
Classifying the Classifier: Dissecting the

Gabriel Eilertsen�, Daniel Jönsson�, Timo Ropinski�, Jonas Unger�, and Anders Ynnerman�

Abstract. This paper presents an empirical study on the weights
of neural networks, where we interpret each model as a point in a
high-dimensional space – the neural weight space. To explore the
complex structure of this space, we sample from a diverse selection
of training variations (dataset, optimization procedure, architecture,
etc.) of neural network classifiers, and train a large number of mod-
els to represent the weight space. Then, we use a machine learning
approach for analyzing and extracting information from this space.
Most centrally, we train a number of novel deep meta-classifiers with
the objective of classifying different properties of the training setup
by identifying their footprints in the weight space. Thus, the meta-
classifiers probe for patterns induced by hyper-parameters, so that we
can quantify how much, where, and when these are encoded through
the optimization process. This provides a novel and complementary
view for explainable AI, and we show how meta-classifiers can reveal
a great deal of information about the training setup and optimization,
by only considering a small subset of randomly selected consecutive
weights. To promote further research on the weight space, we release
the neural weight space (NWS) dataset – a collection of 320K weight
snapshots from 16K individually trained deep neural networks.

1 Introduction

The complex and non-linear nature of deep neural networks (DNNs)
makes it difficult to understand how they operate, what features
are used to form decisions, and how different selections of hyper-
parameters influence the final optimized weights. This has led to the
development of methods in explainable AI (XAI) for visualizing and
understanding neural networks, and in particular for convolutional
neural networks (CNNs). Thus, many methods are focused on the in-
put image space, for example by deriving images that maximize class
probability or individual neuron activations [42, 48]. There are also
methods which directly investigate neuron statistics of different lay-
ers [29], or use layer activations for information retrieval [26, 1, 37].
However, these methods primarily focus on local properties, such as
individual neurons and layers, and an in-depth analysis of the full set
of model weights and the weight space statistics has largely been left
unexplored.

In this paper, we present a dissection and exploration of the neu-
ral weight space (NWS) – the space spanned by the weights of a
large number of trained neural networks. We represent the space by
training a total of 16K CNNs, where the training setup is randomly
sampled from a diverse set of hyper-parameter combinations. The
performance of the trained models alone can give valuable informa-
tion when related to the training setups, and suggest optimal combi-

�Department of Science and Technology, Linköping University, Sweden
�Institute of Media Informatics, Ulm University, Germany

nations of hyper-parameters. However, given its complexity, it is dif-
ficult to directly reason about the sampled neural weight space, e.g.
in terms of Euclidean or other distance measures – there is a large
number of symmetries in this space, and many possible permutations
represent models from the same equivalence class. To address this
challenge, we use a machine learning approach for discovering pat-
terns in the weight space, by utilizing a set of meta-classifiers. These
are trained with the objective of predicting the hyper-parameters used
in optimization. Since each sample in the hyper-parameter space cor-
responds to points (models) in the weight space, the meta-classifiers
seek to learn the inverse mapping from weights to hyper-parameters.
This gives us a tool to directly reason about hyper-parameters in the
weight space. To enable comparison between heterogeneous archi-
tectures and to probe for local information, we introduce the con-
cept of local meta-classifiers operating on only small subsets of the
weights in a model. The accuracy of a local meta-classifier enables
us to quantify where differences due to hyper-parameter selection are
encoded within a model.

We demonstrate how we can find detailed information on how op-
timization shapes the weights of neural networks. For example, we
can quantify how the particular dataset used for training influences
the convolutional layers stronger than the deepest layers, and how
initialization is the most distinguishing characteristic of the weight
space. We also see how weights closer to the input and output of
a network faster diverge from the starting point as compared to the
“more hidden” weights. Moreover, we can measure how properties
in earlier layers, e.g. the filter size of convolutional layers, influence
the weights in deeper layers. It is also possible to pinpoint how indi-
vidual features of the weights influence a meta-classifier, e.g. how a
majority of the differences imposed on the weight space by the op-
timizer are located in the bias weights of the convolutional layers.
All such findings could aid in understanding DNNs and help future
research on neural network optimization. Also, since we show that
a large amount of information about the training setup could be re-
vealed by meta-classifiers, the techniques are important in privacy
related problem formulations, providing a tool for leaking informa-
tion on a black-box model without any knowledge of its architecture.

In summary, we present the following set of contributions:

• We use the neural weight space as a general setting for explor-
ing properties of neural networks, by representing it using a large
number of trained CNNs.

• We release the neural weight space (NWS) dataset, comprising
320K weight snapshots from 16K individually trained nets, to-
gether with scripts for training more samples and for training
meta-classifiers1.

1https://github.com/gabrieleilertsen/nws

Weight Space of Neural Networks

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200209

1119

• We introduce the concept of neural network meta-classification
for performing a dissection of the weight space, quantifying how
much, where and when the training hyper-parameters are encoded
in the trained weights.

• We demonstrate how a large amount of information about the
training setup of a network can be revealed by only considering
a small subset of consecutive weights, and how hyper-parameters
can be practically compared across different architectures.

We see our study as a first step towards understanding and visual-
izing neural networks from a direct inspection of the weight space.
This opens up new possibilities in XAI, for understanding and ex-
plaining learning in neural networks in a way that has previously
not been explored. Also, there are many other potential applications
of the sampled weight space, such as learning-based initialization
and regularization, learning measures for estimating distances be-
tween networks, learning to prevent privacy leakage of the train-
ing setup, learning model compression and pruning, learning-based
hyper-parameter selection, and many more.

