
Simplifying Graph Attention Networks with
Source-Target Separation

Hantao Guo1 and Rui Yan2 and Yansong Feng3 and Xuesong Gao 4 5 6 and Zhanxing Zhu� 7

Abstract. We present a novel Graph Neural Networks (GNN) ar-
chitecture as an simplification of Graph Attentional Network (GAT)
model with implicit computation of edge attention coefficients and
shared sparse-dense matrix multiplication between heads. These im-
provements reduce training time and memory consumption while
keeping the model capacity of GAT. On several established bench-
marks, our model has a performance on par with state-of-the-art, yet
with improved efficiency and scalability similar to simpler models in-
cluding Graph Convolutional Network (GCN). Notably, we are able
to apply the model to the large-scale Reddit social network dataset
within a reasonable training time and memory constraint, which is
previously infeasible for models with similar complexity including
GAT.

1 INTRODUCTION

Many structured datasets can be represented as graphs, including
citation networks, social networks, traffic network [16], molecule
structure [7], protein-protein interaction [35], etc. A graph consists
of nodes and edges, where typically nodes correspond to objects and
edges describe their relationships. For example, in citation networks,
nodes represents papers and edges represents citation relationship
between papers. Note that even without an explicit graph structure,
building a graph from the data structure by extracting relationship
between entities can be beneficial, as in point cloud segmentation
with k-NN graph [25] and natural language processing with graph of
word relationship [30]. Multiple tasks can be defined on graph data,
including graph classification [33], node classification [13], link pre-
diction [32], etc.

Compared to some more traditional data like images with grid
structure, where translation-invariant Convolutional Neural Net-
works [14] can be applied with decent performance, learning on
irregular graph structure presents new challenges. One important
group of methods on graph data is node embedding [20, 10], in which
random walk or its variants are introduced, and an unsupervised skip-
gram model [18] is trained on these sequences to obtain node em-
beddings. However, these methods can only generate embeddings on

1 Center for Data Science, Peking University, China. Email: guohan-
tao@pku.edu.cn

2 Wangxuan Institute of Computer Technology, Peking University, China.
Email: fengyansong@pku.edu.cn

3 Wangxuan Institute of Computer Technology, Peking University, China.
Email: fengyansong@pku.edu.cn

4 College of Intelligence and Computing, Tianjin University, China
5 Tianjin Key Laboratory of Advanced Networking (TANK)
6 State Key Laboratory of Digital Multimedia Technology, Hisense Co., Ltd.,

Qingdao, China. Email: gaoxuesong@tju.edu.cn
7 School of Mathematical Sciences and Center for Data Science, Peking Uni-

versity, China. Email: zhanxing.zhu@pku.edu.cn.

observed nodes, unable to generalize to new graphs.
Another approach is graph neural networks [34, 27, 28], which

are end-to-end neural networks directly applied on graph domain.
Early examples applied recurrent operations until equilibrium to ob-
tain high-level node representations [21]. The repeated propagation
limits its efficiency. Spectral graph convolution, including ChebNet
[5] and Graph Convolutional Networks (GCN) [13], introduced fil-
ters on spectral domain, usually implicitly to avoid eigendecomposi-
tion of the Laplacian matrix. The learned filters rely on specific graph
structure, thus these methods do not generalize to different graphs.
Various different frameworks exist for graph neural networks. In-
spired by convolution on images, spatial graph convolution variants
[7, 1, 11] are examples of Message Passing Neural Networks [9],
where a messaging function of both the source and destination node
is computed and propagated to the destination, with variable perfor-
mance and computational efficiency. Other frameworks include spec-
tral graph convolutions and graph recurrent neural networks [34, 28].
Variants of graph neural networks can also be applied to various spe-
cific graph types, including directed graphs, heterogeneous graphs,
graphs with edge information, and dynamic graphs [27]. Various
other researches are conducted based on the graph neural network
models, including graph variational autoencoders as generative mod-
els, and adversarial training aimed for generalization improvements
[34].

Semi-supervised node classification is a particularly important
class of graph machine learning problems. Researches show that
GCN works as Laplacian smoothing, and thus suffers from over-
smoothing for deep networks [15]. And for shallower models, low
label rates causes inability in exploring the global graph structure
[15]. To expand the labels, self-training and random walk model co-
training have been applied to GCN to improve the prediction accu-
racy especially under low label rates [15].

Attention mechanism [2, 6] was first used in neural machine trans-
lation tasks. It is an important neural network structure for sequen-
tial data. Graph Attention Network (GAT) [23] combined spatial
graph convolution and masked self-attention, where attention coef-
ficients computed with source and destination features are used as
edge weights and normalized with softmax function. GAT achieves
state-of-the-art performance in various citation network and protein-
protein interaction datasets, however, it is not as fast as GCN or other
similar models, according to the empirical results in [26]. Mean-
while, attention coefficients and the intermediate computational re-
sults require a large amount of memory, especially when the number
of edges are high.

