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Abstract. One classical way of characterising the rich range of ma-
chine learning techniques is by defining ‘families’, according to their
formulation and learning strategy (e.g., neural networks, Bayesian
methods, etc.). However, this taxonomy of learning techniques does
not consider the extent to which models built with techniques from
the same or different family agree on their outputs, especially when
their predictions have to extrapolate in sparse zones where insuffi-
cient training data was available. In this paper we present a new
taxonomy of machine learning techniques for classification, where
families are clustered according to their degree of (dis)agreement in
behaviour considering both dense and sparse zones, using Cohen’s
kappa statistic. To this end, we use a representative collection of
datasets and learning techniques. We finally validate the taxonomy
by performing a number of experiments for technique selection. We
show that ranking techniques by only following prejudice –the rep-
utation they have for other problems– is worse than selecting tech-
niques based on family diversity.

1 INTRODUCTION

“It is a truth universally acknowledged, that a single ML technique
in possession of a good reputation, must be in want of a dataset”3.
Matching ML techniques with datasets is an immemorial question,
as it is well-acknowledged that no technique is optimal for all prob-
lems4. Consequently, using the algorithm with best reputation for
all problems is a major mistake: there is no best-for-all algorithm.
As a reaction to this, areas such as meta-learning [3] and Auto-ML
[13, 20] are like modern matchmakers that look for the most appro-
priate marriage, according to the characteristics of the technique and
the problem at hand.

This can exploit the current landscape of techniques and hyperpa-
rameters through the use of sophisticated pipelines and millions of
training episodes to find the good match. However, many practition-
ers usually do matchmaking in the old-fashioned way: they fall back
on a few representative algorithms, or families, looking for diversity.
This intuition is also supported by the same no-best-for-all rationale,
but seen in the opposite direction. It is well-known that different types
of learning models are good at modelling different kinds of underly-
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ing patterns in data [4]. If an algorithm has performed poorly for a
problem, a very similar algorithm will perform poorly too. There-
fore, using and testing out a diverse set of models seems a good
and simple strategy that many ML practitioners and researchers do.
To this purpose, machine learning algorithms are often (intuitively)
grouped by similarity in terms of their formulation and learning strat-
egy, such as decision trees, kernel methods or neural networks. This
sort of grouping is what we usually find in machine learning and
AI books [16, 14], in the literature [12], or in other sources such
as CRAN5, Scikit-Learn6 or Wikipedia7. These taxonomies are then
regularly used by machine learning users and data scientists to look
for this diversity of approaches. Analogously, when a new learning
algorithm is defined, the researchers use the taxonomies or families
for comparing the new proposed technique with other algorithms in
the same or different category, depending on the point they want to
make. More recently, many adversarial attacks or explainable ML
[15] approaches are classified according to those that require or ben-
efit from knowing the model family and those that are fully black-
box.

As a result, the notion of machine learning family is ubiquitous,
and shapes the practice and theory of the field. Even when meta-
learning and Auto-ML are used, there is usually a pool of initial
techniques that are also based on these taxonomies. In this paper,
we argue that these family taxonomies are folklore, and not really
based on empirical or theoretical results about their similar or dis-
similar behaviour. As a response, we derive a taxonomy of machine
learning families for classification that is based on their behaviour,
which can be used in all the facets of machine learning theory and
practice, instead of the traditional folk taxonomies.

Our methodology is based on an important insight. While in dense
areas differences between models may be difficult to find, in sparse
areas the algorithms diverge significantly, and unveil the characteris-
tic behaviour of the trained models using those techniques. More pre-
cisely, in classification, models generated using particular machine
learning techniques may disagree not only in the difficult areas close
to the decision boundaries, but also on how they extrapolate on areas
with little or no training examples. Figure 1 illustrates this, where on
the top-left plot we see the original training data of a bivariate dataset
that we use to train several ML models (using different techniques).
What we observe is that all these models behave similarly (i.e., pro-
duce similar partitions of the input space) on dense zones, but their
behaviour on sparse areas is unpredictable and depends on the learn-
ing technique. Also, these less dense zones are those more likely to
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contain vulnerabilities [9, 10]. Another reason to incorporate sparse
data lies in its potential pervasive effect on classifiers: it is usually
the cause of negative effects on predictive accuracy [2, 23].

Figure 1: Different learning algorithms (classifiers) disagree on the
elements near the boundaries, but more critically when generalising
on sparse zones. The training data is shown on the top left.

We build our taxonomy using a combination of examples from
dense and sparse areas, and using the Cohen’s kappa coefficient (κ)
[22] as the divergence metric for classification on a wide range of
classification techniques (65) and problems (42 binary and 33 mul-
ticlass). The kappa statistic is a general-purpose agreement measure,
and discounts agreements by chance. It is used not only to evaluate a
single classifier, but also to evaluate classifiers amongst themselves.
It is robust to data imbalance, especially when aggregating for mul-
tiple datasets [22].

We build a dissimilarity matrix by aggregating the results on the
multiple datasets, we then cluster them into families using an ag-
glomerative approach. In order to show the appropriateness of the
proposed taxonomy, we conduct a series of experiments where we
use different strategies to search for the best model over a new clas-
sification problem from a set of machine learning techniques. We
also consider strategies based on the reputation of the learning tech-
nique. The results show that a search strategy based on exploring the
diversity of behaviour based on the families we introduced is better
than using some other folk family taxonomies, and much better than
relying on the reputation of the techniques.