Throughout the paper we use the term weights denoted θ to de-
scribe the trainable parameters of neural nets (including bias and
batch normalization parameters), and the term hyper-parameters de-
noted φ to describe the non-trainable parameters. For full generality
we also include dataset choice and architectural specifications under
the term hyper-parameter.

2 Related work

Visualization and analysis: A significant body of work has been di-
rected towards explainable AI (XAI) in deep learning, for visualiza-
tion and understanding of different aspects of neural networks [19],
e.g. using methods for neural feature visualization. These aim at esti-
mating the input images to CNNs that maximize the activation of cer-
tain channels or neurons [42, 48, 31, 46, 40], providing information
on what are the salient features picked up by a CNN. Another inter-
esting viewpoint is how information is structured by neural networks.
It is, for example, possible to define interpretability of the learned
representations, with individual units corresponding to unique and
interpretative concepts [50, 4, 49]. It has also been demonstrated how
neural networks learn hierarchical representations [6].

Many methods rely on comparing and embedding DNN layer ac-
tivations. For example, activations generated by multiple images can
be concatenated to represent a single trained model [9], and activa-
tions of a large number of images can be visualized using dimension-
ality reduction [38]. The activations can also be used to regress the
training objective, measuring the level of abstraction and separation
of different layers [1], and for measuring similarity between differ-
ent trainings and layers [26, 37], e.g. to show how different layers of
CNNs converge. In contrast to these methods we operate directly on
the weights, and we explore a very large number of trainings from
heterogeneous architectures.

There are also previous methods which consider the model
weights, e.g. in order to visualize the evolution of weights during
training [12, 13, 27, 30, 2, 11]. Another common objective is to
monitor the statistics of the weights during training, e.g. using tools
such as Tensorboard. While these consider one or few models, our
goal is to compare a large number of different models and learn how
optimization encodes the properties of the training setup within the
model weights.

By training a very large number of fully connected networks, No-
vak et al. study how the sensitivity to model input correlates with

generalization performance [36]. For different combinations of base-
training and fine-tuning objectives, Zamir et al. quantify the transfer-
learning capability between tasks [47]. Yosinski et al. explore differ-
ent configurations of pre-training and fine-tuning to evaluate and pre-
dict performance [45]. However, while monitoring the accuracy of
many trainings is conceptually similar to our analysis in Section 4.2,
our main focus is to search for information in the weights of all the
trained models (Section 5).

Privacy and security: Related to the meta-classification described
in Section 5 are the previous works aiming at detecting privacy leak-
age in machine learning models. Many such methods focus on mem-
ber inference attacks, attempting to estimate if a sample was in the
training data of a trained model, or generating plausible estimates of
training samples [10, 18, 34]. Ateniese et al. train a set of models us-
ing different training data statistics [3]. The learned features are used
to train a meta-classifier to classify the characteristics of the original
training data. The meta-classifier is then used to infer properties of
the non-disclosed training data of a targeted model. The method was
tested on Hidden Markov Models and Support Vector Machines. A
similar concept was used by Shokri et al. for training an attack model
on output activations in order to determine whether a certain record
is used as part of the model’s training dataset [41]. Our dissection us-
ing meta-classifiers can reveal information about training setup of an
unknown DNN, provided that the trained weights are available; po-
tentially with better accuracy than previous methods since we learn
from a very large set of trained models.

Meta-learning: There are many examples of methods for learning
optimal architectures and hyper-parameters [21, 32, 5, 51, 39, 52,
28]. However, these methods are mostly focused on evolutionary
strategies to search for the optimal network design. In contrast, we
are interested in comparing different hyper-parameters and architec-
tural choices, not only to gain knowledge on advantageous setups, but
primarily to explore how training setup affects the optimized weights
of neural networks. To our knowledge there has not been any pre-
vious large-scale samplings of the weight space for the purpose of
learning-based understanding of deep learning.

3 Weight space representation

We consider all weights of a model as being represented by a sin-
gle point in the high-dimensional neural weight space (NWS). To
create such a representation from the mixture of convolutional fil-
ters, biases, and weight matrices of fully-connected (FC) layers, we
use a vectorization operation. The vectorization is performed layer
by layer, followed by concatenation. For the ith convolutional layer,
all the filter weights hi,j from filters j = 1, ...,K are concatenated,
followed by bias weights bi,

θi = θi−1 � vec(hi,1) � ... � vec(hi,K) � bi, (1)

where vec(·) denotes vectorization and v1 � v2 concatenates vectors
v1 and v2. For the FC layers, the weight matrices Wi are added
using the same scheme,

θi = θi−1 � vec(Wi) � bi. (2)

Starting with the empty set θ0 = ∅, and repeating the vectoriza-
tion operations for all L layers, we arrive at the final weight vector
θ = θL. For simplicity, we have not included indices over the 2D
convolutional filters h and weight matrices W in the notation. More-
over, additional learnable weights, e.g. batch normalization parame-
ters, can simply be added after the biases of each layer. Although

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks1120

Table 1: Hyper-parameter collection used for random selection of
training setup. The convolutional layer width specifies the number
of channels of the last convolutional layer, while the FC layer width
is the size of the first FC layer. All dataset samples are resized to
32×32×3 pixels. Note that we use the term hyper-parameters to also
describe more fundamental choices, such as dataset and architecture.
The circled options are used to train the fixed architecture models
Cfixed in Table 2, where the remaining hyper-parameters are ran-
domly selected.