In this paper, to improve efficiency and scalability of attention-
based networks, we propose a new architecture of graph neural net-
works. By choosing the attention function in GAT as sum of products

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200215

1166

of source- and target-dependent factors, we can compute the atten-
tion mechanism implicitly by applying the two sets of factors before
and after propagation, respectively. We name this model Separated
Graph Attention Networks (SepGAT). A simplification is to keep
only one source-dependent factor, yielding Simplified Graph Atten-
tion Networks (SimpGAT). In both models, the adjacency matrix is
the only sparse matrix involved, and its product with other matrices
can be easily batched by concatenation. This leads to a significant
increase in time efficiency. Without explicit computation and storage
of attention coefficients and intermediate results, both models have
a lower memory requirement, thus scalable to larger datasets. Both
models perform on par with state-of-the-art. SepGAT is better suited
for larger training data with lower overfitting risk, while SimpGAT
is faster and more robust on smaller datasets.

2 Preliminaries

Notations We consider a graph G = (V, E) with V and E represent
node and edge set, respectively. We construct adjacency matrix A ∈
R

N×N and feature matrix X ∈ R
N×F , where N is the number of

nodes and F is the feature dimension. The i-th row xi ∈ R
F of X is

the feature of node i. The output of a layer is denoted X ′ ∈ R
N×F ′

,
where F ′ is the number of output features.

2.1 Spectral graph convolution

The spectral graph convolution approach [5] considers a signal fil-
tering on the graph Fourier domain. The method first considers
graph Laplacian L, which is defined as combinatorial graph Lapla-
cian L = D − A or symmetric normalized Laplacian L = IN −
D−1/2AD−1/2, where D is the diagonal degree matrix Dii =∑

j Aij . The orthonormal eigenvectors {ul} of L are known as the
graph Fourier modes, and their associated eigenvalues {λl} are de-
fined as the frequencies. The eigendecomposition can be written in
matrix form L = UΛUT. The graph Fourier transform of a feature
channel x ∈ R

N is defined x̂ = UTx ∈ R
N , and its inverse is

x = Ux̂.
Next, a spectral filtering gθ is defined in the Fourier domain. A

feature channel x is filtered by gθ as:

x′ = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)U
Tx. (1)

To avoid expensive explicit eigendecomposition, gθ is set to be a
polynomial, thus Ugθ(Λ)U

T can be computed as a matrix polyno-
mial gθ(L). In ChebNet [5], the choice of gθ is a combination of
Chebyshev polynomials with rescaled frequencies Λ̃ = 2Λ/λmax −
IN ,

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̃), (2)

where Tk(x) = 2xTk−1(x) − Tk−2(x), T0(x) = 1, T1(x) = x.
Thus, a spectral convolution layer can be written in matrix form as

X ′ =
K−1∑
k=0

Tk(L̃)XΘk, (3)

where L̃ has the same frequency rescaling as Λ̃, that is, L̃ =
2L/λmax − IN .

Graph Convolutional Networks (GCN) [13] is a simplification of
ChebNet, where the symmetric normalized Laplacian is used and
assumed already in the range of [0, 2], thus L̃ = L − IN =

−D−1/2AD−1/2. Only two terms k = 0, 1 is preserved, with
θ0 = −θ1. The graph convolution layer becomes

X ′ = XΘ+D−1/2AD−1/2XΘ. (4)

With a renormalization trick replacing IN + D−1/2AD−1/2 with
D̃−1/2ÃD̃−1/2, where Ã = A + IN and Dii =

∑
j Ãij , the GCN

layer is defined as

X ′ = D̃−1/2ÃD̃−1/2XΘ. (5)

2.2 Graph attention networks

An attention function, as in [6], is the mapping from a query and a
set of key-value pairs to an output. It computes attention coefficients
between a set of queries Q and a set of keys K. The attention coeffi-
cients are then normalized with softmax function and used as weights
of the corresponding values V . For queries q, key k and its value v,
the attention mechanism can be formulated as

y = softmax(f(q, k))v (6)

An attention mechanism is called self-attention when queries and
keys come from the same set.

Graph Attention Networks [23] is a masked self-attention applied
on graph structure, in the sense that only keys and values from the
neighborhood of query node are used.

First, the node features are transformed by a weight matrix W ∈
R

F×F ′
, where F ′ is the output dimension. Attention coefficients be-

tween nodes i and node j is computed as a function of node i and j
features. In GAT, the attention mechanism is a single-layer feedfor-
ward neural network with LeakyReLU nonlinearity, parameterized
by a ∈ R

2F ′
,

eij = f(WTXi,W
TXj) = η(aT[WTxi,W

Txj]), (7)

where η represents the LeakyReLU function.
The attention coefficients is then normalized with a softmax func-

tion withinNi, the neighborhood of target node i including itself,

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, (8)

and the final output feature of each object is

xi
′ = σ(

∑
j∈Ni

αijW
Txj), (9)

with an activation function σ for the layer.
Other works based on attention mechanisms on graphs exist. One

example is Attention-based Graph Neural Network (AGNN) [22].
AGNN uses a cosine similarity function for attention, parameterized
by a scaling factor β ∈ R,

eij = β
xT
i xj

‖xi‖‖xj‖ . (10)

Other differences include linear transformation after attention mech-
anism instead of before, and removal of nonlinear activation func-
tions between layers.

The cosine similarity attention in AGNN is also highly related to
the inner product attention, where eij = xT

i xj , which is applied in
some Natural Language Processing (NLP) models [6]. Specifically,
the cosine similarity function is the inner product normalized with l2
norms of the input vectors.

