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Abstract. Many machine learning problems require to learn to
permute a set of objects. Notable applications include ranking or
sorting. One of the difficulties of learning in such a combinatorial
space is the definition of meaningful and differentiable distances and
loss functions. Lehmer codes are an elegant way for mapping per-
mutations into a vector space where the Euclidean distance between
two codes corresponds to the Kendall tau distance between the corre-
sponding rankings. This transformation, therefore, allows the use of
a surrogate loss converting the original permutation learning problem
into a surrogate prediction problem which is easier to optimize. To
that end, learning to predict Lehmer codes allows a transformation of
the inference problem from permutations matrices to row-stochastic
matrices, thereby removing the constraints of row and columns to
sum to one. This permits a straight-forward optimization of the
permutation prediction problem. We demonstrate the effectiveness
of this approach for object ranking problems by providing empirical
results and comparing it to competitive baselines on different tasks.

1 INTRODUCTION

Permutation learning is a long-standing problem in many scientific
fields. The need to deal with permutations arises in a variety of
applications, such as ranking [13], information retrieval or multi-
object tracking [6] for computer vision. The fundamental underlying
problem is the correct identification of the permutation that allows
to reconstruct the original sequence. Ranking, sorting and matching
problems are classical examples of the necessity to perform inference
over such a combinatorial space, and they can be both represented by
permutations over the set of objects to sort. However, one of the main
difficulties in dealing with such combinatorial objects is the factorial
growth of the number of permutations with growing number of ele-
ments. Moreover, there are mutual exclusivity constraints associated
with permutations. Finally, the space of all possible permutations
of a set of objects is not smooth. In fact, permutations are discrete
objects and thus it is not possible to compute straight marginals with
gradient-based methods. Thus, exact solutions are intractable to find
for most cases.

One strategy for working with combinatorial objects is to embed
them into continuous spaces, in order to impose a structure and a
topology so that conventional tools for inference can be used. Prior
works have proposed different approaches to deal with this problem.
For example, several authors [4, 6] derived an approximation of
a general probability distribution with a restricted set of basis
functions, performing inference in the Fourier domain, and using
accompanying transformations to project back to the combinatorial
space.
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Another line of work investigated convex surrogates of the permu-
tations themselves. The classical workflow for tackling the discrete
optimization problem over the set of permutations of n elements is
the following: (1) use permutation matrices to represent permuta-
tions, (2) as these matrices are discrete, gradient-based optimisation
is not possible; hence use a relaxation in order to transform them
into the nearest convex, surrogate, doubly stochastic matrix, i.e.,
into a matrix where all rows and all columns sum up to one. In
particular, permutation matrices may be viewed as special cases of
doubly stochastic matrices which contain only zero and ones.

In this paper, we propose a different approach for learning permu-
tations, which differs from previous work [6] in that we transform
the permutation matrix from the combinatorial space to the Hilbert
space using Lehmer codes [9]. Unlike [7], where the use of Lehmer
codes was proposed for label ranking, we employ them for the task
of object ranking. Lehmer codes provide a bijective mapping from
permutations onto sequences of integers. Moreover, Lehmer codes
enjoy algorithmic advantages such as that the L1 norm of the code
represents the Kendall’s tau distance between the permutation that
generated the code and the lexicographic permutation, which is a
commonly used metric for assessing the ordinal association between
ranking data. Lehmer codes provide vector representations of permu-
tations in which the coordinates are decoupled, i.e., the values of each
coordinate are not restricted by the other coordinates. This mapping
allows to transform the problem from learning a doubly stochastic
matrix to an integer valued vector which enjoys great advantages over
the direct optimization of permutation matrices.

The remainder of the paper is organized as follows: Section 2
lays the necessary mathematical background and defines the notation
used throughout the paper, whereas Section 3 introduces prior work
on permutation learning and embedding of permutations. Section 4
presents our primary contribution, motivating our theoretical choices.
Finally, Section 5 presents experiments which compare our proposed
approach against alternative methods, illustrating the benefits of
Lehmer codes for the task of permutation learning.

2 BACKGROUND

In this section, we formally state the permutation learning problem as
well as the notation used throughout the paper, which closely follows
the literature [7, 11].