Parameter Values

Dataset MNIST [25], CIFAR-10 [24], SVHN [35],
STL-10 [8], Fashion-MNIST [44]

Learning rate 0.0002− 0.005

Batch size 32, 64, 128, 256

Augmentation Off, On
Optimizer ADAM [23], RMSProp [17], Momentum

SGD
Activation ReLU [33], ELU [7], Sigmoid, TanH
Initialization Constant, Random normal, Glorot uniform,

Glorot normal [14]

Conv. filter size 3, 5 , 7

of conv. layers 3 , 4, 5

of FC layer 3 , 4, 5

Conv. layer width 16, 32 , 48

FC layer width 64, 128 , 192

the vectorization may rearrange the 2D spatial information e.g. in
convolutional filters, there is still spatial structure in the 1D vector.
We recognize that there is ample room for an improved NWS repre-
sentation, e.g. accounting for weight space permutations and the 2D
nature of filters. However, we focus on starting the exploration of the
weight space with a representation that is as simple as possible, and
from the results in Section 5 we will see that it is possible to extract
a great deal of useful information from the vectorized weights.

4 The NWS dataset

In this section, we describe the sampling of the NWS dataset. Then,
we show how we can correlate training setup with model perfor-
mance by regressing the test accuracy from hyper-parameters.

4.1 Sampling

To generate points in the NWS, we train CNNs by sampling a range
of different hyper-parameters, as specified in Table 1. For each train-
ing, the hyper-parameters are selected randomly, similarly to previ-
ous techniques for hyper-parameter search [5]. It is difficult to esti-
mate the number of SGD steps needed for optimization, since this
varies with most of the hyper-parameters. Instead, we rely on early
stopping to define convergence. For each training we export weights
at 20 uniformly sampled points along the optimization trajectory. In
order to train and manage the large number of models, we use rela-
tively small CNNs automatically generated based on the architectural
hyper-parameters shown in Table 1. The architectures are defined by
6-10 layers, and in total between ∼20K and ∼390K weights each.
They follow a standard design, with a number of convolutional lay-
ers and 3 max-pooling layers, followed by a set of fully-connected

Table 2: The neural weight space (NWS) dataset used throughout
the paper. We refer to the text and the supplementary material for a
description of the capturing process.

Name Description Quantity

Cmain Random hyper-parameters
(including architecture)

13K (10K/3K train/test)

Cfixed Random hyper-parameters
(fixed architecture)

3K (2K/1K train/test)

(FC) layers. The loss is the same for all trainings, specified by cross-
entropy. For regularization, all models use dropout [43] with 50%
keep probability after each fully connected layer. Moreover, we use
batch normalization [22] for all trainings and layers. Without the
normalization, many of the more difficult hyper-parameter settings
do not converge (the supplementary material contains a discussion
around this).

We conduct 13K separate trainings with random hyper-
parameters, and 3K trainings with fixed architecture for the purpose
of global meta-classification (Section 5.2). Table 2 lists the resulting
NWS datasets used throughout the paper. For detailed explanations
of the training setup, and extensive training statistics (convergence,
distribution of test accuracy, training time, model size, etc.), we refer
to the supplementary material.

4.2 Regressing the test accuracy

To gain an understanding on the influence of the different hyper-
parameters in Table 1, we regress the test accuracy of the sampled
set of networks. Given the hyper-parameters φ, we model the test
accuracy with a linear relationship,

â(φ) = τ0 +
∑

o∈ΩO

τoφo +
∑

c∈ΩC

Kc∑

i=1

τc,i[φc = i], (3)

where τ are the model coefficients and Kc is the number of cat-
egories for hyper-parameter φc. ΩO is the set of ordered hyper-
parameters, and ΩC is the set of categorical hyper-parameters. The
categorical hyper-parameters are split into one binary for each cate-
gory, as denoted by the Iverson bracket, [φc = i]. We fit one linear
model for each dataset, which means that we have in total 10 cate-
gorical and 1 ordered (learning rate) parameters for each model (see
Table 1). Although some of the categorical parameters actually are
ordered (batch size, filter size, etc.), we split these to fit one descrip-
tive correlation for each of the categories. In total we have 32 cate-
gorical, 1 ordered and 1 constant coefficient, so that the size of the
set {τ0, τo, τc,i} is 34.

The distribution of test accuracies on a particular dataset shows
two modes; one with successful trainings and one with models that
do not learn well. This makes it difficult to fit a linear model to the
test accuracy. Instead, we focus only on the mode of models that have
learned something useful, by rejecting all trainings with test accuracy
lower than a certain threshold in-between the two modes. This sam-
pling reduces the set Cmain from 13K to around 10.5K. Further, for
each dataset, we normalize the test accuracy to have zero mean and
unit variance. Thus, a positive model coefficient explains a positive
effect on the test accuracy and vice versa, and the magnitudes are
similar between different datasets. The results of fitting the model to
one dataset, CIFAR-10, is displayed in Figure 1.

