ q(x)

p(x)
= ed

∗(x), (5)

where d∗ is the logit function of the optimal discriminator D∗.
Another remaining thing is to finding M such that scale

q(x)/Mp(x) ∈ [0, 1], ∀x ∈ X to make it as a valid acceptance
probability. In practice, one can approximately estimate

M = max
x∈X

q(x)

p(x)
= max

x∈X
ed

∗(x) ≈ max
x∈X̄

ed
∗(x) = ed

∗(x∗), (6)

where X̄ is an empirical distribution on X and x∗ =
argmaxx∈X̄ ed

∗(x) is the sample that maximizes it.
Then the acceptance probability of a proposal sample x is given

by q(x)/Mp(x) = ed
∗(x)−d∗(x∗).

To alleviate the practical issue that rejection sampling has low
acceptance probability when the target distribution is in high-
dimensional space [23], DRS first considers a probability that is im-
plicitly followed by a sigmoid function

1

1 + e−F (x)
= ed

∗(x)−d∗(x∗). (7)

And rewrite F (x) as follows:

F (x) = d∗(x)− d∗(x∗)− log(1− ed
∗(x)−d∗(x∗)). (8)

To improve the efficiency of sampling, DRS instead computes

F̂ (x) = d∗(x)− d∗(x∗)− log(1− ed
∗(x)−d∗(x∗)−ε)− γ, (9)

where ε is a small constant added for numerical stability, and γ is
a hyper-parameter modulating overall acceptance probability. Nega-
tive γ will promote the acceptance of most samples, and encourage
to reject for positive γ.
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Figure 1. Illustration of our analysis on WAE and our proposed method DRSWAE. (a) The dotted blue line indicates the theoretical objective of WAE. Two
solid blue lines represent the practical objectives of WAE. (b) For DRSWAE, solid red lines indicate the rejection sampling processes, and dotted red lines

imply their corresponding targets. DRSWAE produces a distribution PXDRS
, which is constructed through two rejection sampling processes in latent and data

spaces. PXRSZ
and PXRSX

are obtained from two simplified versions, which conduct single rejection sampling in latent or data space, respectively.

3 DUAL REJECTION SAMPLING FOR WAE

3.1 Analysis on Wasserstein Auto-Encoders

We realize that the objective used in WAE is not truly minimizing the
exact Wasserstein distance between data distribution PX and gener-
ated distribution PG anymore, because the added penalty regular-
ization cannot guarantee that the aggregated posterior QZ exactly
matches the prior PZ , which should be the same in theoretical. Now
the question is what the objective function of WAE optimizes? To
answer this question, we first define the reconstructed distribution
through the auto-encoder pair

pR(y) =

∫
Z
pG(y|z)[

∫
X
q(z|x)p(x)dx]dz

=

∫
Z
pG(y|z)q(z)dz.

(10)

Then the Wasserstein distance between the data distribution PX

and the reconstructed distribution PR is given by

Wc(PX , PR) = inf
Q

EPXEQZ|X [c(X,G(Z)]. (11)

The proof uses the same theory of Theorem 1 in WAE paper [32],
but different from the prior used in the reconstructed distribution and
the generated distribution, which is QZ and PZ , respectively. This
equation reveals that the reconstruction error is a Wasserstein dis-
tance between the data distribution and the reconstructed distribu-
tion. After substituting Equation 11 back into Equation 3, the objec-
tive function in WAE can be re-written as

DWAE(PX , PG) = Wc(PX , PR) + λ ·DZ(QZ , PZ). (12)

Now we find that WAE actually minimizes a Wasserstein distance
between the data distribution PX and the reconstructed distribution
PR in data space plus a divergence between the aggregated posterior
QZ and the prior PZ in latent space weighted by a hyper-parameter
λ (see Figure 1).