The contributions of the paper are the following:

• We analyse the divergence of machine learning techniques based
on their experimental behaviour, using a combination of sparse
and dense areas.

• Based on this study, we propose the first hierarchical family tax-
onomy that groups machine learning techniques according to their
actual behaviour, instead of their formulation or name.

• We validate the proposed taxonomy over some folk taxonomies
on a scenario where we iteratively select algorithms based on past
performance (reputation), family diversity or both.

The rest of the paper is structured as follows. Section 2 reviews re-
lated work and further motivation. In Section 3 we detail the method-
ology we have used to calculate the similarity between techniques
and the agglomerative clustering according to behaviour. The actual
derivation of the families is shown in Section 4. In Section 5 we eval-
uate our proposed taxonomy in a scenario where we compare differ-
ent strategies for model selection on unseen classification problems.
Finally, the conclusions close the paper.

2 BACKGROUND

As mentioned in the previous section, the concept of family in ma-
chine learning is usually based on subjective notions, sustained on
historical reasons, the learning strategy of the technique or their
casual arrangement in textbooks or libraries. For instance, Domin-
gos [5] grouped the Machine Learning techniques into five families
(named tribes). These tribes include five types of models: connec-
tionist, Bayesian, symbolist, evolutionary and analogizers. Machine
Learning practitioners usually establish a number of model families
that they consider appropriate. For instance, in a meta-learning sce-
nario, Fernández-Delgado et al [12] evaluated 179 classifiers against
a collection of 121 datasets to establish a comparison in behaviour,
under the main goal of finding out which models are likely to perform
better given a new dataset. The techniques, however, were grouped
into 17 model families based on traditional criteria rather than be-
haviour. Martı́nez-Plumed et al. [24, 25, 26] studied the application
of Item Response Theory (IRT) to supervised classification tasks. In
this case, they employed 128 classifiers, explicitly grouped into 15
model families, also identified subjectively.

Other research directions have used behaviour to group or anal-
ysed machine learning techniques with some partial or limited no-
tions of family. For instance, Inza et al [17] employed 14 well-known
classifiers on 11 medical datasets to measure the differences in be-
haviour of the different classifiers. The behaviour is captured by
means of a Bayesian Network learned on the output of the classifiers.
Thus, the (dis)similarity of the models is given by the joint probabil-
ity distribution of the class label predictions of the different classi-
fiers. The authors grouped their classifiers into 5 predefined model
families, to assert the conditional independence between the model
families. For instance, Schrimpf et al. [29] measure how similar some
artificial neural network architectures are to the brain’s mechanism
for object recognition. In particular, the so-called ‘Brain Score’, a
composite of multiple neural and behavioural benchmarks (each one
consisting on a metric applied to a specific set of experimental data)
is used for scoring how brain-like ANNs are. Fernández et. al [11]
analysed Genetics Based Machine Learning (GBML) algorithms for
rule induction and grouped them into a taxonomy based on the chro-
mosome representation. The performance of the algorithms and fam-
ilies are evaluated on both standard classification problems and clas-
sification with imbalanced data sets using accuracy and kappa mea-
sures. The authors first compared the algorithms within a family to
select the best one as the family representatives, which were then
used for comparing the performance among families.

The notion of family has also been used in the context of meta-
learning. The goal of meta-learning, often defined as learning to learn
[3, 32], consists in automatically recommending a learning technique
(or a list of learning techniques) that are supposed to perform well for
a new given dataset. To achieve so, a meta-learner needs some prior
knowledge to learn from, i.e., it extracts the relationships between
the intrinsic properties of previously known datasets and the results
of evaluating them with different models. This information is used
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to build a meta-model to predict which model (or models) can offer
good performance for the new given dataset. Some work in the con-
text of meta-learning, use or define families. For instance, Smith et
al. [30] proposed an empirical definition of instance hardness based
on the classification behaviour of a set of learning algorithms. In or-
der to calculate instance hardness, the authors first selected 20 ML
algorithms. Then they are grouped into 9 families by applying a hi-
erarchical clustering algorithm using the probability that they make
different predictions (Classifiers Output Difference (COD) measure)
as the distance between algorithms. The COD scores are calculated
using test data that follow the same distribution observed in the train-
ing data. In this regard, family construction is guided by the primary
goal of using them for instance hardness estimation. For this rea-
son, the obtained families are only based on the partial behaviour
they exhibit on the data space covered by the training data, and are
not meant to be extrapolated beyond this use. Duin et al. [6] com-
pared the differences between traditional models built in a feature
space and models built on a dissimilarity (distance) representation
in that each example is described as the vector of distances to the
training examples. The authors applied 19 algorithms (13 based on
feature space and 6 based on dissimilarity space) on 301 datasets and
performed a hierarchical clustering on the classification errors ob-
tained by 10 fold-cross-validation. The groups are used to analyse
how models built on different space representation differ on classifi-
cation performance. Again, these families are not meant to extrapo-
late beyond the particular study.