On average, the single most influential parameter is the initializa-
tion, followed by activation function and optimizer, and it is clear

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks 1121

L-
ra

te

0.06

Ba
tc

h
si

ze

-0.01*

0.04*

-0.03*

-0.06

Au
gm

en
ta

tio
n

-0.02*

-0.01*
O

pt
im

iz
er

0.17

0.09

-0.42
Ac

tiv
at

io
n

0.14

0.25

-0.09

-0.41

In
iti

al
iz

at
io

n

-0.30

-0.87

0.45

0.42

Fi
lte

r s
iz

e

0.02*

0.01*

-0.07

D
ep

th
 c

on
v.

-0.04

-0.02*

0.02*

D
ep

th
 F

C

0.37

0.08

-0.57

W
id

th
 C

on
v.

-0.37

0.10

0.25

W
id

th
 F

C

-0.35

0.10

0.20

ADAM

RMSprop

Moment.

ReLU

ELU

Sigmoid

TanH

Const.

Rand.

Glorot U

Glorot N

Off

On

32

64

128

256

3

5

7

3

4

5

3

4

5

16

32

48

64

128

192

Figure 1: Regression of test accuracy from hyper-parameters on
CIFAR-10. Columns represent different hyper-parameters, and the
rows categories, as listed in Table 1. * denotes a p-value that is larger
than 5%. For results from all datasets, we refer to the supplementary
material.

how large impact modern techniques have had on optimization (such
as ADAM optimizer, ReLU/ELU activation and Glorot initializa-
tion). For architecture specific parameters, a general trend is to pro-
mote wider models. However, the number of FC layers has an over-
all negative correlation. This can be explained by many layers being
more difficult to optimize, so that performance suffers when less ef-
fective optimizer and initialization is used. Finally, we recognize that
a linear model is only explaining some of the correlations, but it helps
in forming an overall understanding of the hyper-parameters.

5 Meta-classification

The objective of a meta-classifier is to learn the mapping g : θ → φc,
i.e. to estimate a specific hyper-parameter φc from a weight vector θ.
The performance of the g(θ) prediction of φc gives us a notion for
comparing different θ in terms of hyper-parameters. We first give a
motivation and definition, followed by examples of global and local
meta-classification using meta-classifiers of different complexities.

5.1 Motivation and definition

For a model f(θ, x), trained using hyper-parameters φ, what is spe-
cific about the learned weights θ comparing different φ? For exam-
ple, given two sets of weights Θa = {θa,1, ..., θa,N} and Θb =
{θb,1, ..., θb,M}, trained using different hyper-parameters φa and φb,
respectively, we expect the weights to converge to different locations
in the weight space. However, it is difficult to relate to or reason
about these locations based on direct inspection of the weights. For
example, the Euclidean inter-distance ||θa,i − θb,j || may very well
be smaller than the intra-distance ||θa,i − θa,j ||, due to the compli-
cated and permutable structure of the weight space. In order to find
the decision boundary between Θa and Θb, we can instead learn it
from a large number of samples N and M , using a model g(θ). The
model can thus be used to determine in which region (related to this
decision boundary) a new weight sample θ is located. This gives us
a notion of quantifying how much of φa or φb is encoded in θ.

Given a CNN classifier f(θ, x), parameterized by the trainable
weights θ, and operating on image samples x, a global meta-classifier
is described by gc(τ, θ), where θ are static samples of the weight
space and τ is the model parameterization. The objective of gc is to
perform classification of the hyper-parameters φc as shown in Ta-
ble 1, to determine e.g. which dataset was used in training, if aug-
mentation was performed, or which optimizer was used. gc takes the
vectorized weights θ as input (see Section 3).

Dataset Batch size Aug. Optimizer Activation Init.
0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

SVM (lin., 16)
SVM (lin., 480)
SVM (RBF, 16)
SVM (RBF, 480)
DMC
Random guess

Figure 2: Global meta-classification performance for different hyper-
parameters on the Cfixed dataset (Table 1). The numbers of the SVM
classifiers specify the number of features used. Performance of ran-
dom guessing is included for reference. The errorbars show standard
deviations over 10 independent training rounds.

Models: We consider feature-based meta-classification, as well as
deep models applied on the raw weight input. The features are speci-
fied from 8 different statistical measures of a weight vector: mean,
variance, skewness (third standardized moment), and five-number
summary (1, 25, 50, 75 and 99 percentiles). The measures are ap-
plied both directly on the weights θ and on weight gradients ∇θ, for
a total of 16 features. The features are used for training support vec-
tor machines (SVMs), testing both linear and radial basis function
(RBF) kernels. These models provide simple linear and non-linear
baselines for comparison with a more advanced deep meta-classifier
(DMC). We also tried performing logistic regression on the features,
but performance was not better than random guessing.

A DMC is designed as a 1D CNN in order to handle the vector-
ized weights. Using convolutions on the vectorized weights can be
motivated from three different perspectives: 1) there is spatial struc-
ture in the weight vector which we can explore, especially for the
convolutional layers, 2) for local DMCs we are interested in spatial
invariance, so that any subset of neighboring weights can be consid-
ered, and 3) for global DMCs we have a large input weight vector
from which we need to extract a low-dimensional feature representa-
tion before using fully connected components.

Data filtering: Since the objective of a meta-classifier is to explore
how hyper-parameters are encoded through the optimization process,
we are only interested in models of the weight space that have learned
something useful. Therefore, we discard trainings that have not con-
verged, where convergence is defined as specified in Section 4.2.