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation 1167

2.3 Scalable variants of graph neural networks

To cope with large graphs impossible to fit in the memory and/or
impractically time-consuming for computation, various approaches
have been proposed.

GraphSAGE [11] is an extension of Message Passing Neural Net-
works [9, 34] into a mini-batched setting. Neighborhood up to order
K is sampled with fixed size for a given set of input nodes, and only
the node representation computation required by the center node is
performed. In each layer, for each node in the sampled subgraph,
the neighborhood features are aggregated with mean, max, or LSTM
functions to obtain a new hidden state for the next layers. The model
can be trained in an unsupervised setting, where the final embedding
is used to predict the co-occurrence in random walks. Supervised
training with downstream loss function is also possible.

GaAN [31] samples nodes like GraphSAGE, and applies a multi-
head attention mechanism as aggregator. The attention heads are ad-
ditionally weighted with a sigmoid gate to assign different impor-
tance weights to each head.

FastGCN [3] views graph convolutions as integral transforms of
embedding functions under probability measures. It involves sam-
pling nodes for each layer from a distribution q(u), and connections
between nodes in adjacent layers is considered as a sampling of all
edges. During training, the features of sampled nodes in this layer is
propagated to sampled nodes in next layer in a way similar to GCN,
and backward propagation can be done by applying the chain rule
straightforwardly. The learned weights can be used in a full-scale
GCN or similarly sampling model for inference.

Instead of sampling, Simple Graph Convolution (SGC) [26] re-
moves the activations between layers in GCN and combines all
weights into a single matrix,

Y = softmax(S . . . SSXW (1)W (2) . . .W (k))

= softmax(SKXW).
(11)

SKX can be pre-computed with K sparse-dense matrix multiplica-
tions, and the following model is a logistic regression which can be
trained fast with various method including SGD and second order
methods.

3 OUR METHODS

Graph Neural Networks in the propagation and aggregation scheme
typically involve a time consuming sparse matrix multiplication. It is
thus beneficial to the computational efficiency to reduce the amounts
of sparse matrix multiplications. Additionally, Graph Attention Net-
works (GAT) suffer from high memory cost due to computing and
storing attention coefficient on all edges, especially with a large num-
ber of edges. Here, we will present a novel graph neural network ar-
chitecture with similar representation capacity compared to complex
models like GAT, but without memory-costly explicit attention coef-
ficient computation. The attention heads can be easily batched with
one sparse matrix multiplication per layer, thus giving the model a
similar efficiency to GCN. A further simplification is provided to
shorten the training time and reduce overfitting.

3.1 Limitations of GAT

GAT has a high model capacity by weighting different edges with
attention mechanism. It is the former state-of-the-art on node clas-
sification task, and still has decent performance compared to vari-
ous recent methods. However, one limitation of GAT is its efficiency,

even though its time complexity per layer isO(K|V|FF ′+K|E|F ′)
with K head, similar to GCN. Multiple issues hinder the efficiency
of GAT.

First, multi-head graph attention requires multiple sparse-dense
matrix multiplication (SDMM) between different weighted adja-
cency matrices and transformed features, which can be heavily time-
consuming. This is especially evident with GPU training, where
dense matrix operations are more easily optimized. Ideally, these
SDMM operations can be batched to reduce time, however, no known
deep learning frameworks have implemented sparse tensor multipli-
cation with rank above 2 to the best of our knowledge.

Second, computation of general attention functions requires
O(|E|F ′) time complexity, comparable to previously described
SDMM operations, and it is also tricky to parallelize. One way to
deal with this issue is to gather both node features into the edges, and
compute the attention functions with two |E| × F ′ matrices. Known
as gather/scatter [8], this method is well parallelized, but it requires
O(|E|F ′) memory per head, which can be prohibitive on larger or
denser datasets. To avoid this problem, the attention functions are
limited to specific forms, hindering capacity of the model. In GAT,
a single-layer feedforward neural network with LeakyReLU nonlin-
earity is used, which can be computed as

eij = η(aT[WTxi,W
Txj]) = η(aT

1W
Txi + aT

2W
Txj), (12)

where all instances of aT
1W

Txi and aT
2W

Txj can be computed be-
forehand withO(|V|F ′) time complexity, followed by element-wise
operations on the sparse adjacency matrix of O(|E|).

Third, attention function values, intermediate results, and gradi-
ents are all large sparse matrices with O(|E|) memory occupation.
For K heads, this requires O(K|E|) memory with a large constant
coefficient. This high memory complexity hinders the scalability of
GAT model.

As for another attention-based approach, AGNN, the cosine simi-
larity function in the attention mechanism involves the inner product
between xi and xj , which cannot be represented as operations be-
tween scalar functions of xi and xj . Thus, the circumvention as in
GAT cannot be applied, and the gather/scatter approach is the only
reasonably efficient algorithm for AGNN. As described above, this
approach has a large O(|E|F) memory complexity, which limits its
scalability. Here, we replace F ′ with F , since the attention mecha-
nism in AGNN is performed before the linear transformation.

