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Abstract. We investigate the teaching of infinite concept classes
through the effect of the learning prior (which is used by the learner
to derive posteriors giving preference of some concepts over others
and by the teacher to devise the teaching examples) and the sam-
pling prior (which determines how the concepts are sampled from
the class). We analyse two important classes: Turing machines and
finite-state machines. We derive bounds for the teaching dimension
when the learning prior is derived from a complexity measure (Kol-
mogorov complexity and minimal number of states respectively) and
analyse the sampling distributions that lead to finite expected teach-
ing dimensions. The learning prior goes beyond a complexity or pref-
erence choice when we use it to increase the confidence of identifica-
tion, expressed as a posterior, which increases as more examples are
given. We highlight the existing trade-off between three elements:
the bound on teaching dimension, the representativeness of the sam-
ple and the certainty of the identification. This has implications for
the understanding of what teaching from rich concept classes to ma-
chines (and humans) entails.

1 Introduction

Learning from examples when the concept class is rich and infinite
is commonly considered a very hard computational problem. Posi-
tive results in theory and practice usually assume an infinite but not
very expressible class, or a strong bias, usually as a prior distribu-
tion over the concept class. A uniform choice for this distribution
for discrete concept classes leads to zero probabilities or, worse, to
no-free lunch results [38, 39]. Consequently, other biases are usually
assumed, either related to the application problem at hand or based
on some notion of resources used by the concepts. However, even
with the use of strong biases, current machine learning techniques,
and especially deep learning and reinforcement learning approaches,
require a large number of examples [28].

Aware of this limitation, there has been a renewed interest in teach-
ing computers [23, 40, 41], rather than just focusing on machine
learning systems that can only expect examples at random. One of
the key concepts in machine teaching is the power of choosing an
optimal witness set [12, 32, 13, 15]. This set is chosen as small as
possible, such that the learner still identifies the concept. However,
for interesting, rich concept classes we do not know how to choose
just a few examples that, in expectation, make an existing learning
system find the solution. This contrasts strongly with the way humans
teach other humans, where even very complex Turing-complete (uni-
versal) concept classes in natural language can be transmitted using
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just a few examples. For instance, when humans are told that “dol-
lars”, “euros” and “yens” are positive examples but “deutschemarks”
are not, most understand that the concept is about currencies that are
legal tender today. This kind of learning (or teaching, where the ex-
amples for the concepts are chosen, as with these words), is still an
important challenge for AI. This is also related to natural language
understanding, and the fact that humans often transmit concepts by
example, rather than using the description of the concept. Teaching,
either in machines or humans is a poorly-understood phenomenon
that requires strong biases on sender and receiver, and the awareness
from both peers that they are in a ‘pedagogical situation’ [31].

The teaching dimension of a concept [12, 32] in some concept
class is the minimum number of examples required such that a
learner uniquely identifies (learns) the concept, discarding all other
concepts in the given concept class. The teaching dimension of a
concept class is commonly understood as the worst case, which
is usually unbounded for infinite concept classes. With the use of
preferences (a kind of bias) we get some finite (worst-case) teach-
ing dimensions for some restricted languages [14], but we suspect
that these are unbounded for many other languages. The question is
whether, for richer languages, we can still get finite, and even short,
teaching dimensions on average? A uniform distribution, usually as-
sumed for finite classes [2, 25], cannot be applied to infinite concept
classes. The main insight comes if we realise that, apart from the
learning preference or prior, we can consider a sampling prior, where
not all concepts in the class have the same probability to be taught.

The learning prior makes the learner prefer some concepts over
others, in the tradition of the K-dimension [3, 4] and the preference-
based teaching dimension (PBTD) [14]. If the given witness set is
consistent with (infinitely) many concepts, the one that is preferred
will be output. But if we understand this complexity-based prior or
preference as a probability, we can also see that as more examples are
seen, we have increasing posterior probabilities. Actually, be it pref-
erences, complexities or priors, it is not always easy to have a perfect
identification of these preferences nor to have a perfect alignment
between teacher and learner. Consequently, we need a teaching pro-
cedure that can reduce the uncertainty of a wrong identification. One
interesting question is whether we can determine the minimum num-
ber of examples to get a given certainty. With very little notational
effort we can generalise the K-dimension and PBTD to a situation
where we define a teaching dimension given a certainty or probabil-
ity level ρ. For instance, how many examples do we need so that the
learner identifies the concept with probability at least 0.99? We will
see how the teaching dimension can be extended under the notion of
learning prior in order to answer this question.

The sampling prior, on the other hand, is used by the teacher (or
tester) to see whether the learner is able to learn the whole class and
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not just a particular subset of it. Consequently, it has to be as diverse
(entropic) as possible. Note that the sampling prior is about a repre-
sentative choice of concepts, not about the intentional choice of the
examples for each concept.

Both priors are referring to how likely or expectable a concept is,
and should be linked in some way. Indeed, we investigate whether
this alignment between the learning prior (‘chosen’ by both learner
and teacher) and the sampling prior (perhaps fixed or chosen by a
tester) can lead to short example sets on average, ensuring that teach-
ing sessions are feasible.