5.2 Global meta-classification

A global meta-classifier considers all trainable weights from each
CNN. We train on the set Cfixed in Table 2, where each θ is com-
posed of 92,868 weights. The DMC model consists of 15 1D convo-
lutional layers followed by 6 FC layers. For the SVMs, we consider
two methods for extracting the statistical measures mentioned in Sec-
tion 5.1 – one is to evaluate statistics over the complete set of weights,
and the other is to do this layer-by-layer. The layer-wise method ex-
tracts separate statistics for multiplicative weights, bias weights, and
for each of the batch normalization weights in a layer, yielding a total
of 480 training features. We refer to the supplementary material for
details on the models and training.

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks1122

BN, var
BN, mean
BN, gamma
BN, beta
Bias
Mult

0

0.5

1

1.5

N
or

m

Optimizer meta-classification

0

0.5

1

1.5

2

2.5

N
or

m

Layer 1 (conv.) Layer 2 (conv.) Layer 3 (conv.) Layer 4 (FC) Layer 5 (FC)

Dataset meta-classification

Figure 3: Estimated impact of individual features of linear SVMs for hyper-parameter classification on the set Cfixed of the NWS dataset,
classifying dataset (top) and optimizer (bottom). Each of the different types of weights of a layer, on the x-axis, are described by 16 features.
Horizontal bars denote mean over a type of weights. while error bars show standard deviations over 10 separate training runs. Mult represent
filters for convolutional layers and weight matrices for fully-connected (FC) layers. BN denotes the parameters used for batch normalization.

Figure 2 shows the performance of global meta-classifiers trained
on 6 different hyper-parameters. Considering the diversity of the
training data, all of the hyper-parameters except for batch size can
be predicted with fairly high accuracy using a DMC. This shows that
there are many features in the weight space which are characteristic
of different hyper-parameters. However, the most surprising results
are achieved with a linear SVM and layer-wise weight statistics, with
performance not very far from the deep classifiers, and especially for
the dataset, optimizer and activation hyper-parameters. Apparently,
using separate statistics for each layer and type of weight is enough to
give a good estimation on which hyper-parameter was used in train-
ing.

By inspecting the decision boundaries of the linear SVMs, we
can get a sense for which features that best explain a certain hyper-
parameter, as illustrated in Figure 3. Given the coefficients τc of a
one-versus-rest SVM, it describes a vector that is orthogonal to the
hyper-plane in feature space which separates the class c from the rest
of the classes. The vector is oriented along the feature axes which
are most useful for separating the classes. Taking the norm of τc over
the classes c, we can get an indication on which features were most
important for separating the classes. The most indicative features for
determining the dataset are the 1 and 99 percentiles of the gradient
of filter weights in the first convolutional layer. As these filters are
responsible for extracting simple features, and the gradient of the fil-
ters are related to the strength of edge extraction, there is a close
link to the statistics of the training images, which explains the good
performance of the linear SVM. When evaluating the statistics over
all weights, it is not possible to have this direct connection to train-
ing data, and performance suffers. For the optimizer meta-classifier,
on the other hand, most information comes from the statistics of bias
weights in the convolutional layers, and in particular from percentiles
of θ and ∇θ. For activation function meta-classification, the running
mean stored by batch normalization in the FC layers contribute most
to the linear SVM decisions. For initialization it is more difficult to
find isolated types of weights that contribute most, and looking at the
SVMs trained on 16 features over the complete θ we can see how
initialization is better described by statistics computed globally over
the weights.

5.3 Local meta-classification

A local meta-classifier is the model gc(τ, θ[a:b]), where θ[a:b] is the
subset of weights between indices a and b. SVMs use features ex-
tracted from θ[a:b], while a local DMC is trained directly on θ[a:b]. A
local DMC consists of 12 1D convolutional layers followed by 6 FC
layers. The training data is composed of the set Cmain in Table 2.
We use a subset size of S = 5000 weights (on average around 5%
of a weight vector), such that b = a + S − 1. DMCs are trained
by randomly picking a for each mini-batch, while SVMs use a fixed
number of 10 randomly selected subsets of each θ.

Figure 4 shows the performance of local meta-classifiers gc,
trained on 11 different hyper-parameters φc from Table 1. For each
hyper-parameter, there are three individually trained DMCs based
on: subsets of all weights in θ, weights from only the convolu-
tional layers, and only FC weights. In contrast to the global meta-
classification it is not possible for an SVM to pinpoint statistics
of one particular layer, which makes linear SVMs perform poorly.
The RBF kernel improves performance, but is mostly far from the
DMC accuracies. Still, the results are consistently better than random
guessing for most hyper-parameters, so there is partial information
contained in the statistical measures. The best SVM performance is
achieved for the initialization hyper-parameter. This makes intuitive
sense, as the differences are mainly described by simpler statistics of
the weights.

Considering that the local DMCs learn features that are invariant
to the architecture, and use only a fraction of the weights, they per-
form very well compared to global DMCs. This is partly due to the
larger training set, but also confirms how much information is stored
locally in the vector θ. By comparing DMCs trained on only convolu-
tional or FC weights, we can analyze where most of the features of a
certain hyper-parameter are stored, e.g. the dataset footprint is more
pronounced in the convolutional layers. For the architectural hyper-
parameters, the filter size can be predicted to some extent from only
FC weights, which points towards how settings in the convolutional
layers affect the FC weights. Compared to the global DMCs, initial-
ization is a more profound local property as compared to e.g. dataset.