2.1 Notation

Given an ordered list of items indexed by {1, ..., N} , let us
denote without loss of generality, πIn as the n-dimensional identity
permutation vector. A permutation is a rearrangement of the elements
of πIn , i.e a bijection from πIn to πn, a generic permutation vector
with πn ∈ Pn. Pn denotes the set of all permutations vector of
length n in the symmetric group, and has the cardinality n!.
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2.2 Learning problem

The permutation learning problem aims at learning a function s :
X → Pn that maps a feature space X to the permutation space Pn.

Loosely speaking, given a sequence of shuffled items, the goal is
to recover their natural order as defined by some specific criterion c.
Formally, the underlying problem is to predict the permutation matrix
Pi ∈ {0, 1}n×n, given a sequence of shuffled items X̃i such that
P−1
i recovers the original ordered sequence Xi.
In such a setting, the cardinality of P is n!, which often is orders

of magnitude larger than the number of training samples. This is
one of the difficulties in dealing with combinatorial spaces such as
Pn. Moreover, permutations are represented as discrete points in the
Euclidean space. This discrete nature typically prohibits gradient-
based optimization, because these discrete solvers work by iteratively
moving towards an optimum via stochastic updates along gradient
directions. A large part of the dedicated literature proposed different
relaxations of the permutation matrix, the best known of which
involve the use of the Sinkhorn operator [18]. This operator is a
procedure that takes as an input a non-negative square matrix and
outputs a doubly-stochastic matrix by iteratively normalizing rows
and columns[1].

Another approach consists of embedding the permutations into
continuous spaces. An example of such line of work is given by
[7], which proposes three different encodings suitable to act as
embeddings for the task of label ranking. Among these encodings,
Lehmer codes showed great algorithmic advantages, in particular, the
fact that the encoding and decoding step have a cost of O(n).

2.3 Permutation matrices

As previously stated, there are several ways to represent permu-
tations. In matrix theory, a permutation matrix is a square matrix
with the peculiarity of having exactly a single unit value for each
row and column and zero elsewhere. They are a natural and concise
way to represent permutations. In fact, given an ordered sequence
of elements represented as a vector πIn , it is possible to derive the
permutation πn from the permutation matrix Pn ∈ {0, 1}n×n ,
simply by performing a vector-matrix multiplication:

πn = PnπIn (1)

where Pn is obtained by swapping the rows of the identity matrix
according to the desired permutation πn. The set of the n × n
permutation matrices has cardinality n! and is the subset of the non-
singular matrices in R

n×n. This set is closed under multiplication,
which implies that P−1 = PT .

A row stochastic matrix is a non-negative square matrix whose
rows all sum up to one. Correspondingly, the transpose of such
a matrix is said to be a column stochastic matrix because all the
columns sum to one. If a matrix happen to be simultaneously row
and column stochastic is said to be a doubly stochastic matrix. The
characteristics of a doubly stochastic matrix A are:

Aij ≥ 0

A1 = 1

AT1 = 1

where 1 is a column vector of ones.
Permutation matrices are a special case of doubly stochastic

matrices. The Birkhoff-von Neumann theorem [10] states that any
doubly stochastic matrix may be viewed as a convex combination of

Figure 1: The Birkhoff (left) and Lehmer (right) polytopes of size 3.
Permutations matrices are in the column representation.

a finite number of permutation matrices. The set of n × n doubly
stochastic matrices is the called the Birkhoff polytope (cf. Figure 1
(left)). A natural consequence that arises from this theorem is
to consider doubly stochastic matrices as a convex relaxation of
permutation matrices. However, it is difficult to learn matrices with
this particular structure. The dedicated literature proposed to use
Sinkhorn normalization [18, 5] to ensure that columns and rows sums
to one. This procedure works by iteratively normalising rows and
columns of the square matrix.