Of course, for every concept class one can always get a finite ex-
pected teaching dimension by putting almost all the mass of the dis-
tribution on a few concepts or choosing a sampling prior that de-
cays fast enough. The question is whether, for some particular rich
concept classes, there are some reasonable priors, still with infinite
Shannon entropy [35], for which teaching is feasible. We observe,
from the cases of Turing machines and finite state machines, that the
more expressive the language is the more extreme (biased) the distri-
butions must be in order to get teachability. But we will see that the
distributions can still be sufficiently entropic at one end. This view
creates a relation between the expressiveness of a language and how
entropic the prior must be in order to make teaching possible. By
fixing a probability level in the identification of the concept, we also
link teaching to probabilistic inference, adding a certainty level to the
trade-off.

In this paper, we analyse priors that are derived from complex-
ity functions (program length, number of states, running times, etc.).
This leads to the interpretation that if concept c1 is simpler than c2
then it will be given more probability by the learner given the same
witness set, and it will be more likely to be sampled by the teacher.
This also implies that if a learner has a prior, its representation lan-
guage should be aligned with it, making more likely concepts require
fewer resources in the language (as it happens with human language
and, of course, in communication theory).

Given this new notion of expected teaching dimension, we obtain
two major results. First, we get finite (and actually small) expected
values for Turing-complete languages. This matches the observation
of humans requiring very few examples when teaching or transmit-
ting concepts in natural language. Second, we derive effective set-
tings for a particularly interesting infinite concept class, the set of
regular languages. In detail, we provide a series of contributions:

• We show that teaching for rich infinite concept classes can be done
with a simplicity-based prior that is shared by learner and teacher
(the learning prior). But this simplicity-based prior, when used
for choosing the concepts (the sampling prior), still represents the
whole concept class.

• We present a new conceptualisation of expected teaching di-
mension using the learning and the sampling prior. The learning
prior is a probabilistic reformulation of the K-dimension and the
Preference-Based TD (PBTD).

• We provide results showing that the expected teaching dimension
for Universal Turing Machines (and hence other Turing-complete
languages) is small, with the universal biases based on the pro-
gram size of the concepts.

• Since universal biases based on Kolmogorov complexity are in-
computable, we introduce computational time, using Kt for con-
cept complexity. We get a computable learner but a teacher finding
the smallest witness set is still non-computable.

• We show finite expected teaching dimension for regular languages
using priors derived from the number of states of the minimal fi-

nite state machine (FSM) expressing the concept, proving both
learner and teacher are computable.

• When the certainty in the identification is not considered, all the
results –except when Kt is used– hold for the K-dimension and
also for PBTD.

• When the prior is used to derive learner posteriors, we derive
bounds for how many examples are needed to reach a given
certainty of having identified the concept. This parametrises the
teaching dimension taking it beyond the notion of preference to a
degree of certainty in teaching.

TMs and FSMs are perhaps the two most important concept classes
if we want to take machine teaching to really expressive and compo-
sitional scenarios. Parametrising by a probability level also enlarges
the possibilities and flexibility of the teaching dimension.

2 Teaching posteriors: the learning prior

Let us first introduce the classical teaching dimension. We have a
possibly infinite instance space X , with instances xi ∈ X , that can
be either positive examples, denoted by a pair 〈xi, 1〉, usually repre-
sented as x+

i , or negative examples, denoted by a pair 〈xi, 0〉, usually
represented as x−i . A concept is a binary function over X to the set
{0, 1}. A concept language or class C is composed of a possibly infi-
nite number of concepts. An example set S is just a (possibly empty)
set of examples. We say that a concept c satisfies (or is consistent
with) S, denoted by c � S, if c(xi) = 1 for the positive examples
in S, and c(xi) = 0 for the negative ones. All concepts satisfy the
empty set. Given this, the teaching dimension (TD) of a concept c
with respect to a class C can be defined as follows [12, 32]:

TD(c)
def
= min

S
{|S| : {c} = {c′ ∈ C : c′ � S}}

This minimal set is known as a witness set, and the teacher can as-
sume that the learner will infer the concept given its witness set.
Some further assumptions are needed. For instance, one can define
“coding tricks” [3, 5], such as assuming a coding between instances
and concepts, so that the jth instance always corresponds to the jth

concept, so basically one only needs to send the “index” to identify
the concept, as a lookup table. An appropriate way [16] to prevent
this considers that whenever a learner identifies a concept c with an
example set S, it must also identify c with any other superset of S that
is also consistent with c (Goldman and Mathias’s condition). The Re-
cursive Teaching Dimension (RTD) [42, 9, 8] is a variant where con-
cepts are taught with an order, starting for those of smallest dimen-
sion and removing the identified concepts for the following iteration.
This becomes slightly more powerful than the classical teaching di-
mension but still compatible with Goldman and Mathias’s condition.
Additionally, RTD is related to the VC dimension, see e.g. [29, 8].