AutoML [31, 13, 20] is an area closely related to meta-learning
that tries to provide methods and processes to make machine learn-
ing usable for non-experts and to improve efficiency and applicabil-
ity of machine learning. Its ultimate goal is to automate the whole
ML pipeline: preprocessing, model selection/optimisation, interpre-
tation of the results, etc. In the case of model selection, methods
based on meta-learning are usually employed. These methods try
to optimise the model in the available algorithmic space. Regarding
parameter optimisation, the strategies to find optimal configurations
include grid search, random search or Bayesian search, with some
refinements to alleviate the computational effort, including a proper
initialisation of the parameter space, to establish a budget to limit the
search time, or to avoid slow model-parameter combinations. These
optimisations are restricted to one kind of algorithm at a time, but the
notion of family reappears as the pipeline can do parameter optimi-
sation on a diversity of algorithms or architectures.

In both meta-learning and AutoML, when the existing knowl-
edge base is not directly applicable to determine a promising method
based on the features of the analysed dataset, the search for the best
algorithm in the available space of machine learning falls back again
on the folk notion of model families. As we have previously ex-
plained, this categorisation is based mainly on the underlying con-
structs that were used to develop the learning technique, and not
really on behavioural diversity. A clever strategy for finding strong
models should consider the intrinsic behaviour of the learning tech-
niques, and explore a diversity of behaviours, with special emphasis
on trying to find the right technique for those problems that are un-
usual or special. This behaviour-grounded diversity is ignored by the
most of the methods employed in meta-learning and AutoML search
strategies.

Similarly, when practitioners do not use meta-learning or Au-
toML, they usually end up looking for a diverse set of techniques,
following the folk taxonomies. This is also the case when building
ensemble methods. In particular, stacking [34] builds a combination
of models that have to be both good and diverse [21]. Note that di-

versity can be used when only one model is selected, by trying tech-
niques one after another [7]. We will use this combination of good-
ness and diversity in one of the strategies that we will use to validate
our taxonomy. Overall, the definition of a proper taxonomy of ma-
chine learning techniques could replace these traditional taxonomies
and encourage the use of diversity in a more systematic way.

3 IDENTIFYING BEHAVIOUR-BASED ML
FAMILIES

As stated previously, a popular and simple way to group ML tech-
niques is based on the nitty-gritty of their formulation, such as
whether they are based on a Bayesian approach, they use gradient
descent or a discrete search space over rules. This approach is prac-
tical for machine libraries and textbooks, as the components and im-
plementations cluster around these formulations, but may lead to
similar behaviour. Actually, it is usually the case that one classi-
fier of a family with some hyperparameters (or under some assump-
tions) is shown to be equivalent to a technique of a different family.
Some theoretical connections are expressed in terms of bounds, but
theoretically-similar methods may still differ dramatically depending
on the dataset, and which area of the space we pay attention too.

Thus, a more appropriate way of analysing and comparing ma-
chine learning techniques is to studying their actual behaviour, i.e.
whether they agree or disagree when classifying instances. However,
in the literature, the behaviour of a model is usually checked against
a test set that is supposed to be representative of the problem. In other
words, the test set somewhat follows the distribution of the original
training set. This is a valid setting when we want to check how well
a model performs for a certain task, where the new incoming objects
to identify should ideally be similar to those observed in the training
set. However, if we want to study the actual behaviour of a set of
models, we need to consider test data covering all the feature space,
including sparse regions where we can find significant differences
between models (see Figure 1). These sparse regions include exam-
ples which are outliers, thus presenting an unrealistic combination of
features.

Accordingly, we propose to identify the families of learning algo-
rithms (for classification) by focusing on their class agreement, i.e.,
the extent to which classifiers assign the same class to the same ex-
ample. With this in mind, we use the Cohen’s kappa coefficient (κ)
[22]. Unlike other evaluation measures, the kappa coefficient is used
not only to evaluate a single classifier, but also to evaluate classi-
fiers amongst themselves (corrected by chance). Actually, with kappa
we can also take into account how different classifiers disagree on
boundaries caused by extrapolation noise.

Regarding the behaviour of a learning model, if we aim to consider
how a model extrapolates its behaviour in those more sparse regions
of the feature space (e.g., where there is not enough training data),
we need further methods to generate the test data. The procedure for
data generation is as follows: in the case of numerical attributes, we
assume that their values are distributed according to a normal distri-
bution (which we infer from the training set), so each artificial value
is generated following such distribution. Note that the simulated nu-
merical values generated are not bounded by a maximum nor a mini-
mum when we generate a new value following a normal distribution.
Consequently, outliers may appear beyond the limits observed in the
training set for a specific feature. Analogously, for simulating the
values for the categorical attributes we infer the probability of each
value from the training data and then we follow a categorical distri-
bution. Note that, in this way rare combinations of attribute values
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(not seen in the training set) still take place, as we ignore the joint
distribution. This is convenient for our purposes because we want to
check the behaviour of the model for those regions where there is no
training data, and this does the job systematically.