3.2 Separated graph attention mechanism

To handle those issues, we deliver a novel method allowing the atten-
tion outputs to be obtained implicitly, which involves no large sparse
matrices other than the same input adjacency matrix shared by all
heads.

We can reformulate the masked attention in GAT into a weighted
attention representation,

αij =
Aij exp(eij)∑

k∈V Aik exp(eik)
, (13)

xi
′ =

∑
j∈V

Aij exp(eij)∑
k∈V Aik exp(eik)

WTxj , (14)

and we can compute x̂′i =
∑

j∈V Aij exp(eij)W
Txj and di =∑

k∈V Aik exp(eik) respectively, then xi
′ = x̂′i/di. Here, x̂′i is the

unnormalized attention mechanism, and di is the sum of row i in the
matrix defined by Âij = Aij exp(eij).

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation1168

Given some specific formulation of eij from WTxi and WTxj , we
can separate the computation into source node j-related part, multi-
plication with Aij , and target node i-related part.

Specifically, we let exp(eij) be a sum of M products of i- and
j-dependent factors

exp(eij) =
M∑

m=1

fm(WTxi)gm(WTxj), (15)

and the form of eij is thus required to be

eij = log

(
M∑

m=1

fm(WTxi)gm(WTxj)

)
, (16)

where the sum
∑M

m=1 fm(WTxi)gm(WTxj) is required to be
larger than zero. Then, the unnormalized attention mechanism x̂′i and
rowsum di becomes

x̂′i =
M∑

m=1

fm(WTxi)
∑
j∈|V|

Aijgm(WTxj)W
Txj , (17)

di =
M∑

m=1

fm(WTxi)
∑
j∈|V|

Aijgm(WTxj), (18)

and we can first compute all gm(WTxj)W
Txj for each source node

j in a batched manner, propagate to each target node i with adjacency
matrix A, and further multiply fm(WTxi) and do summation. This
can be rewritten into the matrix form

X̂ ′ =
M∑

m=1

diag(fm(XW))Adiag(gm(XW))XW, (19)

and for normalization propose, the row sum of the operator∑M
m=1 diag(fm(XW))Adiag(gm(XW)) becomes

d =
M∑

m=1

diag(fm(XW))Adiag(gm(XW))1N . (20)

where fm and gm are row-wise applied, and diag(·) represents the
diagonal matrix constructed from the corresponding vector.

With an activation function afterward, the normalized separable
weighted attention head can be represented as

X ′ = σ(diag(d)−1X̂ ′). (21)

We name the resulted model as Separated Graph Attention Net-
works (SepGAT). Each attention head has the time complexity
O(|V|FF ′ + M(|V| + |E|)F ′). Even though the time complexity
is larger than GAT, efficient batching of SDMM allows the model
to be still faster than GAT. Additionally, this approach allows cer-
tain attention functions with higher capacity to be applied, for which
explicit computation may require a similarly high complexity on its
own anyway.

We can also consider the vectors

f(WTxi) = [f1(W
Txi), f2(W

Txi), ..., fM (WTxi)]
T (22)

g(WTxj) = [g1(W
Txj), g2(W

Txj), ..., gM (WTxj)]
T (23)

as transformed input features, then the attention mechanism can be
expressed as

eij = log
(
f(WTxi)

Tg(WTxj)
)
, (24)

on which the masked softmax is then performed. Thus, just like
AGNN, SepGAT can also be viewed as a variant of inner-product
attention mechanism, where the input features are first transformed
with functions f, g ∈ R

F → R
M , and instead of normalization with

l2 norm, a logarithm nonlinearity is applied after the inner product.
One particular choice of the functions f and g is single-layer feed-
forward neural networks described later.

3.3 Simplified graph attention mechanism

To further improve the efficiency, we consider the special case
of m = 1, where the unnormalized attention mechanism be-
comes exp(eij) = f(WTxi)g(W

Txj). In this case, we found that
f(WTxi) occurs in both the numerator and the denominator in the
separable weighted attention representation, so we can simplify it
into

αij =
Aijg(W

Txj)∑
k∈V Aikg(WTxk)

. (25)

That is, the attentional coefficient is only related to the neighborhood
but not the target node. We denote this model as Simplified Graph
Attention Networks (SimpGAT).

The physical explanation of this simplification is that we deduct
the importance of source node j towards other nodes based on fea-
tures of j but not its target nodes, and multiple importance weights
of the neighborhood of a center node i is normalized with a sum of
one.

3.4 Choice of functions f and g

A simple choice of function eij in SimpGAT is a single-layer feed-
forward neural network with an activation function η, that is, eij =
η(aTWTxj) and exp(eij) is a function of WTxj .

However, the computation of separable weighted attention mecha-
nism requires an explicit computation of exp(eij), which can lead to
numerical instability, e.g. overflow or underflow when |eij | is large.
In (optionally masked) softmax in traditional mechanism, where sub-
tracting the maximum eij for each i reduces all exponentials into at
most one. It is not applicable in our scheme though, since the maxi-
mum of eij for all j may not correspond to an edge for some i, thus
maxj∈Ni(eij)−maxk∈V(eik) can be negative enough for some i to
cause underflow in the exponential. Finding row-wise maximum of
eij defeats out propose, since it computes an edge-wise intermediate
result, increasing time and memory consumption.