One thing to note about these settings is that extra examples (fur-
ther confirming evidence) will not change the certainty of the learner
about the concept. However, both machine teaching and learning are
inductive processes where the reliability of a hypothesis can increase
with confirming data by discarding alternative hypotheses. In other
words, the classical teaching dimension is more about identification
rather than inductive inference, and this holds also for the PBTD and
K-dimension. These latter lower the witness size: in PBTD by a total
order on concepts and requiring the learner to distinguish a concept
only from concepts lower in the order, while the K-dimension is sim-
ilar but uses a function from concepts to natural numbers instead of
a total order. However, we would like the learner to be increasing its
confidence as it gets more examples, even past the identification.
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We can reconcile this by considering that the learner has a prior,
and as more examples are seen, more hypotheses are excluded, but at
the same time the posterior of the remaining hypotheses is chang-
ing. So given a learning prior w on concepts of a class C, such
that

∑
c w(c) = 1, we are going to define the posterior as fol-

lows. We first define a normalisation term as the overall a priori
distribution mass of the consistent concepts so far, given a set S:
mw(S)

def
=

∑
c�S w(c). The teaching posterior gives a probabilistic

assessment for a concept c after seeing S, namely:

TPw(c|S) def
= w(c|S) = w(c)

mw(S)
if c � S and 0 otherwise. (1)

Under this posterior, it is not only that Goldman and Mathias’s con-
dition is preserved but that the certainty of the identification usually
increases as we add more elements to S. In other words, for all c if
S ⊂ S′ then w(c|S) ≤ w(c|S′) provided that c � S′. There might
even be cases where all competing hypotheses are excluded. In this
case we have complete certainty that c is the intended concept.

Using this prior w, we define the teaching dimension as follows:

TDw(c)
def
= min

S
{|S| : {c} = argmax

c′�S
{w(c′)} (2)

= min
S

{|S| : {c} = argmax
c′

{TPw(c
′|S)}} (3)

The expression on the top (2) is preferable when the prior is inde-
pendent of the set chosen, while the one on the bottom (3) can ac-
commodate cases where the prior (and hence the posterior) changes
depending on the witness set, as we will see with Kt complexity.

Basically, for the teaching dimension without any uncertainty level
or probability, the prior w introduces a preference when choosing
among consistent hypotheses. In this case, it turns out to be an alter-
native formulation (quantitative, so necessarily a total order if con-
cepts are arranged into batches of same w) to the preference-based
teaching dimension (PBTD) [14], and ultimately more closely re-
lated to the K-dimension ([3, 4]), where this preference or ranking is
linked to a measure of complexity, as we will revisit below. We also
see explicitly that the classical teaching dimension is assuming that
all concepts are equally likely (maximum entropy), which is unreal-
istic in many situations. For some infinite concept classes this would
lead to the no-free-lunch theorems [38, 39]).

We introduce the parameterised version of the teaching dimension
given a certainty or probability level ρ. In other words, the teaching
dimension for confidence level ρ of a concept c is the size of the
smallest set that uniquely identifies c while also assigning it a poste-
rior probability greater than or equal to ρ:

TD [ρ]
w (c)

def
= min

S
{|S| : {c} = {c′ : w(c′|S) ≥ ρ}} (4)

Let us see an example of how the priors are converted into pos-
teriors, and how the posteriors increase as more concepts are dis-
carded by the increase of the witness set, as in a truly inductive pro-
cess. For the concept class in Table 1, when no example is given,
mw(∅) = 1. The posteriors are still equal to the priors (e.g., the
probability for c4 is still 0.10). If x−4 is presented, then we can dis-
card c2, c3, c6 and perhaps some other concepts in ‘Rest’. Let us
assume that half of the concepts in ‘Rest’ are discarded. This would
lead to mw({x−4 }) = 0.30+0.10+0.06+0.015 = 0.475 with the
posterior probability for c4 being now 0.10/0.475 = 0.21 (but not the
highest of the compatible concepts, which is still c1). If x−3 is added
to the set, then c1 is now found inconsistent, and assuming that half
of the remaining concepts in ‘Rest’ are discarded, we would have

mw({x−4 , x−3 }) = 0.10 + 0.06 + 0.0075 = 0.1675 with the pos-
terior probability for c4 being updated to 0.10/0.1675 = 0.597. This
is now the highest, which means that TDw(c4) is not higher than
2, and since no single example can distinguish c4 from c1, c2, c3,
it is actually 2. Note that this concept c4 can be suggested by the
learner after seeing {x−4 , x−3 } even if it is not the only compatible
concept. Finally, if x+

5 is shown, c5 is now shown inconsistent and
let us assume that this set discards half of the remaining in “Rest”.
Then mw({x−4 , x−3 , x+

5 }) = 0.10 + 0.00375 = 0.10375 and the
posterior probability for c4 will now be 0.10/0.10375 = 0.964. Thus
we see that with TD , the posterior probabilities can still increase
when receiving further consistent evidence.

x1 x2 x3 x4 x5 x6 x7 ... w(ci) TD TDw TD
[.5]
w TD

[.75]
w TD

[.95]
w

c1 0 0 1 0 1 1 0 ... 0.30 ∞ 0 1 1 1
c2 0 1 0 1 1 1 0 ... 0.25 ∞ 1 1 1 2
c3 1 0 0 1 1 1 0 ... 0.20 ∞ 1 1 1 2
c4 0 0 0 0 1 1 0 ... 0.10 ∞ 2 2 3 3
c5 0 0 0 0 0 1 0 ... 0.06 ∞ 1 1 1 4
c6 0 0 0 1 1 0 1 ... 0.06 ∞ 1 1 1 4

Rest - - - - - - - ... 0.03 . . . . .

Table 1. An infinite concept class with a learning prior w where the six
most likely concepts only differ on seven examples. The ‘Rest’ row captures
all other concepts. The teaching dimension varies with the confidence level.