The simulated data can be used to test and compare a large set
of learning algorithms (following pairwise sequence comparisons)
which, according to their results, can then be grouped applying a hi-
erarchical clustering over their kappa values. More concretely, the
process for (automatically) generating a behavioural taxonomy of
ML techniques consists of the following steps: (1) we gather a col-
lection of representative datasets for which we learn a wide variety of
learning models. (2) For each dataset we generate a simulated artifi-
cial test set which is to be labelled by the different learned models. (3)
We can then pairwise compare the behaviour of the different models
by computing the kappa score between the outputs of the different
models. We repeat this procedure for a large collection of datasets,
and then compute the average kappa score obtained by each tech-
nique along the whole collection of datasets. (4) Finally, with the
averaged kappa outcomes, we perform a distance-based clustering
procedure, e.g., a hierarchical clustering [18, 1]. Hierarchical cluster-
ing techniques are intuitive and flexible, in the sense that they only
need a distance metric for the analysed data and the result is graph-
ically represented as a dendrogram, so we can appreciate how close
some families are and choose the number of families in a more in-
sightful way.Unlike other non-distance based clustering algorithms,
hierarchical clustering does not require prior knowledge about the
groups so we can select any number of clusters we find appropriate
by interpreting the resulting dendrogram.

In the following section we report the experiments performed for
obtaining the taxonomy of ML techniques using the above procedure.

4 EMPIRICAL DERIVATION OF THE
TAXONOMY

In this section we describe the experiments performed to obtain a
taxonomy of classification algorithms according to the behaviour of
the models they generate. This is based on the agreements and dis-
agreements in their output, which is measured by the Cohen’s kappa
coefficient, as explained in the previous section. We start introducing
the set of representative datasets and learning models we have em-
ployed. Then, we describe the experimental setting and we show and
analyse the obtained results8.

4.1 Data and Classifiers

To conduct our experiments, we started with an initial collection
of representative datasets from the OpenML repository [33]. Con-
cretely, we used those datasets from the study 14, the most com-
prehensive, collaborative and reproducible analysis from OpenML,
containing a representative set of 100 public datasets9).

For each dataset, we performed a data cleansing procedure to
avoid incomplete and inconsistent data which would affect the learn-
ing algorithms, following the usual procedure in similar works [12].
Specifically, we (1) remove those attributes having a large amount
of missing values (e.g., higher than 25%), (2) remove 0-variance at-
tributes, (3) remove instances (rows) with missing values, and (4)

8 For the sake of reproducibility and replicability, all the data, code, complete
experiments, plots and results can be found in https://github.com/rfabra/
model family taxonomy

9 https://www.openml.org/s/14

remove duplicated instances having different labels (e.g., noisy in-
stances). After this process, we discarded those datasets for which
we lost more than 30% of attributes or examples. With this, we end
up having 75 datasets (Table 1). The numerical features are also stan-
dardised to have zero mean and standard deviation one, as in [12].

We use a wide variety of learning algorithms (classifiers), all of
them implemented in R [27]. We try to cover the large collection of
techniques available in CARET10 and RWeka11 R packages for classi-
fication tasks. Although we keep the default (hyper-)parameters to a
large extent, we modified the tuning parameters for some classifiers
in such a way that we obtained a heterogeneous set of 65 different
classifiers (see Table 2 for a description).

Table 1: Datasets remaining after the cleansing procedure. There are
75 datasets in total: 42 binary datasets and 33 multiclass datasets.

Dataset #class #feats #ex Dataset #class #feats #ex

abalone 28 8 4177 mfeat-zernike 10 47 2000
ada agnostic 2 48 4562 monks1 2 6 556
analcatdata authorship 4 70 841 monks2 2 6 601
artificial-characters 10 7 10218 monks3 2 6 554
badges2 2 10 294 mushroom 2 22 8124
balance-scale 3 4 625 musk1 2 167 476
banknote-authentication 2 4 1372 one-hundred-plants-margin 100 64 1600
blood-transfusion-service-center 2 4 748 one-hundred-plants-shape 100 64 1600
breast-cancer 2 9 286 one-hundred-plants-texture 100 64 1599
breast-w 2 9 699 optdigits 10 64 5620
bupa 2 6 345 ozone 2 72 2536
car 4 6 1728 ozone-level-8hr 2 72 2534
cardiotocography 10 35 2126 pc1 2 21 1109
chess-KRVKP 2 36 3196 pc3 2 37 1563
climate-model-simulation-crashes 2 20 540 pc4 2 37 1458
cmc 3 9 1473 pendigits 10 16 10992
credit-a 2 15 690 PhishingWebsites 2 30 11055
credit-g 2 20 1000 phoneme 2 5 5404
diabetes 2 8 768 qsar-biodeg 2 41 1055
eucalyptus 5 19 736 satimage 6 36 6430
first-order-theorem-proving 6 51 6118 scene 2 299 2407
GesturePhaseSegmentationProcessed 5 32 9873 segment 7 19 2310
heart-statlog 2 13 270 semeion 10 256 1593
hepatitis 2 19 155 sonar 2 60 208
hill-valley 2 100 1212 spambase 2 57 4601
ilpd 2 10 583 spect full 2 22 267
ionosphere 2 34 351 splice 3 60 3190
iris 3 4 150 steel-plates-fault 2 33 1941
JapaneseVowels 9 14 9961 synthetic control 6 60 600
jm1 2 21 10885 texture 11 40 5500
kc1 2 21 2109 tic-tac-toe 2 9 958
kc2 2 21 522 vehicle 4 18 846
liver-disorders 2 6 345 vowel 11 12 990
lung-cancer 3 56 32 wall-robot-navigation 4 24 5456
mfeat-factors 10 216 2000 waveform-5000 3 40 5000
mfeat-fourier 10 76 2000 wdbc 2 30 569
mfeat-karhunen 10 64 2000 wilt 2 5 4839
mfeat-morphological 10 6 2000

Table 2: List of the 65 classifiers employed in the experiments, along
with the parameters we used. Parameters are left to their default val-
ues, unless specified otherwise.