Instead, we choose the inverse hyperbolic sine function as the
nonlinearity η, since sinh−1(x) = log(x +

√
1 + x2), and

exp sinh−1(x) = x +
√
1 + x2. As a result, exp sinh−1(x) →

− 1
2|x| when x → −∞, and exp sinh−1(x) → 2x when x → +∞,

which has much better numerical stability than exponential function
alone. Also, it only involves arithmetic and square root operations to
compute, with no difficulties for implementation or computation.

With this choice, the unnormalized attention mechanism and its
rowsum becomes

X̂ ′ = Adiag(φ(XWb))XW, (26)

d = Adiag(φ(XWb))1N , (27)

where φ(x) = exp sinh−1(x).
For similar reasons, we choose all fm and gm as single-layer feed-

forward neural networks with exponential of inverse hyperbolic sine

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation 1169

nonlinearity, thus

X̂ ′ =
M∑

m=1

diag(φ(XWam))Adiag(φ(XWbm))XW, (28)

d =
M∑

m=1

diag(φ(XWam))Adiag(φ(XWbm))1N . (29)

3.5 SepGAT and SimpGAT models

Inspired by GAT, we apply a multi-head attention mechanism in both
SepGAT and SimpGAT to stabilize the learning process. We concate-
nate the outputs of K independent simplified attention mechanism
described above to get the final output of the multi-head attention
layer

X ′ =
K∥∥

k=1

σ(diag(dk)
−1X̂ ′

k), (30)

where
∥∥ denotes the concatenation operation, and X̂ ′k and dk for each

head are computed from independent parameters Wk and ak.
Computations for all heads can easily batched together with tensor

operations, and the computation of X̂ ′
k and dk can also be combined,

thus requiring only one sparse matrix multiplication for the entire
layer, greatly reducing the running time.

We apply multiple layers of multi-head attention described above
to form a neural network. For the last layer in classification, the out-
put dimension is required to be the number of classes for softmax
or sigmoid classification. Like GAT, we employ averaging instead of
concatenation and apply the softmax function afterward.

We employs dropout mechanism to increase the robustness of the
model, especially when the label rate is low. Specifically, we apply
node feature dropouts before and after linear transformation in each
layer. We also implemented edge dropping inspired by [4], which
is directly applied to the adjacency matrix. To keep the computation
minimal, we use the same dropped edges in all heads within the same
layer. A desirable side effect of edge dropping is the reduced num-
ber of edges making computation of the sparse matrix multiplication
faster. Note that when edge dropout is used, all edges around a sin-
gle node can be dropped together, resulting a division by zero error
during simplified attention computation. Thus, a small constant ε is
added to the row sums of all nodes.

The time complexity of the K-head simplified weighted attention
layer per epoch is O(K|V|FF ′ +KM(|V| + |E|)F ′) for SepGAT
andO(K|V|FF ′+K|E|F ′) for SimpGAT. The time complexity of
SimpGAT is same as GAT, and also GCN with the same combined
output dimension, that is, F ′GCN = KF ′GAT. The time complexities
for our approaches along with some important baselines are summa-
rized in Table 1. However, the combination of sparse matrix multi-
plication in all heads greatly reduces our method’s time consump-
tion compared to GAT, giving a per-epoch training time similar to
GCN. Even SepGAT with higher complexity can be made faster than
GAT with batching on both heads and attention terms, since a larger
SDMM in this case is actually faster than multiple smaller SDMM
in GAT. Meanwhile, both models retain the superior model capac-
ity of GAT by weighting the nodes differently. Also, without explicit
attention coefficient storage for forward and backward, our models
require significantly less memory compared to GAT, allowing train-
ing on larger graphs including Reddit dataset.

Table 1. Comparison of time complexity of multiple models

Model Time Complexity Per Layer
GCN (Dense) O(|V|FF ′ + |V|2F ′)
GCN (Sparse) O(|V|FF ′ + |E|F ′)
GAT (Dense) O(K|V|FF ′ +K|V|2F ′)
GAT (Sparse) O(K|V|FF ′ +K|E|F ′)

SepGAT O(K|V|FF ′ +KM(|V|+ |E|)F ′)
SimpGAT O(K|V|FF ′ +K|E|F ′)

4 EXPERIMENTS

We evaluate our SepGAT and SimpGAT models on the well estab-
lished benchmarks of citation networks and social networks, and
compare our results with existing works, including several strong
baselines. Additionally, we compare the training time for our meth-
ods and several related approaches to better demonstrate the effi-
ciency of our models.

4.1 Datasets

Cora, Citeseer, and Pumbed are three citation network datasets.
Nodes correspond to documents and edges to citations. We use undi-
rected edge in this work, same as all baselines. Node features are bag-
of-words representation of documents, zero-one in Cora and Cite-
seer, and TF-IDF in Pubmed. Each node has a class label based on
its subject. We follow the transductive setting of [29], where all node
features are available during training.

Reddit is a social network dataset with 232,965 nodes and
11,606,919 edges, which is much larger than the citation networks.
The task is to classify Reddit posts as belonging to different com-
munities. Nodes correspond to posts and edges to comments from
the same user. The first 20 days of the month are used for training
and the remaining days are used for testing [11]. We apply the induc-
tive settings as in [3] for our SepGAT and SimpGAT models, and a
transductive setting for GCN baseline.