Table 1 shows TDw for no particular confidence (equal to set-
ting ρ = 0) and then the teaching dimensions for different confi-
dence values ρ (0.5, 0.75, 0.95). We see that the teaching dimen-
sion increases when we require higher confidence (posterior proba-
bility). Another interesting observation is that those concepts require-
ing fewer examples than other concepts for low confidence (e.g.,
TD

[.5]
w (c5) = 1 < TD

[.5]
w (c4) = 2), can require comparatively

more than these other concepts when the confidence level grows
(e.g., TD[.95]

w (c5) = 4 > TD
[.95]
w (c4) = 3). This means that the

ranking of concepts by TD changes with variable confidence ρ.
Of course, if we are only interested in identification, and not in

quantifying certainty, this would be tantamount to the PBTD or K-
dimension, and the actual numbers would not matter. In sections 4
and 5, we will only pay attention to the ranking of the concepts de-
rived from the learning prior, and hence all the results3 can be applied
to the PBTD. However, in section 6 we will investigate the full pos-
sibilities of a probabilistic understanding of the learning prior. And
now, let us pay attention to the sampling prior.

3 Expected teaching dimension: sampling prior

Up to this point, we have talked about the teaching dimension
of one concept in a class. The teaching dimension of the whole
class, and the classical worst-case scenario is defined as follows:
maxc∈C TDw(c). For many infinite concept classes, even with the
use of a strong learning prior, there will not be an upper bound on
the number of examples needed to distinguish the concepts. So, it
becomes necessary to talk about an expected TD for a concept class
C. This introduces a sampling prior v over concepts, which is used
to obtain the expected TD for a concept class.

Ev[TDw(C)]
def
=

∑
c∈C

v(c) · TDw(c) (5)

Of course, the result will strongly depend on the choice of v. One
possible option is to assume v(c) = w(c), meaning that the prob-
ability that is used for calculating the plausibility of a concept (the

3 Except for Kt , as the posterior not only depends on coverage and the prior,
but also on the witness set.
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learning prior) is the same as the probability of that concept to ap-
pear (the sampling prior). The key question comes with rich concept
classes with infinitely many concepts and, as a result, infinitely many
examples (otherwise some concepts would not be distinguishable by
definition). We cannot choose a uniform distribution for neither w
nor v if the class is infinite and discrete.

A natural idea when assigning a non-zero probability to an infinite
discrete set of concepts is to use some distribution that is inversely
related to the resources or complexity required by the concept, as
given by a complexity function K : C → N assigning a complex-
ity value K(c) for all concepts. This is actually the idea behind the
K-dimension [3, 4]. However, we now need to apply this to the sam-
pling distribution as well in order to calculate the expected teaching
dimension. First, we assume that the learning prior is consistent with
the complexity function, i.e., inversely monotonically related:

∀c1, c2 ∈ C : w(c1) ≥ w(c2) ⇔ K(c1) ≤ K(c2) (6)

From the infinitely many sampling distributions v, it makes sense to
choose a distribution that is compatible with the learning distribution:

∀c1, c2 ∈ C : v(c1) ≥ v(c2) ⇔ w(c1) ≥ w(c2) (7)

which, from Eq. 6, implies that both distributions are monotonically
related. Let us denote by Ck the “batch” composed of all the concepts
of complexity k, i.e., Ck = {c : K(c) = k}. From Eq. 6, w and v are
constant in each batch. The size of each batch is Nk = |Ck|. Then
we add up all the sampling probabilities of the same batch, denoted
by Vk =

∑
c∈Ck

v(c). The expected TD becomes:

Ev[TDw(C)] =
∞∑

k=1

Vk

Nk

∑
c∈Ck

TDw(c)

The average TDw for a batch k is given by 1
Nk

∑
c∈Ck

TDw(c).
Consider an upper bound for this average, denoted by Dk. Then,

Ev[TDw(C)] ≤
∞∑

k=1

Vk ·Dk (8)

This means that once the batches are created by the complexity func-
tion, the expected TD only depends on the progression of the sam-
pling distribution by batches and the progression of (a bound of)
the average TD in the batch. Figure 1 show an example where the
batched sampling distribution is geometric with parameter 1/6, i.e.,
Vk = (1/6) · (5/6)k−1 with upper bound on average TD in the
batch of Dk = k2. With these parameters, the sum converges to a
finite expected TD : 66. The geometric series k2 is dominated by an
exponential decay in Vk.

The relevant question is, once we achieve a bound Dk, can we
think of a sampling distribution that can guarantee a bounded number
of examples in the teaching sets on average? Even with the constraint
given by Eq. 7, there are many distributions for v. One trivial case to
minimise Eq. 8 is to choose v in such a way that it gives all the mass
of the probability to one batch with low or minimal teaching dimen-
sion. Basically this would restrict the class to a finite distorted ver-
sion. Consequently, a trade-off emerges between Ev[TDw(C)] and
v. More entropic (or diverse) sampling distributions v will be able to
capture the whole of the concept class (and actually be representa-
tive of it) at the cost of having a higher expected TD . In any case, it
is important to determine those distributions for which the expected
TD is not bounded, because, for those, teaching will be impossible.
It is then the relation between the teaching dimension using a learn-
ing prior and the sampling distribution used for expectation what we
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Figure 1. Left: The different components in the expected TD . The summed
sampling prior Vk (blue crosses) for each batch k, and also the summed learn-
ing prior (blue circles). Also (red triangles) the (bound of the) average TD

per batch k. Right: Components in the expected TD . The composition of the
sampling prior with the TD gives the contribution of the expected TD for
each value of k, whose sum in this case is finite (66).

investigate next, for two very important concept classes: Turing ma-
chines and finite-state machines.