3.2 Dual Rejection Sampling

We hypothesize that the poor performance of WAE on generation lies
in the difference between practice and theory. To remedy this issue,
we propose a novel Dual Rejection Sampling method for Wasserstein
Auto-Encoders (DRSWAE) to minimize the distance between the
generated distribution and the data distribution in the sampling phase.
Therefore, we can improve the quality of generated samples of WAE.
DRSWAE performs a rejection sampling in latent space (see Sec-
tion 3.2.1) and a rejection sampling in data space (see Section 3.2.2)
sequentially. The rejection sampling scheme is accomplished by uti-
lizing an optimal discriminator. The details are described in Algo-
rithm 1, which executes rejection sampling (Algorithm 2) twice.

Algorithm 1 Dual Rejection Sampling for Wasserstein Auto-
Encoders (DRSWAE)
Require: dataset D = {x1, x2, ..., xn}, encoder Eω , de-

coder/generator Gθ , discriminator in latent space DφZ , discrim-
inator in data space DφX , prior PZ

Ensure: generated samples DG = {y1, y2, ..., ym}
1: Z ← Sample(PZ)
2: ZE ← Encode(Eω,D)
3: DP ← RejectionSampling(ZE ,Z, null, DφZ , null, PZ)
4: DG ← RejectionSampling(D,DP , Gθ, DφX , DφZ , PZ)
5: return DG

3.2.1 Rejection sampling in latent space

As mentioned above, WAE minimizes a Wasserstein distance
Wc(PX , PR) plus an arbitrary divergence DZ(QZ , PZ). In practice,
the prior PZ is almost always impossible to exactly match the pos-
terior QZ , because we optimize it in parametric space rather than
function space. We also experimentally find that there exists a mis-
match between the aggregated posterior and the prior (see Table 2).
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Algorithm 2 Rejection Sampling in Latent/Data Space
Require: target dataset DT = {x1, x2, ..., xn}, proposal dataset

DP = {z1, z2, ..., zn}, generator Gθ , discriminator Dφ, filter
Fη , prior PZ

Ensure: generated samples DRS = {y1, y2, ..., ym}
1: Dφ∗ ← Train(Dφ,DT ,DP ) // Train discriminator till optimal
2: M ← EstimateM(Dφ∗ , {DT ,DP }) // Equation 6
3: DRS ← φ
4: while |DRS | < m do

5: z ← Sample(PZ)
6: if Fη = null then

7: x← z // Rejection sampling in latent space
8: else

9: while Reject(Fη, z) do

10: z ← Sample(PZ)
11: end while

12: x← Gθ(z) // Rejection sampling in data space
13: end if

14: a← σ(F̂ (x,M, ε, γ)) // Equation 9 and Equation 6
15: p← Uniform(0, 1)
16: if p ≤ a then

17: DRS ← Append(DRS , x)
18: end if

19: end while

20: return DRS

Consequently, the reconstructed distribution PR is closer to the data
distribution PX than the generated distribution PG (see Table 1). In
other words, the reconstructed samples have better quality than di-
rectly generated samples. Thus, a natural idea to improve the quality
of generated samples is to sample from the reconstructed distribution
PR. Notice that we do not mean to take the reconstructed data, which
do not have generalization since it is trying to memorize the empiri-
cal data, as the generated samples. To this end, we need to generalize
the aggregated posterior QZ as the generative prior. However, it is
not feasible to achieve this goal because we cannot sample from the
generalized QZ directly. Fortunately, the assumed simple prior PZ

in deep latent variable generative models, which is usually isotropic
Gaussian distribution or Uniform distribution, is easy to sample. We
propose to recover the aggregated posterior QZ by leveraging a dis-
criminator based rejection sampling method and regard the prior PZ

as the proposal distribution.
Then, the new resampled prior is given by

pZRSZ (z) =
1

ZZ

∫
Z
p(z)

q(z)

MZp(z)
dz, (13)

where ZZ =
∫
Z p(z) q(z)

MZp(z)
dz is the normalization term.