Let θa,j denote the subset of S weights starting at position a from

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks 1123

Dataset Batch size Aug. Optimizer Activation Init. Filter size Depth conv. Depth FC Width conv. Width FC
0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

SVM (linear)
SVM (RBF)
DMC (all)
DMC (conv)
DMC (FC)
Random guess

Figure 4: Local meta-classification performance for different hyper-parameters on the Cmain dataset (Table 2), when using subsets of 5K
weights. The SVM classifiers use 16 features from each weight subset. Local DMCs have been separately trained by considering subsets
of all/convolutional/FC weights. Performance of random guessing is included for reference. The errorbars show standard deviations over 10
independent training rounds.

optimization step j. The trained model gc(τ, θa,j) can then probe
for information across different depths of a model, and track how in-
formation evolve during training. Sampling at different a and j, the
result is a 2D performance map, see Figure 5, where (a, j) = (0, 0)
is in the upper left corner of the map. For the DMC trained to de-
tect the optimizer used, the performance is approximately uniform
across the weights except for a high peak close to the first layers.
This roughly agrees with the feature importance of the linear SVM
in Figure 3, where information about optimizer can be encoded in
the bias weights of the early convolutional layers. Inspecting how the
DMC performance for initialization decreases faster in the first layers
(Figure 5c), we can see how learning faster diverges from the initial-
ization point in the convolutional layers, which agrees with previous
studies on how representations are learned [37]. However, we can
also see the same tendency in the very last layers. That is, not only
convolutional layers quickly diverge from the starting point to adapt
to image content, but the last layers also do a similar thing when
adapting to the output labels. However, looking at the minimum per-
formance it is still easy to find patterns left from the initialization
(see Figure 4), and this hyper-parameter dominates the weight space
locally. Connecting to the results in Section 4.2, initialization strat-
egy was also the hyper-parameter of the NWS dataset that showed
highest correlation with performance.

6 Discussion

Looking at the results of the meta-classifications, SVMs can perform
reasonably well when considering per-layer statistics on the whole
set of weights. However, for extracting information from a random
subset of weights, the DMCs are clearly superior, pointing to more
complex patterns than the statistics used by the SVMs. It is interest-
ing how much information a set of DMCs can extract from a very
small subset of the weights, demonstrating how an abundance of in-
formation is locally encoded in the weight space. This is interesting
from the viewpoint of privacy leakage, but the information can also
be used for gaining valuable insight into how optimization shapes
the weights of neural networks. This provides a new perspective for
XAI, where we see our approach as a first step towards understand-
ing neural networks from a direct inspection of the weight space.
For example, in understanding and refining optimization algorithms,
we may ask what are the differences in the learned weights caused
by different optimizers? Or how does different activation functions
affect the weights? Using a meta-classifier we can pinpoint how a
majority of the differences caused by optimizer are due to different

distributions in bias weights of the convolutional layers. The activa-
tion function used when training with batch normalization gives dif-
ferences in the moving average used for batch normalization of the
FC layers. Another interesting observation is the effect of the initial-
ization in Figure 5c and 5f, which points to how convolutional and
final layers diverge faster from the initialization point. A potential
implication is to motivate studying what is referred to as differential
learning rates by the Fastai library [20]. This has been used for trans-
fer learning, gradually increasing learning rate for deeper layers, but
there could be reason to investigate the technique in a wider context,
and to look at tuning learning rate of the last layers differently.

6.1 Limitations and future work

We have only scratched the surface of possible explorations in the
neural weight space. There is a wealth of settings to be explored
using meta-classification, where different combinations of hyper-
parameters could reveal the structures of how DNNs learn. So far,
we have only considered small vanilla CNNs. Larger and more di-
verse architectures and training regimes could be considered, e.g.
ResNets [16], GANs [15], RNNs, dilated and strided convolutions,
as well as different input resolution, loss functions, and tasks.

The performance of DMCs can most likely be improved, e.g. by
refining the representation of weights in Section 3. And by aggregat-
ing information from the full weight vector using local DMCs, there
is potential to learn many things about a black-box DNN with ac-
cess only to the trained weights. Also, we consider only the weight
space itself; a possible extension is to combine weights with layer
activations for certain data samples.

While XAI is one of the apparent applications of studying neural
networks weights in closer detail, there are many other important ap-
plications that would benefit from a large-scale analysis of the weight
space, e.g. model compression, model privacy, model pruning, and
distance metric learning. Another interesting direction would be to
learn weight-generation, e.g. by means of GANs or VAEs, which
could be used for initialization or ensemble learning. The model in
Section 4.2 was used to show correlations between hyper-parameters
and model performance. However, the topic of learning-based hyper-
parameter optimization [21, 32] could be explored in closer detail
using the weight space sampling. Also, meta-learning could aim to
include DMCs during training in order to steer optimization towards
good regions in the NWS.