4 Expected TD for universal languages (TMs)

Turing machines represent the most general class for (traditional)
computation. Consequently, the choices for w and v will connect
with fundamental computational concepts such as Kolmogorov com-
plexity, Solomonoff’s prediction and inductive inference [27, 34].
For Turing machines, programs map to computable binary functions,
as there are infinitely many for each concept. We say that a concept
c is represented by program p in a universal Turing machine (UTM)
M , denoted by p �M c, if for every example 〈xi, b〉 in c we get that
the machine M , after being fed by the program p and an appropriate
binary encoding of the example (examples are natural numbers) out-
puts the correct label, i.e., M(〈p, σi〉) writes b on the output string
and halts. We now look for a measure of complexity of the concepts,
so we extend the notion of Kolmogorov complexity as follows:

KM (c)
def
= min

p:p�M c
�(p) (9)

where �(p) is the length of p in bits. In other words, the complex-
ity of a concept is the length of the shortest program that represents
(computes) the concept. We now define

UM (c)
def
= 2−KM (c) (10)

which is a universal distribution over concepts based on their algo-
rithmic probability [27]. To ensure that the sum is ≤ 1, M must be
a prefix-free4 UTM. Still, since a concept can be represented by in-
finitely many programs5, this UM will not add up to one, but it can be
normalised to make an actual distribution w. To highlight the depen-
dency on the UTM chosen, we use notation TDM when w = UM .

4 A prefix-free machine is one whose domain is prefix-free, i.e., no program
is a prefix of another program. This can be simply ensured by using a self-
delimiting code, or a one-way (monotone) read head that halts when the
machine accepts the input string so far.

5 An alternative Epicurean formulation (where all the consistent programs
are considered and not just one of them), more in the spirit of Solomonoff’s

algorithmic probability [34] would be U ′M (c)
def
=

∑
p�c 2

−�(p). Note that
the difference between both formulations is tightly bounded, as if p is the
shortest one, it will dominate this probability (even if many longer pro-
grams are consistent, the contribution decays exponentially).
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We now can simplify Eq. 2:

TDM (c) = min
S

{|S| : {c}=argmax
c′�S

{2−minp:p�Mc′ �(p)}}

= min
S

{|S| : {c}= argmin
c′�S,p:p�M c′

�(p)}

The last expression has a more natural interpretation and looks more
similar to Balbach’s complexity teaching dimension [3, 4], although
we work with concepts that can be implemented by (infinitely) many
programs each. From the above we see that what matters is the rank-
ing, so all the results that follow will hold for PBTD too.

We now have to look at the sampling distribution v. A common
choice here is yet again a universal distribution v(c) = 2−KM (c).
This means that for each concept whose shortest program has size
k its probability is 2−k. The probability of all the concepts in the
batch is then Vk = 2−k ·Nk. From here, we can instantiate Eq. 5 by
batches as for Eq. 8:

EM [TDM (C)] =
∑
c∈C

2−KM (c) · TDM (c) ≤
∞∑

k=1

2−k ·Nk ·Dk

(11)

The question is how we can bound the average teaching dimension
for batch k. From Kushilevitz et al. [24] we know that for a finite
concept class C of binary vectors of length m we have that the av-
erage teaching dimension (assuming uniform bias u(c) = 1/|C|)),
i.e., E[TDu(C)], is bounded as follows:

∀C : E[TDu(C)] ≤ 2
√

|C|
Interestingly, for batch k, we only need to distinguish a concept from
all the other concepts in its batch Nk, and the concepts in previous
batches. Let us denote by N≤k the number of concepts in batches 1 to
k. This means that the average TD for Ck (as defined in the previous
section) is bounded by 2

√
N≤k. Note that we can choose an encod-

ing of binary vectors of an arbitrary length m to apply Kushilevitz et
al.’s result.

But what is Nk?, i.e., how many concepts have shortest programs
of size k? This cannot be 2k, since it has to be a prefix coding. The
actual value will depend not only on the UTM but also on the chosen
coding. For instance, if we use a unary coding, we can get a conver-
gent result very easily, since there is only one program for each k, so
the term Nk would be 1 and the term N≤k would be k. However, a
unary coding is not universal.

We can try with Elias gamma coding [11, 30]. This is not asymp-
totically optimal, but it is still universal. Basically, this coding uses
a leading sequence of k zeros (which states the size of the string),
followed by a 1 and then the traditional binary coding of a number.
For instance, the first 10 codewords are 1, 010, 011, 00100, 00101,
00110, 00111, 0001000, 0001001, 0001010. As we can see, for each
batch of the same size we have 2i codewords with a size of 2i + 1,
with i being the index of batch starting at 0, and this gives an upper
bound on Nk. So now we have6:

Proposition 1. The expected teaching dimension of concept class
C assuming a universal distribution with an Elias gamma coding is
finite, bounded by 1 +

√
2.