3.2.2 Rejection sampling in data space

After finishing the rejection sampling in latent space, the obtained re-
sampled prior PZRSZ is closer to the aggregated posterior QZ than
the original prior PZ (see Table 2). The corresponding generated dis-
tribution is

pXRSZ (x) =

∫
Z
pG(x|z)pZRSZ (z)dz. (14)

We continue to conduct another discriminator based rejection sam-
pling in data space to push the new generated distribution PXRSZ

closer to the data distribution PX , as there is still a gap between

the data distribution and the reconstructed distribution. Therefore,
we can further improve the overall quality of the generated samples.
One can do this by considering the target distribution as the data dis-
tribution PX and the proposal distribution as PXRSZ .

Thus, the final generated distribution is given by

pXDRS (x) =
1

ZX

∫
X
pXRSZ (x)

p(x)

MXpXRSZ (x)
dx, (15)

where ZX =
∫
X pXRSZ (x)

p(x)
MXpXRSZ

(x)
dx is the normalization

term.
Notice that we do not have to calculate this expression, and we

only need to able to sample from it. We share Algorithm 2 to de-
scribe the rejection sampling in latent and data spaces because they
are only different from their target and proposal distributions but
common with many other operations.

We also introduce two simplified versions of DRSWAE: RSZWAE
and RSXWAE, which performs one rejection sampling in latent
space or data space, respectively. RSXWAE can be seen as a di-
rect application of DRS to WAE. As illustrated in Figure 1, the gen-
erated distribution of RSZWAE and RSXWAE are represented by
PXRSZ and PXRSX , respectively. Intuitively, it is promising that
DRSWAE can outperform RSZWAE as it further minimizes the dis-
tance directly in data space. Compared with RSXWAE, we argue that
DRSWAE achieves better results because the proposal distribution
PXRSZ is often closer to PX than PG, offering better conditions for
rejection sampling in data space in practice.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments on three real-world datasets:

• MNIST3: consisting of 60k hand-written digital images.
• CelebA4: containing roughly 203k face images.
• SVHN5: including about 73k street view house number images.

4.2 Model architecture

We specify DZ(QZ , PZ) = DJS(QZ , PZ) by employing a discrim-
inator to estimate the JS divergence. Hence, the WAE-GAN [32]
model is selected as the implementation of WAE. We reuse the dis-
criminator to perform rejection sampling in latent space. The addi-
tional network of our DRSWAE compared with WAE is a discrimina-
tor that discriminates samples from the data distribution than the gen-
erated distribution for conducting rejection sampling in data space.
For encoder-decoder pairs on MNIST and CelebA datasets, We fol-
low the exact model architecture given in the WAE paper [32]. For
all datasets, the architecture of the discriminator in latent space is the
same as the description in the WAE paper, and the architecture of the
discriminator in data space is the same as the encoder except for its
final output layer because it must output a scalar. For the new SVHN
dataset, the encoder and decoder are similar to the DCGAN ones re-
ported by [27], which both use fully convolutional architectures with

3 http://yann.lecun.com/exdb/mnist/
4 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5 http://ufldl.stanford.edu/housenumbers/
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4× 4 convolutional filters and designed as follows:

z ∈ R
28×28 → Conv128 → BN → ReLU

→ Conv256 → BN → ReLU

→ Conv512 → BN → ReLU

→ Conv1024 → BN → ReLU → FC32

z ∈ R
32 → FC2×2×1024 → ReLU

→ FSConv512 → BN → ReLU

→ FSConv256 → BN → ReLU

→ FSConv128 → BN → ReLU → FSConv3

→ Sigmoid

4.3 Experimental settings

For training basic WAE models, the experimental settings on MNIST
and CelebA datasets are consistent with the original one described in
the WAE paper [32]. For SVHN dataset, the parameters are the same
as MNIST dataset except for the hyper-parameter λ = 1.

Because the optimal discriminators in both latent and data spaces
are needed by DRSWAE, we train two discriminators for each dataset
as follows:

• MNIST The discriminator in latent space is trained for 5 epochs
with learning rate 1e−4, and the discriminator in data space is
trained for 1 epoch with learning rate 1e−4. The hyper-parameter
γz that modulating overall acceptance probability for rejection
sampling in latent space is set to 80th percentile of each batch
(the sample at 80th percentile of each batch has 50% probabil-
ity of being accepted), and γx is set to 30th percentile as of each
batch in data space.