Dataset statistics are summarized in Table 2.

Table 2. Dataset Statistics

Dataset Cora Citeseer Pubmed Reddit
Nodes 2,708 3,327 19,717 232,965
Edges 5,429 4,732 44,338 11,606,919

Features 1,433 3,703 500 602
Classes 7 6 3 41
Training 140 120 60 152,410

Validation 500 500 500 23,699
Test 1,000 1,000 1,000 55,334

4.2 Experimental setup

Both SepGAT and SimpGAT are implemented in PyTorch [19]. Both
models have two layers for all datasets. On citation networks, we
choose the architecture based on GAT, with the first layer consisting
of K = 8 attention heads computing F ′ = 8 features each. The
second layer has K = 1 head for Cora and Citeseer, and K = 8
for Pubmed. In SepGAT, we use M = 8 terms in the attention for-
mulation. We apply a dropout with p = 0.6 both before and after
linear transformation. The edge dropping rate is 0.6 for SepGAT and
0.3 for SimpGAT on all three citation networks. Implementation of

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation1170

GCN and GAT baselines are provided by their respective authors. We
choose the same hyperparameter setting as their corresponding pa-
pers for GCN and GAT baselines. Additionally, a GCN model with
64 hidden units is trained for a fair comparison to GAT, SepGAT, and
SimpGAT, each with total hidden units of 64.

On Reddit dataset, the larger number of classes (41) requires a
larger amount of hidden units. We empirically find that K = 16 at-
tention heads with F ′ = 16 features each on the first layer works
best. For SepGAT, we use only M = 4 terms in the attention formu-
lation due to memory limitations. The second layer still has K = 1
head. The larger amount of training data requires less regularization,
thus we apply a dropout with p = 0.3 only before linear transfor-
mation, and edge dropping is not used. For GCN baseline, 64 hidden
units and p = 0.2 dropout is used. We also experimented GCN with
256 hidden units in our PyTorch implementation.

To our best of our knowledge, no GAT implementation can fit in
our GPU memory, and training on CPU does not make a fair compar-
ison on computation time. As for AGNN, the gather/scatter approach
is the only known reasonably memory-efficient algorithm, since it
preserves the sparsity of the graph. Yet, with O(|E|F) memory re-
quirement, gathering the original input features into the edges is still
highly impractical, and the storage requirement of the attention co-
efficient and its gradient is also prohibitive. As a result, no AGNN
implementation fit in our GPU memory, similar to the GAT case.

For all models, we use Adam optimizer [12], with learning rate
0.01 for GCN and 0.005 for other models. L2 regularization of λ =
5× 10−4 is also applied. We repeat 10 times for each experiment.

Additionally, we select several results from various works for a
more complete comparison [13, 23, 22, 17, 20, 24, 26, 31, 11, 3]. The
results for citation networks and Reddit are summarized in Table 3
and Table 4, respectively.

Table 3. Classification accuracy on Planetoid datasets

Model Cora Citeseer Pubmed
Literature:

GCN 81.5 70.3 79.0
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
GLN 81.2 ± 0.1 70.9 ± 0.1 78.9 ± 0.1

AGNN 83.1 ± 0.1 71.7 ± 0.1 79.9 ± 0.1

LNet 79.5 ± 1.8 66.2 ± 1.9 78.3 ± 0.3
AdaLNet 80.4 ± 1.1 68.7 ± 1.0 78.1 ± 0.4
DeepWalk 70.7 ± 0.6 51.4 ± 0.5 76.8 ± 0.6

DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
SGC 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0

Our experiments:

GCN16 82.0 ± 0.6 71.1 ± 0.9 79.1 ± 0.4
GCN64 81.6 ± 0.3 71.0 ± 0.3 79.1 ± 0.3

GAT 83.4 ± 0.3 72.3 ± 0.7 78.1 ± 0.6
SepGAT 83.1 ± 0.6 71.6 ± 0.5 78.2 ± 0.3

SimpGAT 83.4 ± 0.4 71.8 ± 0.5 79.0 ± 0.3

4.3 Results

It is easily observed that our SimpGAT model achieves the best accu-
racy score on Cora benchmarks, and has performance comparable to
state-of-the-art on Citeseer and Pubmed. We should note that the best
models on both Citeseer and Pubmed are based on attention mecha-
nism, thus their time and memory efficiency is severely limited. Our
SimpGAT model is much faster while still having competitive perfor-
mance. SepGAT performs slightly worse, since it has more trainable
parameters, it suffers more from overfitting.