This means that with some universal codings we can have a finite ex-
pected TD . In other words, if a teacher samples concepts according

6 For lack of space we leave out the proofs. They can be found at: http://
josephorallo.webs.upv.es/escrits/ECAI2020-Confident-Teaching.pdf.

to its universal distribution using an Elias gamma coding and both
teacher and learner use the size of their programs as learning prior,
then the number of examples needed to teach the concepts is finite in
expectation. Of course, this is the case because the very small pro-
grams dominate the distribution. However, we can modify the UTM
and the coding in such a way that a more uniform-like distribution
happens for sizes k up to any arbitrary size ks provided that from
that point on the distribution decays as fast as above.

For the TD as defined above the learner and teacher are incom-
putable, since K is incomputable. Can we think of a similar com-
putable procedure? For instance, given a language L, a concept class
C and a concept c, the teacher should be able to compute the asso-
ciated small teaching set S and the learner should compute c from
it. To get a finite procedure we investigate the introduction of com-
putational steps in the complexity function, inspired by Levin’s Kt
[26, 27]. We consider any finite example set S and define7:

KtM (S)
def
= min

p:p�M c�S

{
�(p) + log

∑
s∈S

τM (p, s)

}
(12)

where τM (p, s) represents the runtime of executing program p on
example s to get a result. Note that we have now defined Kt for
example sets rather than for concepts, as we did for K. In this case,
Kt does not create a prior or preference over the concepts, but over
example sets8. This means that the teaching dimension is best seen
in terms of the posterior, as per Eq. 3.

The original dovetail search of Levin’s universal search is 2-
dimensional on an increasing budget: over programs of increasing
size and runtimes. Here, we add a third dimension: over increasing
sizes of encodings of example sets. We get the following results:

Proposition 2. Using KtM , for every M and c, if given a minimal
teaching set S for c, a learner can by computable finite means iden-
tify the Kt-simplest program p such that program p �M c and c � S.

So, if the teacher knew that the Kt-simplest program for a given
set S is p with p being consistent with the concept that is to be taught,
we would have a computable setting. However, this is problematic:

Proposition 3. Using KtM , given an M and c, the generation of the
minimal set S by the teacher is incomputable.

Even if the teacher knows the shortest program p for a concept,
there might be problems. For instance, if p cannot be identified for a
budget, for the next budget new programs may appear that are com-
patible with the examples competing with it. These alternative pro-
grams can be more efficient than p (e.g., using partial look-up tables).
This problem will appear for those programs whose time complexity
increases exponentially (or even higher) in the size of the examples,
and we may never find a witness set for p. There are possible solu-
tions to be explored with bounded time or including the size of the
proof to show that concepts are equal or not (so the class is reduced to
Turing machines such that it can be proved or disproved equivalence
to all simpler programs). We leave this as future work and focus on
regular languages in the following section.

5 Expected TD for regular languages (FSMs)

Regular languages are defined by finite state machines (FSMs), a
very well-known class of concepts in computer science. One of the

7 All logarithms in this paper are binary.
8 The definition over concepts would choose the empty set and would boil

down to K. That’s why we need S.
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advantages of using FSMs, over TMs, is that some of the ingredi-
ents needed for an effective (and computable) teaching setting are
present for FSMs. We consider only deterministic FSMs, also called
automata, or deterministic finite automata. First, there is an algorithm
with time complexity O(k log k) to reduce any FSM on k states to an
equivalent FSM on a minimum number of states [20], and secondly
there is an algorithm linear in the number of states to test equiva-
lence of two FSMs [21]. Two FSMs A and B are equivalent if their
languages L(A) and L(B) are equal. As a concept is represented by
its canonical FSM, the number of states k can be used as a natural
complexity measure for regular languages.

So now we define our batches as in the previous section, using k
for the number of states. We consider a binary alphabet. Now, the
question is how to determine the two factors in Eq. 8.

For the term Dk, we use results of Dana Angluin [1] in the setting
of ‘identifying an unknown regular set from examples of its mem-
bers and nonmembers’. In Angluin’s setting a ‘minimally adequate
teacher’ answers membership queries about the set and also gives
counterexamples to wrong conjectures provided by the learner, with
the latter being an example string in the symmetric difference be-
tween the correct set and the conjectured set, until the learner has
identified the correct set. The collection of all positive and negative
examples thus provided are gathered in an ‘observation table’. Mem-
bership queries alone will not suffice to identify the language, for any
finite number of examples there are infinitely many compatible regu-
lar languages. Note however, that equivalence queries alone are suffi-
cient, the learner enumerates the regular languages non-decreasingly
by number of states, and asks equivalence queries until arriving at
the right language. Angluin’s contribution is an efficient combination
of membership queries and equivalence queries of the above form,
with each counterexample increasing by one the minimum number
of states needed for the language, until the correct minimum automa-
ton is arrived at. Thus the examples in the final observation table will
form a witness set that in our setting can be used by the learner, with
no interaction, to identify an automaton with minimum number of
states. The main result of Angluin is a learning algorithm L* to iden-
tify any regular language on k states in time polynomial in k and
providing an upper bound on the size of the observation table.

Proposition 4. [1] For any regular set U on k states the learner
L* outputs a minimal automaton for U in time polynomial in k. The
observation table has at most (q+1)(k+m(k−1))k entries, where
q is alphabet size, and m the maximum length of a counterexample,
that can be bounded by m ≤ k.