• CelebA The discriminator in latent space is trained for 5 epochs
with learning rate 1e−5, and the discriminator in data space is
trained for 1 epoch with learning rate 1e−5. We set 80th percentile
as γz and 90th percentile as γx.

• SVHN The discriminator in latent space is trained for 3 epochs
with learning rate 1e−4, and the discriminator in data space is
trained for 1 epoch with learning rate 1e−4. We set 80th percentile
as γz and 80th percentile as γx.

The optimizer is Adam [18] with β1 = 0.5, β2 = 0.999. In order
to avoid over-fitting, we add weight decay 1e−8 for all discriminators
except for the discriminator in data space on CelebA dataset, which
is 1e−5. The small constant is set to ε = 1e−8.

4.4 Evaluation metrics

For evaluating the quality of the generated samples, we adopt two
widely used evaluation metrics: Inception Score (IS) [30] and Fréchet
Inception Distance (FID) [14]. IS computes the KL divergence be-
tween the conditional class distribution and marginal class distribu-
tion to measure the diversity and quality of the generated samples.
We replace the Inception Network used in IS with a pre-trained clas-
sifier on MNIST dataset with accuracy 99.10% when calculating IS
on MNIST dataset. FID is the Fréchet distance [8] between two sets
of features obtained by the Inception Network. The Fréchet distance
is the Wasserstein-2 distance between two Gaussian distributions: We

calculate IS6 and FID7 using their official implementations by gener-
ating 50,000 samples. We use the pre-calculated statistics of CelebA8

and SVHN9 as the data distribution on computing FID.
For evaluating the distance between the aggregated posterior

and the generative prior, which verifies the effectiveness of the
first rejection sampling in latent space, two evaluation metrics are
adopted: Fréchet Distance (FD) [8] and Sliced Wasserstein Dis-
tance (SWD) [21]. SWD is an approximation of Wasserstein Dis-
tance (WD) by randomly projecting a distribution to many one-
dimensional distributions. Furthermore, the Wasserstein distance
between two one-dimensional distributions has closed-form solu-
tion [20]. We calculate SWD by projecting distractions to 1,000 one-
dimensional distributions.

4.5 Baselines

• WAE: the WAE-GAN model that we aim to improving.
• RSZWAE+: the accepted samples of RSZWAE.
• RSZWAE−: the rejected samples of RSZWAE.
• RSXWAE+: the accepted samples of RSXWAE.
• RSXWAE−: the rejected samples of RSXWAE.

4.6 Results

4.6.1 Results on Data Space

Table 1. IS and FID for samples on MNIST, CelebA and SVHN.
WAE-reconstruction means the reconstructed samples of WAE.

Methods IS (↑) FID (↓)
MNIST CelebA SVHN

WAE-reconstruction 9.62± 0.02 33.27 17.41

WAE 9.20± 0.03 39.05 24.86
RSZWAE+ 9.23± 0.03 38.95 24.51
RSZWAE− 9.18± 0.03 39.20 24.61
RSXWAE+ 9.29± 0.04 38.97 23.97
RSXWAE− 8.38± 0.04 39.23 25.54

DRSWAE 9.51± 0.02 37.28 18.94

From the reported IS on MNIST dataset in Table 1, WAE per-
forms poorly compared with WAE-reconstruction, which represents
the reconstructed samples of WAE, offering potential improve-
ments. RSZWAE+ slightly improves the quantitative result of WAE,
and RSXWAE+ also increases the value. Moreover, our proposed
method DRSWAE outperforms all baselines heavily. Through visual
comparison on Figure 2, WAE has bad performance on visual ef-
fects. Although RSZWAE+ achieves numerical superiority on IS,
it still generates some poor visual quality samples. This is proba-
bly due to its lack of correcting distribution directly in data space.
RSXWAE+ moderately improves the visual quality but still synthe-
sises a few unrecognizable digits, e.g., the sample in row 9, col-
umn 1 in Figure 2(e). The samples produced by DRSWAE have
the best visual quality. It is convincing that DRSWAE outperforms
RSZWAE because RSZWAE lacks a direct correction on the gener-
ated distribution. We conjecture that the reason for this poorer re-
sult of RSXWAE+, compared with DRSWAE, is that the originally