Table 4. Classification micro F1 on Reddit dataset

Model Micro F1
Literature:

GaAN 96.4

SAGE-mean 95.0
SAGE-LSTM 95.4
SAGE-GCN 93.0

SAGE-mean (Unsupervised) 89.7
SAGE-LSTM (Unsupervised) 90.7
SAGE-GCN (Unsupervised) 90.8

FastGCN 93.7
DGI 94.0
SGC 94.9

Our experiments:

GCN64 94.94 ± 0.03
GCN256 94.98 ± 0.02

GAT OOM
AGNN OOM

SepGAT 96.16 ± 0.05

SimpGAT 95.71 ± 0.05

On Reddit dataset, our SepGAT model is able to beat all baselines
except GaAN [31]. GaAN is a node sampling model, allowing larger
models to be trained on a reasonable device. However, with a large
number of parameters, GaAN has not yet proven itself to be time ef-
ficient. SepGAT performs better than most sampling methods, giving
the insight that using the entire graph provides more useful informa-
tion compared to sampling subgraphs. When SepGAT is compared
to our SimpGAT and other simpler methods, we find that complex
formulations of attention function improves the capacity of models,
giving a better performance when overfitting is not an issue.

4.4 Efficiency Comparison

We also compare the training time between SepGAT, SimpGAT, GAT
and GCN. All timing experiments are done on a NVIDIA GTX 1080
Ti GPU. The hyperparameters are the same as in respective perfor-
mance experiments. SepGAT and SimpGAT use inductive training
on Reddit, which has a smaller training size than transductive GCN,
so transductive versions of SepGAT and SimpGAT are also timed for
fair comparison. The results are listed in Table 5.

Table 5. Training time (s) for selected methods. (i): inductive training, (t):
transductive training, OOM: Out of memory.

Model Cora Citeseer Pubmed Reddit
Time Per Epoch:

GCN16 0.0091 0.0140 0.1517 —
GCN64 0.0099 0.0157 0.1592 2.8803

GCN256 — — — 5.5227
GAT 0.0615 0.1764 0.4054 OOM

SepGAT 0.0135 0.0153 0.0527 4.4669(i)
7.7428(t)

SimpGAT 0.0105 0.0114 0.0288 3.1949(i)
6.0239(t)

Total Time:

GCN16 1.91 2.93 24.1 —
GCN64 1.53 2.28 17.2 593

GCN256 — — — 1125
GAT 60.6 158 235 OOM

SepGAT 21.2 25.6 51.1 7338(i)
14034(t)

SimpGAT 12.2 17.2 23.8 4814(i)
8242(t)

The training time per epoch of both SepGAT and SimpGAT are

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation 1171

similar to that of GCN, while GAT is much slower. Even SepGAT
with a higher theoretical complexity is faster than GAT, meaning
that the amount rather than the dense size of the SpMM operations
are critical in the computational time, and batching of the heads and
attention terms are crucial for high efficiency. The advantage of Sep-
GAT and SimpGAT on Pubmed dataset is probably due to implemen-
tation difference.

As for the total training time, SepGAT and SimpGAT are slower
than GCN but still faster than GAT. This is due to the extra param-
eters in the attention mechanism increasing the model complexity,
making the model harder to optimize. This is a necessary trade-off
for SepGAT and SimpGAT to perform better than GCN, which is
most evident for SepGAT on Reddit.

Also, by using the same adjacency matrix in all SpMM operations
involved in attention computation, our models are more scalable in
the sense of memory efficiency, allowing us to train our models on
larger datasets like Reddit while GAT cannot.

5 CONCLUSION

We have presented Separated Graph Attention Networks (SepGAT)
and Simplified Graph Attention Networks (SimpGAT), which are
novel graph neural network architectures inspired by Graph Atten-
tion Networks. Both models have performance on par with state-
of-the-art, while still roughly as fast as simpler methods including
Graph Convolutional Networks. SimpGAT is faster than SepGAT,
and performs better on smaller datasets with lower risk of overfit-
ting. Although SepGAT has a larger time complexity than GAT, it
can be trained faster with efficient batching of heads and attention
terms. SepGAT has a higher model capacity by introducing more
complex attention functions, which is beneficial for its performance
on datasets with surplus training data like Reddit.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which
helped improve this paper considerably. This work is supported
by National Natural Science Foundation of China (No.61806009),
Beijing Academy of Artificial Intelligence (BAAI) and Intelligent
Manufacturing Action Plan of Industrial Solid Foundation Program
(No.JCKY2018204C004).

REFERENCES

[1] James Atwood and Don Towsley, ‘Diffusion-convolutional neural net-
works’, in Advances in Neural Information Processing Systems 29, eds.,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
1993–2001, Curran Associates, Inc., (2016).

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, ‘Neural ma-
chine translation by jointly learning to align and translate’, in 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, eds.,
Yoshua Bengio and Yann LeCun, (2015).

[3] Jie Chen, Tengfei Ma, and Cao Xiao, ‘FastGCN: Fast learning with
graph convolutional networks via importance sampling’, in Interna-
tional Conference on Learning Representations, (2018).

[4] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song, ‘Adversarial attack on graph structured data’, in Proceed-
ings of the 35th International Conference on Machine Learning, eds.,
Jennifer Dy and Andreas Krause, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 1115–1124, Stockholmsmässan, Stock-
holm Sweden, (10–15 Jul 2018). PMLR.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst, ‘Con-
volutional neural networks on graphs with fast localized spectral filter-
ing’, in Advances in Neural Information Processing Systems 29, eds.,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
3844–3852, Curran Associates, Inc., (2016).

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst, ‘Con-
volutional neural networks on graphs with fast localized spectral filter-
ing’, in Advances in Neural Information Processing Systems 29, eds.,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
3844–3852, Curran Associates, Inc., (2016).