Technique (parameters) Description Technique (parameters) Description

AVNNet (decay = 1e02) Averaged NNet MLP (HL = 1, U = 5, WD = 1e05) MultiLayer PerceptronAVNNet (decay = 1e04) MLP (HL = 2, U = 5, WD = 1e05)
BagFDA (prune = 4) Bagged Flex. Disc. Analysis PMR Penalized Multinomial Regression
BagFDA (prune = 8) NB

Naive BayesBagging Bagging NB (Lapace Smoothing = 3)
C5.0 C5.0 tree–based model NB (RWeka)
C5.0 (winnow) ParRF (mtry = 16) Parallel Random ForestCI RF (mtry = 16) Cond. Inf. Random Forest ParRF (mtry = 64)
CI RF (mtry = 64) PART Rule Sets
CI T (mincriterion = 0.01) Cond. Inf. Tree PDA Penalized Disc. Analysis
CI T (mincriterion = 0.05) GPS Greedy Prototype Selection
MARS Mult. Adap. Reg. Splines RBF Radial Basis Func. NetworkFDA (nprune = 17) Flex. Disc. Analysis RBF (dynamic decay adjustment)
FDA (nprune = 9) RDA Reg. Disc.Analysis
GBM (id = 2, ntrees = 100) Stoch. Grad. Boosting Machine RF (mtry = 16) Random ForestGBM (id = 2, ntrees = 50) RF (mtry = 64)
HDRDA HighDim. Reg. Disc. Analysis RFRules (mtry = 16) Random Forest Rule–BasedIbk (k = 3) Instance–based learning algorithm RFRules (mtry = 64)
Ibk (k = 5) RPART Rec. Part. And Reg. Trees
J48 C4.5 decision tree algorithm RegRF (mtry = 16) Reg. Random ForestJ48 (unpruned) RegRF (mtry = 64)
JRip Decision rules SDA (lambda = 1) Shrinkage Disc. Analysis
JRip (unpruned) PLS (ncomp = 2)

Part. Least Squares3–NN k-nearest neighbors classifier PLS (ncomp = 3)
5–NN PLS (ncomp = 4)
LMT Log. Model Trees SVM (Linear, C = 1)

Support Vector Machine

LR Log. Regression SVM (Linear, C = 2)
LVQ (K = 3) Learning Vector Quant. SVM (Poly, degree = 1)
LVQ (K = 5) SVM (Poly, degree = 2)
MLP (HL = 1, U = 3)

MultiLayer Perceptron

SVM (Poly, degree = 3)
MLP (HL = 1, U = 5) SVM (RBF, cost = 2ˆ11)
MLP (HL = 1, U = 7) SVM (RBF, cost = 2ˆ11)
MLP (HL = 2, U = 3)

4.2 Hierarchical Clustering

We then perform pairwise comparisons between the outputs of the
different trained models per dataset. We created a triangular matrix

10 http://topepo.github.io/caret/index.html
11 https://cran.r-project.org/web/packages/RWeka/index.html
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of size N × N , where N is the number of learning techniques (in
our experiments N=65). Each cell represents the average (1-kappa)
(for all datasets) obtained by a pairwise comparison of the outputs
of the models induced with the corresponding techniques. We use
1− kappa since clustering methods are based on distance matrices.
Then, we applied a hierarchical clustering algorithm [19] to group
the different models, using the complete distance in order to find
the maximum possible distance between points belonging to two dif-
ferent clusters (this linkage method tends to produce more compact
clusters [8]).

4.3 Results

From the hierarchical cluster analysis using the proposed 75 datasets,
we obtained the dendrogram shown in Figure 2 (left). As a clarifica-
tion, in a dendrogram, each leaf corresponds to one observation (e.g.,
one learning algorithm). As we move up the tree, observations that
are similar to each other are combined into branches, which are them-
selves fused at a higher height. The height of the fusion, provided
on the horizontal axis, indicates the (dis)similarity between two ob-
servations. The higher the height of the fusion, the less similar the
observations are.

Since 54% of the datasets (41 out of 75) are binary, we have also
analysed the potential groups arising from those 2-class (Figure 2,
centre) as well as those using only multiclass datasets (Figure 2,
right). In order to identify subgroups (i.e., clusters), we may cut the
dendrograms at a certain height. In this regard, we grouped the mod-
els into 18 clusters (i.e., algorithm families). This cut value repre-
sents a reasonable compromise between having a significant number
of families of techniques and getting well defined groups (techniques
in the same group are much more similar among them than to those
in other groups). We also check the cohesion and separation of the
clusters performing the Silhouette [28] method (a procedure for the
interpretation and validation of consistency within clusters of data).
It is a very common measure that performs well in cases where there
is no centroid or boundaries between clusters, as in this case. The
Silhouette method determined the optimal number of clusters to be
equal to 18 (see Figure 3).