6 https://github.com/openai/improved-gan
7 https://github.com/bioinf-jku/TTUR
8 http://bioinf.jku.at/research/ttur/ttur stats/fid stats celeba.npz
9 http://bioinf.jku.at/research/ttur/ttur stats/fid stats svhn train.npz
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generated distribution PG is far away from the data distribution PX

than the resampled generated distribution PXRSZ , increasing diffi-
culty for rejection sampling in data space in practice. Both qualitative
and quantitative results of DRSWAE verify our conjecture.

(a) WAE (b) DRSWAE

(c) RSZWAE+ (d) RSZWAE−

(e) RSXWAE+ (f) RSXWAE−

Figure 2. Qualitative results of MNIST.

From the FID on CelebA and SVHN datasets reported in Table 1.
The results of WAE-reconstruction and WAE show that the recon-
structed distribution PR is closer to the data distribution PX than
the originally generated distribution PG, which verifies the motiva-
tion of performing rejection sampling in latent space. Moreover, our
proposed method DRSWAE achieves the best results compared with
any baseline with single rejection sampling in latent or data space
and their oppositions.

We also give the visual results on CelebA dataset in Figure 3,
which shows that the subjective visual quality of samples generated
by DRSWAE with high acceptance probability is considerably bet-
ter than that rejected by DRSWAE with high rejection probability,
because Figure 3(a) have clearer textures and richer colors than Fig-
ure 3(b).

(a) Samples accepted by DRSWAE with high probability in data space.

(b) Samples rejected by DRSWAE with high probability in data space.

Figure 3. Qualitative results on CelebA.

4.6.2 Results on Latent Space

In order to validate the first rejection sampling in latent space, we
report the results that indicate the distance between the aggregated
posterior and the generative prior used in each method in Table 2.
First, we provide the lower limit of these metrics caused by sampling
empirical distributions, named by SAME, which means the minimum
value calculated by sampling two sets of independent samples drawn
from the same distribution. Since the value of WAE are greater than
SAME, we can conclude that WAE cannot fully optimize the penalty
divergence, resulting in a mismatch between the aggregate posterior
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Table 2. FD and SWD for samples on MNIST, CelebA and SVHN in latent space. The numbers in parentheses after datasets is the dimension of the latent
space. We calculate FD and SWD based on the latent codes drawn from the aggregated posterior and the latent codes that finally generate samples.

Methods
MNIST(8) CelebA(64) SVHN(32)

FD(×10−2) SWD(×10−4) FD(×10−2) SWD(×10−4) FD(×10−2) SWD(×10−4)

SAME 0.12 1.43 8.72 2.92 1.94 1.28

WAE 0.45 4.82 18.54 6.27 5.70 8.56
RSZWAE+ 0.30 4.07 15.53 4.42 1.84 2.77
RSZWAE− 0.99 8.40 27.15 18.42 11.99 19.12
RSXWAE+ 2.93 30.11 96.68 91.72 11.99 22.27
RSXWAE− 10.80 115.97 20.03 7.49 7.82 11.76

DRSWAE 1.78 17.90 101.60 99.20 27.64 70.91

and the prior. Those bold numbers demonstrate that the first rejection
sampling in latent space really makes the resampled prior match the
aggregated posterior better than the original prior, which provides
more suitable conditions for rejection sampling in data space implic-
itly. Although our proposed DRSWAE shifts its generative prior far
away from the aggregated posterior, we believe that it is in line with
our expectations. The reason is that the decoder is not the inverse of
the encoder. The prior, perfectly matched the aggregated posterior,
only generating the reconstructed distribution, but not the data distri-
bution. That is, the best prior fitted with the data distribution is not
the aggregated posterior given the decoder.