2.4 Lehmer codes

Several works in theoretical computer science and discrete mathe-
matics deal with effective ways to representing permutations. The
Lehmer code [9] is a particular way to encode each possible permu-
tation of a sequence of n numbers. Concretely, it is a bijection from
every permutation �N� to a function φ : �N� → {0, 1, . . . , N − 1}.
The Lehmer code, also known as inversion vector, is a word of the
form cπ ∈ CN � {0} × {0, 1} × {0, 2} × · · · × {0, N − 1}, where
for j = 1, ..., N ,

cπ(j) = #{i ∈ �N� : i < j, π(i) > π(j)} (2)

Thus, the coordinate cπ(j) represents the number of elements i with
index smaller than j that are ranked higher than j in the permutation
π. Consider the following example, which shows the canonical set of
items e, a permutation π, and the corresponding Lehmer code cπ:

e 1 2 3 4 5 6 7 8 9
π 2 1 4 5 7 3 6 9 8
cπ 0 1 0 0 0 3 1 0 1

For example, the 6th digit of the Lehmer code cπ(6) = 3 because
in π, three elements (4, 5, and 7) that appear to the left of the 6th
element are larger than this element (3).

The mapping function based on the Lehmer code is the following

φ : Y → R
N

π → (cπ(i))i=1,...,N

(3)

resulting in the Lehmer polytope illustrated in Figure 1 (right).
One of the key advantages of the Lehmer embedding is that the

sum of the coordinates of the Lehmer vector corresponds to the
number of inversions of π with respect to the identity permutation
e, i.e., ‖cπ‖1 = dτ (π, e). In the above example, ‖cπ‖1 = 6, which
means that six swaps have to be made in order to transform π into e
(move 1 one entry to the left, 3 three entries to the left, 6 one entry
to the left, and 8 one entry to the left). Moreover, its coordinates are
decoupled, for this reason the decoding step is trivial.
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2.5 Surrogate least square loss minimization

The structured output approach states the original prediction problem
as follows:

minimize
s:X→Y

with E(s) =
∫
X×Y

Δ(s(x), π)dP (x, π) (4)

In the standard setting for structured prediction, the quality of the
prediction s(x) is measured by a cost function Δ : Y ×Y → R, i.e.,
the loss incurred by predicting s(x) instead of the correct output π is
given by Δ(s(x), π).

The surrogate least squares framework allows to shift the prob-
lem from the original combinatorial space to the Hilbert space by
invoking a function g : X → F and a surrogate cost function
L(g(x), φ(π)). Additionally, φ is the embedding function for the
permutations into the Hilbert space. In this setting, the original
problem becomes:

minimize
f :X→F

with R(g) =

∫
X×Y

L(f(x), φ(π))dP (x, π) (5)

And the surrogate loss is represented by:

L(f(x), φ(π)) = ‖g(x)− φ(π)‖2 (6)

To summarize, the surrogate least square problem can be divided
in two steps:

1. Step 1: Define the regularized empirical risk
ming

1
n

∑n
i=1 ‖g(xi) − φ(πi)‖2 + Ωg to provide an estimator

for the square surrogate risk. g∗ is the solution of this equation.
2. Step 2: Solve the decoding problem for every x in X that

provides a prediction in the original space Pn: ŝ(x) =
argminπ∈Pn ‖φ(π)− g∗(x)‖2.

3 RELATED WORK

The problem of reasoning about permutations appears in several
applications in different fields of the scientific community. Broadly
speaking, the task of permutation learning consists of learning the
underlying order for a collection of objects based on a predetermined
criterion. In information retrieval, for example, a good model should
select the documents and sort them according to the permutation
that maximizes the given criterion. Another common example from
computer vision, is the Jigsaw problem, consisting of reconstructing
an image from a set of puzzle parts [17, 15] (cf. Figure 2). In
natural language processing, the task of reordering sentence from a
collection of shuffled sentences is a typical case involving sorting
and permutation learning [8]. Or again, DNA/RNA modeling in
biology or re-assembling relics in archaeology can be formulated as
permutation learning problems [19].

Unfortunately, maximizing the marginal likelihood for problems
that involve latent permutations is very difficult. The exploding
cardinality of the combinatorial space is a factor that makes exact
inference intractable. This is due to the fact that it is not possible to
treat these problems as if they involved categorical latent variables
since the computation of the partition function is intractable.