The dendrograms of Figure 2 are useful to show clearly how much
resemblance there is in the behaviour of the considered models. From
Figure 2 (left) we can see that the cluster A1 corresponds to the neu-
ral networks family. All the Multi-Layer Perceptron algorithms, un-
der different configurations, along with the model Average Neural
Network are grouped together. We can also appreciate that Logistic
Model Trees is included within this group, but at a higher height. In
fact, this model is quite close to the following group, A2, which cor-
respond to linear models. This latter cluster also includes Logistic
Regression-based methods, SVM with linear kernels and the Penal-
ized Discriminant Analysis techniques. The group A3 contains algo-
rithms such as the Flexible Discriminant Analysis with different lev-
els of pruning, along with the MARS technique (Multivariate Adapta-
tive Regression Splines). The cluster A4 corresponds to Partial Least
Squares-related methods (varying the number of components), and
the group A5 is formed by two methods based on Regularized Dis-
criminant Analysis. Instance-based methods (k-NN, Ibk and Greedy
Prototype Selection) also fall under the same group, A6. Close to
these, we find the Learning Vector Quatization-related methods with
varying K parameters (A7). We find the SVM group (A8) with non-
linear kernels: polynomial kernels with degree 2 and 3, and radial
basis function kernels. Next we find several groups containing differ-
ent types of ensembles and trees. We can see that Stochastic Gradi-

ent Boosting Machines, Conditional Inference Random Forests and
Bagged Flexible Discriminant Analysis fall under the same family,
A9. The CART model is grouped with the Bagging model in A10.
Although this might look counterintuitive, we can see, however, that
they are combined into branches at a high height, and they are quite
close to the previous ensembles, as well as the family A11, composed
by pruned and unpruned JRip models. Conditional Inference Trees
also have their own family, A12. The cluster A13 corresponds with
decision tree-related models, containing different configurations of
both C5.0 and J48 algorithms. The PART model has its own group.
However, it is about to fall under the previous group, so we could
consider that whole branch as the same family. The group A15 cor-
responds with different types of Random Forest. We have the clus-
ter A16 composed of two configurations of Random Forest Deci-
sion Based Rules. Despite having their own family, we can see that
these models are closely related to tree and tree ensemble models.
The two last families correspond to Naive Bayes models (along with
Shrinkage Discriminant Analysis) and Radial Basis Function Net-
work models.

If we pay attention to binary datasets (Figure 2, centre), the den-
drogram depicts some changes.The Shrinkage Discriminant Analysis
(B2) is now separated from Naive Bayes (its potential stereotyped
family). The Greedy Prototype Selection algorithm also has its own
group, which is close to the group B4 (Nearest Neighbours). SVM
with Polynomial kernel (degrees 2 and 3) fall in the Neural Networks
cluster, B7. SVM with radial basis function Kernels are grouped to-
gether (B8), close to the Neural Networks family. Regularised Dis-
criminant Analysis models are now in the same group as Partial Least
Squares (B9). Linear models, B10, are kept as well. Bagging, CART
and both versions of J48 and C5.0 are grouped together in B11. This
group is quite close to the PART model, which keeps its own group.
Close to these two previous clusters we find a group of Conditional
Inference Trees, B13. Flexible Discriminant Analysis and Multivari-
ate Adaptive Regression Splines are still grouped together, but Lo-
gistic Model Trees now fall also within this group, B14. The rest of
groups remain largely unchanged.

The dendrogram for the multiclass datasets (Figure 2, right) also
presents small differences, although the groups clustered are more
or less the same: Naive Bayes algorithms (C1), Radial Basis Func-
tion networks (C2), JRip models (C14), Random Forest Rule-based
techniques (C18) and Conditional Inference Trees (C13). Unlike the
binary case, Partial Least Squares composes its own group (C3), as
well as Regularized Discriminant Analysis-related algorithms (C5).
There are also some results that may look counterintuitive. For in-
stance, SVM with linear kernels fall in the same family (C4) as SVM
with radial basis function kernels. SVM with polynomial kernel (de-
grees 2 and 3) are together with Nearest Neighbours and Greedy Pro-
totype Selection (C7). One of the Neural Network models (Model
Averaged Neural Network) have their own group (C9), since the dis-
tance to the other neural networks is slightly higher. Logistic (and
multinomial) Regression are now in their own group, C10, along
with Penalized Discriminant Analysis. Logistic Model Trees are very
close to this group. There is another big group, C12 composed by
CART and tree ensembles (all types of Random Forest and Stochastic
Gradient Machines). Flexible Discriminant Analysis and Multivari-
ate Adaptative Regression Splines are kept in the same family (C15).
Contrary to the previous cases, Bagged Flexible Discriminant Analy-
sis have their own group, C16. The model PART is now together with
decision trees (C5.0, J48 and their variants, in C17).