Note that we will not be using the same interactive protocol as
Angluin does, but as explained above the construction produces, at
the end of the process, an observation table where each entry in the
table can be used as an example in a witness set. This witness set
will in our setting be sent directly from teacher to learner, with no
interaction, and our learner (not L*) will be able to uniquely identify
the correct language since the witness set distinguishes it from all
other languages on at most k states. The result in Proposition 4 is a
worst-case analysis, so for any language on k states there is a set of
positive and negative examples in a table of this size that suffice to
uniquely distinguish the language from all other regular languages on
at most k states. Thus, we can conclude that for any regular language
c on k states over an alphabet of size q = 2 we have TDw(c) ≤
3(k + k(k − 1))k = 3k3.

And now we have to choose the sampling distribution Vk. Since
we have shown that TDw(c) ≤ 3k3, when there is an FSM for c with
k states, we know that the average TDw for the batch of k states is

just given by Dk = TDw(c) ≤ 3k3. In order to ensure convergence
for the expected teaching dimension, we can choose the total sam-
pling probability for the batch as Vk = αk−(4+δ), with δ > 0. We
just choose α to ensure that this Dirichlet series sums up to 1, i.e.∑∞

k=1 Vk = 1, which can be done e.g. by including a multiplicative
factor. Since we know that

∑∞
k=1 k

−(4+δ) is the Riemann zeta func-
tion ζ(4 + δ), then α = ζ(4 + δ)−1. The actual v for each different
FSM (and hence concept) is just defined as Vk/Nk. With this choice:

Proposition 5. Choosing Vk = αk−(4+δ) with α = ζ(4+ δ)−1, we
get the following bound on average TD for regular languages when
shorter minimal automata are preferred

Ev[TDw(C)] ≤ 3
ζ(1 + δ)

ζ(4 + δ)

A particular case when choosing δ = 1 gives Ev[TDw(C)] =

4.76, as we have π2

6
= 1.6449 on the numerator and 1.0369 on the

denominator. For δ = 0.5, we get Ev[TDw(C)] ≤ 7.43. For large
δ, the bound becomes 3 as limx→∞ ζ(x) = 1.

In order to get convergence we need Vk = αk−(4+δ), which de-
cays fast, even for low values of δ. However, it does so only polyno-
mially in k in contrast to the exponential decay for TMs. For Turing
machines we got Vk = 2−k ·Nk, which decays exponentially (note
that k was the size of the program, and here Vk decays polynomially,
but k is the number of states). Describing a FSM of k states requires
a program that is exponential in k, based on the number of minimal
such FSMs [10]. Actually, this highlights the transmission efficiency
of our setting, as the following corollary shows:

Corollary 6. With a learner using a learning prior w that decreases
on the number of states, we have that in order to transmit a concept c
for which there is a FSM with k states, a teacher would need at most
3k3(2 + 2�log2k�) bits using Elias gamma coding.

6 Reducing teaching uncertainty

One of the motivations for introducing the learning prior was the
derivation of a posterior quantifying the certainty of the identifica-
tion by the learner, and increase it by larger (but hence non-optimal)
witness sets. Given the two representational formalisms seen in the
previous two sections, how do they extend in terms of the posteriors?

We first analyse the case of UTMs. We want to show that the cer-
tainty of identification can be quantified, so for sake of simplicity we
will not aim for the best bounds, but note that with an efficient prefix
coding, such as Elias coding, all bounds can be made tighter.

Lemma 7. For every constant k ≥ 0, if p is the shortest pro-
gram for witness set S, then there is an S′ (of at most size |S′| ≤
|S| + 2�(p)+k+1) such that all programs p′ compatible with S′ with
�(p′) ≤ �(p) + k are equivalent to p.

Corollary 8. Let us consider Kolmogorov complexity K as per Eq. 9
and a UTM M that gives a learning distribution for concepts w(c)
as per Eq. 10 with its posterior w(c|S) defined as per Eq. 1. Then,
for every computable concept c and certainty 0 ≤ ρ < 1 there is a
finite S such that w(c|S) ≥ ρ.

Recall that l(p) + k + 1 gives the lower limit on length of rival
programs. The basic rationale is that the mass of rival programs is
made smaller with higher k.

Proposition 9. Given a concept c in a concept class C its teaching
dimension with confidence ρ is bounded by TD

[ρ]
M (c) ≤ TDM (c) +

ρ
1−ρ

2�(p), where p is the shortest program for c.
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Note that the bound on the teaching dimension grows exponen-
tially as a bound on the size of the shortest program for the con-
cept, meaning that increasing the certainty is more costly (in terms
of teaching dimension) for concepts of high complexity (according
to these bounds). The expression also brings insight to the situation
when we use different UTMs. The invariance theorem [27] extends
from programs to concepts as per Eq. 9. We see that the shortest
program for a concept for UTM U cannot be larger than the short-
est program for that concept for any other UTM V up to a constant
that only depends on the two UTMs. This constant could be used to
derive a bound in the teaching dimension when the machines differ.

In the case of UTMs, we explored the possibility of using Kt as
a computable version of K. If we attempt to increase the teaching
certainty, the definition we gave in Eq. 12 sums the runtime of all the
examples in the witness set. This means that making the set larger
will decrease the posterior, so finding bounds for the teaching di-
mension using Kt becomes more convoluted. An option for future
work would be to redefine the posterior, so it becomes computable
and not growing with the cardinality of the witness set (e.g., average
runtime rather than the sum).