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks1124

Figure 5: Meta-classification performance maps, visualizing the average test accuracy at different model depths and training progress steps. The
y-axis illustrate training progress, from initialization (0%) to converged model (100%), while x-axis is the position of the weight vector where
evaluation has been made, from the first weights of the convolutional layers (0%) to the last weights of the fully connected layers (100%). Since
the results are evaluated over models with different architectures, it is not possible to draw separating lines between individual layers. (c) and
(f) show how similar trends are found by DMCs and SVMs. Note the different colormap ranges (e.g. higher lowest accuracy for initialization).
For the results from all DMCs, and individual evaluation on convolutional and fully connected layers, we refer to the supplementary material.

7 Conclusions

This paper introduced the neural weight space (NWS) as a general
setting for dissection of trained neural networks. We presented a
dataset composed of 16K trained CNN classifiers, which we make
available for future research in explainable AI and meta-learning.
The dataset was studied both in terms of performance for differ-
ent hyper-parameter selections, but most importantly we used meta-
classifiers for reasoning about the weight space. We showed how a
significant amount of information on the training setup can be re-
vealed by only considering a small fraction of random consecutive
weights, pointing to the abundance of information locally encoded
in DNN weights. We studied this information to learn properties of
how optimization shapes the weights of neural networks. The results
indicate how much, where, and when the optimization encodes infor-
mation about the particular hyper-parameters in the weight space.

From the results, we pinpointed initialization as one of the most
fundamental local features of the space, followed by activation func-
tion and optimizer. Although the actual dataset used for training a
network also has a significant impact, the aforementioned proper-
ties are in general easier to distinguish, pointing to how optimization
techniques can have a more profound effect on the weights as com-
pared to the training data. We see many possible directions for future
work, e.g. focusing on meta-learning for improving optimization in
deep learning, for example using meta-classifiers during training in
order to steer optimization towards good regions in the weight space.

ACKNOWLEDGEMENTS

This project was supported by the Wallenberg Autonomous Systems
and Software Program (WASP) and the strategic research environ-
ment ELLIIT.

REFERENCES

[1] Guillaume Alain and Yoshua Bengio, ‘Understanding intermediate lay-
ers using linear classifier probes’, arXiv preprint arXiv:1610.01644,
(2016).

[2] Joseph Antognini and Jascha Sohl-Dickstein, ‘PCA of high dimen-
sional random walks with comparison to neural network training’, in
Advances in Neural Information Processing Systems (NeurIPS 2018),
(2018).

[3] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Vil-
lani, Domenico Vitali, and Giovanni Felici, ‘Hacking smart machines
with smarter ones: How to extract meaningful data from machine learn-
ing classifiers’, International Journal of Security and Networks (IJSN),
10(3), (2015).

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Tor-
ralba, ‘Network dissection: Quantifying interpretability of deep visual
representations’, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2017), (2017).

[5] James Bergstra and Yoshua Bengio, ‘Random search for hyper-
parameter optimization’, Journal of Machine Learning Research
(JMLR), 13, (2012).

[6] Alsallakh Bilal, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren,
‘Do convolutional neural networks learn class hierarchy?’, IEEE trans-
actions on visualization and computer graphics (TVCG), 24(1), (2018).

[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, ‘Fast
and accurate deep network learning by exponential linear units (elus)’,
arXiv preprint arXiv:1511.07289, (2015).

[8] Adam Coates, Andrew Ng, and Honglak Lee, ‘An analysis of single-
layer networks in unsupervised feature learning’, in International con-
ference on artificial intelligence and statistics (AISTATS 2011), (2011).

[9] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio, ‘Why does unsupervised pre-
training help deep learning?’, Journal of Machine Learning Research
(JMLR), 11, (2010).

[10] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart, ‘Model inver-
sion attacks that exploit confidence information and basic countermea-
sures’, in ACM SIGSAC Conference on Computer and Communications
Security (CCS 2015), (2015).

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks 1125

[11] Maxime Gabella, Nitya Afambo, Stefania Ebli, and Gard Spreemann,
‘Topology of learning in artificial neural networks’, arXiv preprint
arXiv:1902.08160, (2019).

[12] Marcus Gallagher and Tom Downs, ‘Visualization of learning in neural
networks using principal component analysis’, in International Confer-
ence on Computational Intelligence and Multimedia Applications (IC-
CIMA 1997), (1997).

[13] Marcus Gallagher and Tom Downs, ‘Weight space learning trajectory
visualization’, in Australian Conference on Neural Networks (ACNN
1997), (1997).

[14] Xavier Glorot and Yoshua Bengio, ‘Understanding the difficulty of
training deep feedforward neural networks’, in International confer-
ence on artificial intelligence and statistics (AISTATS 2010), (2010).

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘Generative adversarial nets’,
in International Conference on Neural Information Processing Systems
(NIPS 2014), (2014).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in IEEE conference on computer
vision and pattern recognition (CVPR 2016), (2016).

[17] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky, ‘Neural net-
works for machine learning lecture 6a overview of mini-batch gradient
descent’, (2012).

[18] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz, ‘Deep
models under the gan: information leakage from collaborative deep
learning’, in ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS 2017), (2017).

[19] Fred Matthew Hohman, Minsuk Kahng, Robert Pienta, and
Duen Horng Chau, ‘Visual analytics in deep learning: An interrogative
survey for the next frontiers’, IEEE transactions on visualization and
computer graphics (TVCG), (2018).

[20] Jeremy Howard et al. fastai. https://github.com/fastai/
fastai, 2018.

[21] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown, ‘Sequen-
tial model-based optimization for general algorithm configuration’,
in International Conference on Learning and Intelligent Optimization
(LION 2011), (2011).