As we can see, there are few differences between the results for bi-
nary datasets and for all datasets. However, there are relevant differ-
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Figure 2: Model family dendrogram representing the hierarchical clustering of machine learning models from Table 2. (Left) Dendrogram
obtained using the 75 datasets (binary and multiclass). (Centre) Dendrogram obtained using only binary datasets. (Right) Dendrogram obtained
using only multiclass datasets.

●

●

●

● ●
●

●
● ●

●
●

●
●

● ●
● ●

● ● ●
● ●

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of clusters k

Av
er

ag
e 

si
lh

ou
et

te
 w

id
th

Optimal number of clusters

Figure 3: Silhouette criterion reached in 18 groups when clustering
AI algorithms according to their behaviour.

ences between these results and the results for the multiclass datasets.
This might happen due to the way in which some models, defined
for binary problems (e.g., SVM models), generalise to the multiclass
case. We must also take into account that, due to our test generation
method, we are probably covering many regions of the feature space
that are not covered with the training set. This may also explain why
some models that are supposed to behave differently (like SVM with
different kernels) present similar behaviour, which can be because
the models extrapolate very similarly to the sparse regions.

5 VALIDATION USING TECHNIQUE
SELECTION

In this section we validate our taxonomy of machine learning fami-
lies by performing a number of experiments for technique selection.
More specifically, we address the problem of choosing the right ma-
chine learning algorithm among a vast amount of possibilities when
addressing a new learning problem (e.g., a new, previously unseen,
dataset), and without considering (or knowing) any intrinsic char-
acteristic of the task at hand. As the best algorithm depends on the
data, the best choice of the learning algorithm remains unclear unless
we test out all our algorithms directly on the data. However, we can
improve this search of the best technique in different ways: (1) ac-
cording to the reputation they have for other problems, or (2) based
on the behavioural family diversity.

In this regard, we have implemented five different algorithm se-
lection approaches. We applied them to a subset of 50 new datasets8

Table 3: Description of the 50 datasets used in the validation phase.

Dataset #class #feats #ex Dataset #class #feats #ex

arsenic-female-bladder 2 4 559 no2 2 7 500
bank32nh 2 32 8192 parkinsons 2 22 195
blogger 2 5 100 pollen 2 5 3848
calendarDOW 5 32 399 prnn crabs 2 7 200
car-evaluation 4 21 1728 puma32H 2 32 8192
CastMetal1 2 37 327 puma8NH 2 8 8192
churn 2 20 5000 ringnorm 2 20 7400
cpu act 2 21 8192 sa-heart 2 9 462
delta ailerons 2 5 7129 seeds 3 7 210
delta elevators 2 6 9517 seismic-bumps 3 7 210
dna 3 180 3186 servo 2 4 167
eye movements 3 26 10936 sleuth case2002 2 6 147
fri c4 100 10 2 10 100 Smartphone-Based Recognition 6 66 180
fruitfly 2 4 125 socmob 2 5 1156
glass 6 9 214 solar-flare 1 5 12 315
grub-damage 2 8 155 space ga 2 6 3107
hayes-roth 2 4 132 threeOf9 2 9 512
jungle chess 3 46 4704 vertebra-column 3 6 310
kin8nm 2 8 8192 veteran 2 7 137
led24 10 24 3200 visualizing galaxy 2 4 323
lymph 4 18 148 visualizing soil 2 4 8641
machine cpu 2 6 209 wind 2 14 6574
MindCave2 2 39 125 wine-quality-red 6 11 1599
new-thyroid 3 5 215 wine 3 13 178
newton hema 2 3 140 yeast 10 8 1484

from the OpenML repository [33] (see Table 3 for a description).
The available portfolio of candidate algorithms to be used are those
65 different classifiers we describe in section 4.2. These approaches
are:

• Random selection (Random): The selection of the algorithms to
evaluate against the different datasets is made at random. The
same shuffle of classifiers is applied over all the datasets. We per-
form 100 repetitions and average the results.

• Reputational selection (Reputation). We apply all the models fol-
lowing the order given by the ranking, from best to worst. First, we
use an extra set of 10 datasets (different from the above 50) from
which obtain an algorithm ranking order. This ranking is based
on the evaluation accuracy for the set of 65 machine learning al-
gorithms, using a 70-30% splitting criterion for each dataset and
averaging the results.

• Behavioural Family Diversity (BF-Diversity): Using the previ-
ous order of models, we add diversity in the selection procedure
by grouping the algorithms by their family. The algorithms are
thus selected by their ranking as well as their family: if the model
to be used (according to the ranking provided) belongs to a family
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Figure 4: Illustrative selection of 6 datasets (from those 50 used in the validation procedure) showing the application of our algorithm selection
approaches. Each plot shows the accuracy obtained against the number of models tested. Semi-transparent lines represent 100 repetitions for
those approaches with random components. AUC values (scaled between 0 and 1) for each approach are provided in the legend.

already used (in previous selections), we jump to the next model
in the ranking. If all the families have been used, we start over
again using the ranking but this time selecting the next best algo-
rithm. This is repeated until all the algorithms have been tried and
evaluated.

• Behavioural Family Reputation (BF-Reputation): This is simi-
lar to the previous approach, but we only use the order provided
by the ranking to sort our families. We then select the learning al-
gorithms at random: one by family and starting over again when
all families have been tried, without replacements. We average the
results over 100 repetitions.