Finally, for FSMs, we believe that the results in this section can be
extended with some of the priors we used in section 5, getting bounds
on the increase of the teaching dimension to get more confidence.

In general, estimating the posterior, or bounding the increase of
the teaching dimension given the desired confidence, is useful to give
more stability to teaching and making it less dependent on misalign-
ments between teacher and learner. As in the K-dimension and the
PBTD, both teacher and learner have to share exactly the same com-
plexity function or preference function. With the use of a confidence
margin, one can admit some bounded discrepancies in the prior.

7 Discussion

Analysing whether and how infinite concept classes can be taught led
us to a dilemma between making the teaching set finite on average
and the use of a wide, entropic sampling distribution actually cover-
ing the whole class. The observation that humans are able to cover a
wide range of concepts and can learn from very few examples sug-
gests that humans share a prior and may communicate, and teach,
accordingly. This strong bias may well depend on the application,
domain or context, but it is natural to make it related to (or based
on) the complexity of the concept, as we have investigated here, very
much in the same way to other theories of inductive inference such
as Solomonoff’s prediction, the use of Occam’s razor, structural risk
minimisation or the MML/MDL principles [34, 37, 27]. Therefore,
we can think of this work as bringing the above setting from the stan-
dard learning scenario to the teaching scenario, with further connec-
tions to be unveiled with possibly more positive results. In practice,
these ideas have worked well for learning from very few examples
in areas such as inductive programming, programming by examples
or teaching by demonstration [18, 17, 19, 33], usually without recog-
nising the two different priors involved.

The notion of simplicity for TMs depends on the choice of the
UTM. Similarly, for FSMs, the number of states is a natural mea-
sure of simplicity, but others could be used, such as the length of the
shortest regular expression expressing the concept. The invariance
theorem [27] establishes that simplicity is the same up to a constant
that is independent of the concept, but this constant can be large.
This motivates a possible study of other versions of the TD , more
independent from the particular complexity measure. In this paper,
the version that takes a confidence level leads to a new trade-off be-

tween certainty and teaching dimension, which only affects the ro-
bustness of the identification when the languages (complexities or
preferences) of the teacher and learner are slightly different.

Another interesting thing to analyse is to consider the complexity
function as a measure of difficulty of the concept and consider the
session as an evaluation process. In this case, the sampling distribu-
tion could be adapted in such a way that, if we know the ability of
the learner, we could sample concepts of appropriate complexity. In
other words, the sample distribution could assign very low probabil-
ity to the very easy concepts (small complexity) but still (necessary)
decreasing probability from some given complexity, resembling a
Poisson distribution, and breaking the monotonicity of Eq. 7.

The perspective from evaluation also helps us understand that the
sample prior is not chosen to get a finite teaching dimension on ex-
pectation, but a way of modelling that all concepts from the class are
not equally likely. This may be better understood by distinguishing a
third actor, the evaluator, who chooses the concepts for the teacher.
The evaluator has a syllabus, or a book, in which some concepts are
more relevant, and hence likely, than others. In rich languages, sim-
ply by resource constraints and the difficulty of working with very
complex concepts, it is natural to assume that the sample distribu-
tion will be strongly decreasing on program size, which is what the
evaluator should focus on.

Similarly, the role of the learning prior has to be well understood.
Unlike the sampling prior, in our setting (and the traditional machine
teaching setting), the teacher chooses an optimal set according to the
learning prior. The teacher does not sample from the learning prior to
get those examples that would make the learner identify the concept
with higher probability. This stochastic setting of the teacher would
lead to suboptimal witness sets, but may be more realistic in human
teaching. This is exactly the configuration that Shafto et al. [31] ex-
plore, using a Bayesian approach. In our case, the confidence is seen
in terms of confirmatory evidence over the alternative hypotheses,
and not in terms of identification, as in early learning settings [7].
Note that our setting is not interactive or incremental, and the or-
der of the examples is irrelevant (unlike [6]), as the learner runs the
algorithm over the whole set.

The analysis of complex concept classes is sometimes avoided for
the batch setting in machine teaching because positive results are
elusive. But there is a long tradition in machine learning and ma-
chine teaching where some positive results have been found for other
formulations. For instance, for regular languages, in an interactive
teacher-learning scenario, if the learner can send the hypothesis and
the teacher replies with the lexicographically-first example that con-
tradicts the hypothesis (if it is incorrect) then Ibarra et al [22] show
that learning can happen in polynomial time. This and other settings
are quite far from our scenarios where examples come as a set, but
we leave it as future work to explore the connections, and the ex-
pected teaching dimension in particular, with these approaches. An-
other deviation from the traditional setting in machine teaching is by
considering the size of the examples in the witness set, and not only
their number. This different setting is considered in [36], but sticking
to the minimum certainty of identification (no ρ), unlike we do here.

In the common setting for machine teaching that we use in this
paper, the very notion of expected teaching dimension forces us to
consider non-uniform distributions. This work has made clear that a
trade-off is necessary between an effective teaching and a wide cov-
erage of the concept class. This gives several insights about how bi-
ases have to be embedded and used by learner and teacher, and also
suggestions about efficient concept understanding and communica-
tion in general.
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