5 RELATED WORK

5.1 Wasserstein Auto-Encoders

The Wasserstein distance inherited in WAE gives a theoretical in-
terpretation of Adversarial Auto-Encoders (AAEs) [24]. Indepen-
dent on our work, f -Wasserstein Autoencoder [16] also points out
that the objective function of WAE is composed of a Wasserstein
distance adding a divergence, but they do not improve the perfor-
mance of WAE. To improving WAE, some works attempted to use
different divergence or distance on regularizing the penalty in the re-
laxed objective of WAE, e.g., sliced Wasserstein distance [20] and
Wasserstein distance [37]. Sinkhorn Auto-Encoders [26] utilized the
Sinkhorn algorithm to minimizes the p-Wasserstein distance in la-
tent space. A mixture of Gaussian prior to enhancing the modeling
capability of WAE was proposed in [10]. However, our proposed DR-
SWAE method is a generic framework for improving the quality of
generated samples in the sampling phase so that it can be applied to
existing WAE models.

5.2 Resampled Distribution on Latent Space

The simple generative prior used in implicit models may limit their
ability to create. There are some works that enrich the prior or poste-
rior in literature. A rejection sampling for VAE to push the variational
posterior to match the true posterior in training phase was proposed
in [12]. As pointed in [15], the Evidence Lower Bound Objective
(ELBO) in VAE can be divided into three parts: average reconstruc-
tion, index-code mutual information, and marginal KL divergence to
prior. It reveals that WAE removed the mutual information term of
VAE and alternated the KL divergence to any divergence. Resam-
pled priors for VAE were presented in [4] to construct a richer prior
for enhancing the representation ability by introducing acceptance
networks. As a special case of WAE, AAE was improved by propos-
ing learned priors to enrich its expression ability in [36]. However,

these works only focused on the training stage but not the sampling
stage, which is different from us. Recently, Discriminator Optimal
Transport (DOT) [31] proposed to transport the generative codes in
latent space in the generation phase to rectify the generated samples
directed by an optimal discriminator. However, like the above meth-
ods, they all lacked a mechanism that polishes the final generated
distribution in data space.

5.3 Resampled Distribution on Data Space

Discriminator Rejection Sampling (DRS) [3] leveraged the most rel-
evant idea to our work. It employed a rejection sampling scheme
using the GAN discriminator to approximately correct errors in the
GAN generator distribution. Nevertheless, we focus our attention on
WAE. Another main difference is that there is only one rejection sam-
pling process in DRS but two rejection sampling processes in DR-
SWAE. We show that our proposed DRSWAE outperforms single re-
jection sampling in latent or data space in experiments. There are few
attempts that also worked on remedying the generated distribution
in literature. MH-GAN replaced the rejection sampling scheme with
the Metropolis-Hastings sampling method to accelerate the speed of
sampling in [34]. Moreover, in [22], the authors employed the dis-
criminator to refine the hidden representation of generated samples
to obtain better visual quality. Although DRSWAE utilizes rejection
sampling methods for correcting distributions, we believe that any
other sampling method, such as Metropolis-Hastings sampling, can
also be adopted for a choice.

6 CONCLUSION

In this paper, we aim to improve the quality of generated samples
of WAE in the sampling phase. As quality of samples is related to
the distance between the generated distribution and the data distri-
bution. We shift our goal to push the generated distribution closer
to the data distribution. We find that the objective of WAE actually
minimizes a Wasserstein distance between the data distribution and
the reconstructed distribution plus an arbitrary divergence between
the aggregated posterior and the prior. Inspired by this finding, we
present a novel dual rejection sampling method to first push the prior
closer to the aggregated posterior using a rejection sampling in latent
space, implying a improved generated distribution. Then we further
push the resampled generated distribution closer to the data distribu-
tion via another rejection sampling in data space. Extensive experi-
ments on three real-world datasets demonstrate the effectiveness of
our method. In the future, we will explore more efficient sampling
methods such as MCMC.
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