[22] Sergey Ioffe and Christian Szegedy, ‘Batch normalization: Accelerating
deep network training by reducing internal covariate shift’, in Interna-
tional Conference on Machine Learning (ICML 2015), (2015).

[23] Diederik P Kingma and Jimmy Ba, ‘ADAM: A method for stochastic
optimization’, arXiv preprint arXiv:1412.6980, (2014).

[24] Alex Krizhevsky and Geoffrey Hinton, ‘Learning multiple layers of fea-
tures from tiny images’, Technical report, Citeseer, (2009).

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.,
‘Gradient-based learning applied to document recognition’, Proceed-
ings of the IEEE, 86(11), (1998).

[26] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft,
‘Convergent learning: Do different neural networks learn the same rep-
resentations?’, in NIPS Workshop on Feature Extraction: Modern Ques-
tions and Challenges, (2015).

[27] Zachary C Lipton, ‘Stuck in a what? adventures in weight space’, arXiv
preprint arXiv:1602.07320, (2016).

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang, ‘DARTS: Differ-
entiable architecture search’, in International Conference on Learning
Representations (ICLR 2019), (2019).

[29] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia
Liu, ‘Towards better analysis of deep convolutional neural networks’,
IEEE transactions on visualization and computer graphics (TVCG),
23(1), (2017).

[30] Eliana Lorch, ‘Visualizing deep network training trajectories with
PCA’, in ICML Workshop on Visualization for Deep Learning, (2016).

[31] Aravindh Mahendran and Andrea Vedaldi, ‘Understanding deep image
representations by inverting them’, in IEEE conference on computer
vision and pattern recognition (CVPR 2015), (2015).

[32] Jonas Mockus, Bayesian approach to global optimization: theory and
applications, volume 37, 2012.

[33] Vinod Nair and Geoffrey E Hinton, ‘Rectified linear units improve re-
stricted boltzmann machines’, in International conference on machine
learning (ICML 2010), (2010).

[34] Milad Nasr, Reza Shokri, and Amir Houmansadr, ‘Comprehensive pri-
vacy analysis of deep learning: Stand-alone and federated learning
under passive and active white-box inference attacks’, arXiv preprint
arXiv:1812.00910, (2018).

[35] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng, ‘Reading digits in natural images with unsupervised
feature learning’, in NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning, (2011).

[36] Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Penning-
ton, and Jascha Sohl-Dickstein, ‘Sensitivity and generalization in neural
networks: an empirical study’, in International Conference on Learning
Representations (ICLR 2018), (2018).

[37] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-
Dickstein, ‘Svcca: Singular vector canonical correlation analysis for
deep learning dynamics and interpretability’, in International Confer-
ence on Neural Information Processing Systems (NIPS 2017), (2017).

[38] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C
Telea, ‘Visualizing the hidden activity of artificial neural networks’,
IEEE transactions on visualization and computer graphics (TVCG),
23(1), (2017).

[39] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin, ‘Large-
scale evolution of image classifiers’, in International Conference on
Machine Learning (ICML 2017), (2017).

[40] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra, ‘Grad-cam: Visual
explanations from deep networks via gradient-based localization’, in
IEEE International Conference on Computer Vision (CVPR 2017),
(2017).

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov,
‘Membership inference attacks against machine learning models’, in
IEEE Symposium on Security and Privacy (SP). IEEE, (2017).

[42] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, ‘Deep in-
side convolutional networks: Visualising image classification models
and saliency maps’, arXiv preprint arXiv:1312.6034, (2013).

[43] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov, ‘Dropout: a simple way to prevent neural
networks from overfitting’, The Journal of Machine Learning Research
(JMLR), 15(1), (2014).

[44] Han Xiao, Kashif Rasul, and Roland Vollgraf, ‘Fashion-MNIST: a
novel image dataset for benchmarking machine learning algorithms’,
arXiv preprint arXiv:1708.07747, (2017).

[45] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, ‘How
transferable are features in deep neural networks?’, in International
Conference on Neural Information Processing Systems (NIPS 2014),
(2014).

[46] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lip-
son, ‘Understanding neural networks through deep visualization’, in
ICML Workshop on Deep Learning, (2015).

[47] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Ji-
tendra Malik, and Silvio Savarese, ‘Taskonomy: Disentangling task
transfer learning’, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2018), (2018).

[48] Matthew D Zeiler and Rob Fergus, ‘Visualizing and understanding
convolutional networks’, in European conference on computer vision
(ECCV 2014). Springer, (2014).

[49] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba, ‘Interpret-
ing deep visual representations via network dissection’, IEEE transac-
tions on pattern analysis and machine intelligence (TPAMI), (2018).

[50] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba, ‘Object detectors emerge in deep scene CNNs’, in Interna-
tional Conference on Learning Representations (ICLR 2015), (2015).

[51] Barret Zoph and Quoc V. Le, ‘Neural architecture search with rein-
forcement learning’, in International Conference on Learning Repre-
sentations (ICLR 2017), (2017).

[52] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le,
‘Learning transferable architectures for scalable image recognition’, in
IEEE conference on computer vision and pattern recognition (CVPR
2018), (2018).

G. Eilertsen et al. / Classifying the Classifier: Dissecting the Weight Space of Neural Networks1126