• Stereotyped Family Diversity (SF-Diversity). This is similar to
the BF-Diversity approach, but instead of using our taxonomy of
families, we use the set of stereotyped families defined in [12],
the most comprehensive empirical evaluation of machine learn-
ing algorithms up until now. The classifiers used in this study
are grouped by similarity in 17 families (discriminant analy-
sis, Bayesian, neural networks, support vector machines, decision
trees, rule-based classifiers, boosting, bagging, stacking, random
forests and other ensembles, generalised linear models, nearest
neighbours, partial least squares and principal component regres-
sion, logistic and multinomial regression, multiple adaptive re-
gression splines and other methods)8.

The idea is to follow the usual trial and error procedure checking the
accuracy of an ordered selection of algorithms. In this regard, Figure
4 shows the performance for each of the above approaches using 6
illustrative datasets (picked out from the 50 datasets)12. While the x-
axis shows the number of algorithms used (1 to 65), the y-axis shows
the maximum accuracy among the set of techniques already used
in each point in the x-axis. In order to analyse the performance be-
tween the different approaches, we consider the area under the curve
of the maximum reached accuracy. The results can be found in Table

12 The rest of experiments and plots can be found in https://github.com/
rfabra/model family taxonomy

Table 4: Pairwise comparison (row Wins - Ties - Loses against col-
umn) between selection approaches based on family diversity (BF-
Diversity and BF-Reputation), and baselines using the similarity-
based grouping in [12] (SF-Diversity), as well as Reputation and
Random selection procedures. Results split by the size of the datasets
used. Wins in bold when statistically significant using the two-sided
binomial test at 95% confidence level (with ties counted as half).

Large datasets (W-T-L)

BF-Reputation SF-Diversity Reputation Random

BF-Diversity 16 - 0 - 1 9 - 5 - 3 13 - 3 - 1 16 - 0 - 1
BF-Reputation 8 - 2 - 7 11 - 0 - 6 15 - 0 - 2

SF-Diversity 9 - 3 - 5 16 - 0 - 1
Reputation 16 - 0 - 1

Small datasets (W-T-L)

BF-Reputation SF-Diversity Reputation Random

BF-Diversity 24 - 1 - 8 19 - 6 - 8 24 - 3 - 6 27 - 0 - 6
BF-Reputation 14 - 2 - 17 18 - 2 - 13 26 - 0 - 7

SF-Diversity 18 - 9 - 6 27 - 0 - 6
Reputation 23 - 0 - 10

4, where we perform a pairwise comparison (wins, ties and losses)
between all the selection approaches implemented. We can see that
reputational-based approaches (e.g., the reputation/performance they
have for other problems) are worse than selecting techniques based
on family diversity. We also show that, when diversity is required, our
taxonomy of families based on (dis)agreement in behaviour is also
better than those groupings of algorithms made according to stereo-
types (in terms of implementation). The results are split according to
the size of the 50 datasets addressed: large/small dataesets are those
containing more/less examples than the average over all the datasets.
We see clear differences among these two groups, where the larger
is the size of the datasets, the more pronounced are the benefits of
using our approach based on family diversity.

6 CONCLUSIONS

In this paper we proposed a method to identify ML families. The
methodology was based on comparing the behaviour of 65 different
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learning models (including hyperparameter variations), performing
a pairwise comparison (based on Kappa) and averaging the results
obtained for 75 datasets. We applied a hierarchical clustering so that
the models that presented similar behaviour fell in the same cluster,
which we considered a model family. This method allowed to objec-
tively quantify how different two models (or model families) are.

To compare the models between them, we generated artificial
datasets designed to cover the regions of the feature space with sparse
(or no) training data. With this we consider how the models extrapo-
late their boundaries for regions unseen in the training phase. This
strategy revealed some interesting observations. For instance, the
dendrogram obtained for the multiclass case (Figure 2, right) shows
that some of the SVM with different kernels (linear and RBF kernels)
are grouped into the same family, which may look counterintuitive.
The results also show that the final families differ between multiclass
and binary problems. This may happen because the more classes a
problem has, the greater the differences will be in their extrapolation
of the boundaries to the areas with few or no training data.

In this work we generated different models from a wide range of
learning techniques and hyperparameters. However, it is also possi-
ble to apply our method for a single learning technique under a wide
range of parameter variations (for instance, different architectures or
hyperparameters of neural networks) to establish the similarity in be-
haviour of the different combinations. The same procedure could be
applied when varying different preprocessing options, for instance,
we could analyse the models and see the differences in behaviour
when applying different techniques to deal with missing values. Prac-
titioners can also employ our families in different areas such as in
meta-learning settings to establish similarities between the different
models that a meta-learner may recommend, or in adversarial learn-
ing scenarios in order to use common defense techniques in models
with similar behaviour [10, 9]. Finally, as future work we would like
to apply a similar approach to regression techniques.

Overall, this paper vindicates the use of algorithm families as a
useful construct in the arrangement of experiments, the analysis of
classical and new algorithms, its use in metalerning, AutoML and
model combination, and other areas of machine learning. To encour-
age this use we have presented a practical taxonomy for classifica-
tion. More importantly, the methodology can be used for deriving or
refining new taxonomies as new techniques and tasks are considered.
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