[7] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre,
Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and
Ryan P. Adams, ‘Convolutional networks on graphs for learning molec-
ular fingerprints’, in Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, eds., Corinna
Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Ro-
man Garnett, pp. 2224–2232, (2015).

[8] Matthias Fey and Jan E. Lenssen, ‘Fast graph representation learning
with PyTorch Geometric’, in ICLR Workshop on Representation Learn-
ing on Graphs and Manifolds, (2019).

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl, ‘Neural message passing for quantum chemistry’,
in Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, eds., Doina
Precup and Yee Whye Teh, volume 70 of Proceedings of Machine
Learning Research, pp. 1263–1272. PMLR, (2017).

[10] Aditya Grover and Jure Leskovec, ‘node2vec: Scalable feature learning
for networks’, in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, eds., Balaji Krishnapuram, Mohak Shah,
Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Ras-
togi, pp. 855–864. ACM, (2016).

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec, ‘Inductive representa-
tion learning on large graphs’, in Advances in Neural Information Pro-
cessing Systems 30, eds., I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, 1024–1034, Curran
Associates, Inc., (2017).

[12] Diederik P. Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, in 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, eds., Yoshua Bengio and Yann LeCun, (2015).

[13] Thomas N. Kipf and Max Welling, ‘Semi-supervised classification
with graph convolutional networks’, in 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, (2017).

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘Gradient-based learn-
ing applied to document recognition’, Proceedings of the IEEE, 86(11),
2278–2324, (Nov 1998).

[15] Qimai Li, Zhichao Han, and Xiao-Ming Wu, ‘Deeper insights into
graph convolutional networks for semi-supervised learning’, CoRR,
abs/1801.07606, (2018).

[16] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu, ‘Diffusion convo-
lutional recurrent neural network: Data-driven traffic forecasting’, in
International Conference on Learning Representations, (2018).

[17] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard Zemel, ‘Lanc-
zosnet: Multi-scale deep graph convolutional networks’, in Interna-
tional Conference on Learning Representations, (2019).

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, ‘Efficient
estimation of word representations in vector space’, in 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Ari-
zona, USA, May 2-4, 2013, Workshop Track Proceedings, eds., Yoshua
Bengio and Yann LeCun, (2013).

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer, ‘Automatic differentiation in PyTorch’, in NIPS Au-
todiff Workshop, (2017).

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, ‘Deepwalk: online
learning of social representations’, in The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’14, New York, NY, USA - August 24 - 27, 2014, eds., Sofus A. Mac-
skassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani,
pp. 701–710. ACM, (2014).

[21] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation1172

dini, ‘The graph neural network model’, IEEE Transactions on Neural
Networks, 20(1), 61–80, (Jan 2009).

[22] Kiran K. Thekumparampil, Sewoong Oh, Chong Wang, and Li-Jia Li.
Attention-based graph neural network for semi-supervised learning,
2018.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio, ‘Graph attention networks’,
in International Conference on Learning Representations, (2018).

[24] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm, ‘Deep graph infomax’, in Inter-
national Conference on Learning Representations, (2019).

[25] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M.
Bronstein, and Justin M. Solomon. Dynamic graph cnn for learning
on point clouds, 2018.

[26] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao
Yu, and Kilian Q. Weinberger, ‘Simplifying graph convolutional net-
works’, in Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, eds., Kamalika Chaudhuri and Ruslan Salakhutdinov, volume 97
of Proceedings of Machine Learning Research, pp. 6861–6871. PMLR,
(2019).

[27] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks, 2019.

[28] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu, ‘A comprehensive survey on graph neural net-
works’, CoRR, abs/1901.00596, (2019).

[29] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov, ‘Revisiting
semi-supervised learning with graph embeddings’, in Proceedings of
the 33rd International Conference on International Conference on Ma-
chine Learning - Volume 48, ICML’16, pp. 40–48. JMLR.org, (2016).

[30] Liang Yao, Chengsheng Mao, and Yuan Luo, ‘Graph convolutional net-
works for text classification’, in The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019., pp.
7370–7377. AAAI Press, (2019).

[31] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-
Yan Yeung, ‘Gaan: Gated attention networks for learning on large and
spatiotemporal graphs’, in Proceedings of the Thirty-Fourth Conference
on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, Califor-
nia, USA, August 6-10, 2018, eds., Amir Globerson and Ricardo Silva,
pp. 339–349. AUAI Press, (2018).

[32] Muhan Zhang and Yixin Chen, ‘Link prediction based on graph neu-
ral networks’, in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, p. 5171–5181, Red
Hook, NY, USA, (2018). Curran Associates Inc.

[33] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen, ‘An
end-to-end deep learning architecture for graph classification’, in AAAI,
(2018).

[34] Ziwei Zhang, Peng Cui, and Wenwu Zhu, ‘Deep learning on graphs: A
survey’, CoRR, abs/1812.04202, (2018).

[35] Marinka Zitnik and Jure Leskovec, ‘Predicting multicellular func-
tion through multi-layer tissue networks’, Bioinformatics, 33(14),
i190–i198, (Jul 2017).

H. Guo et al. / Simplifying Graph Attention Networks with Source-Target Separation 1173