Moreover, permutations are discrete objects in the Euclidean
space, hence gradient-based optimization methods are not adapted.
In fact, these solvers start with an initial point and iteratively update
it by making small steps towards an optimum. A number of works
in the dedicated literature have considered approximating the non-
differentiable parameterization of a permutation with a differentiable

Figure 2: Illustration of the jigsaw puzzle problem, which consists of
identifying the underlying permutation that sorts the shuffled tiles in
order to reconstruct the image. This is an example of permutation
learning task.

relaxation through the Sinkhorn operator. This operator proceeds by
iteratively normalizing the rows and the columns of output matrix,
in order to obtain a doubly stochastic matrix. Permutation matrices
being a special case of permutation matrices, and drawing from
the Birkhoff’s theorem, the double stochastic matrices obtained
through the Sinkhorn operator can be seen as the result of the
convex combination incorporating uncertainty around the rank of the
jth item. This methodology is, e.g. used in [1, 17]. The approach
taken in [14] extends these cited works because it adds a Gumbel
noise component to the output matrix before applying the Sinkhorn
operator, leveraging a temperature parameter.

Along the same line of work, [3] proposed a continuous relaxation
of the permutation learning problem, which involves transforming
the permutation matrix into a unimodal row-stochastic matrix, that is
to say a positive real square matrix where each row sums to one. The
work relies on a temperature parameter which controls the degree of
approximation to the real underlying permutation matrix. This ap-
proach allows to perform straight-through gradient optimization [2]
which requires exact permutation matrices to evaluate the learning
objective. Our approach relates to this work with respect to the form
of the output of their network. In fact, we propose to predict the
Lehmer code of the permutation rather than the permutation itself.
The nature of this encoding is such that its differentiable matrix
form is a row-stochastic matrix that is obtained applying the softmax
operator row-wise on the output matrix. The use of Lehmer codes has
been proposed before in [7] for the task of label ranking. The main
difference to our work is that we tackle the task of object ranking.
Moreover, we extend the surrogate least square prediction framework
to the use of the cross-entropy loss.

It is also possible to deal with inference over combinatorial
objects such as permutations by shifting the domain. For example,
[4, 6] approximated distributions over permutations with the low-
frequency Fourier components. This work states that it is natural
to approximate smooth association distributions over the intractably
large permutation space Pn by their first few Fourier matrices, very
much analogous to the way how smooth periodic functions on Rn

can be approximated by their first few Fourier components.
Another representative work along the same lines is [16], which

proposed a continuous relaxation from permutation matrices to
points on a hypersphere, and then use the von Mises-Fisher (vMF)
distribution to model distributions on a sphere’s surface. By doing
this, they map the n! permutation space to a (n − 1)2 space. Or
again, Linderman et al [12], who relaxed permutations to points in
the Birkhoff polytope and derived temperature-controlled densities
such that, as the temperature goes to zero, the distribution converges
to an atomic density on permutation matrices.

Besides exploring approximation with respect to permutation
matrices, [7] proposed different embeddings suitable for permutation
vectors for the task of label ranking. This work adopts a least square
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surrogate loss approach to solve the structured output regression
problem and for doing so, they propose three different embed-
dings for permutations, namely: Kemeny embeddings, Hamming
embeddings and Lehmer embeddings. The authors went along to
demonstrate theoretical guarantees and algorithmic complexity for
the three vector representations.

We build upon this work by exploiting the Lehmer transformation
and applying it to the underlying permutation problem. In this
way, the original problem of finding good approximations for the
permutation matrices becomes the matrix form of an integer-valued
vector, where the coordinates are decoupled, which is one of the
interesting properties of the Lehmer codes. In the following section,
we will further explain the characteristics of the Lehmer codes
and how we apply this transformation to the original permutation
learning problem.

4 APPROACH

The permutation prediction task aims at predicting a permutation Pi

which when applied to an ordered sequence Xi gives as a result
a desired shuffled sequence X̃ . More concretely, the permutation
learning task takes as an input a set of shuffled items and outputs
the permutation matrix that shuffled the original set.

In the following, we first formally define this problem, and then
sketch our approach for tackling it.

4.1 Problem definition

Let D = {(xi, yi)}Mi=1 be the dataset with x̃i ∈ R
d the i-th sequence

of shuffled objects and yi ⊆ P the corresponding ground-truth
permutation, where P � {1, 2, ..., N} is the set of all permutations
of the indexed elements to sort.

For example, given a set of ordered sequences, a dataset of this
type can be obtained on the fly by shuffling all sequences with
random permutations. This is a method to obtain a great amount of
training data with low computational cost.

The learning task is then to recover the original permutation from
the random sequence, based on the characteristics of the randomly
shuffled objects.

4.2 Principal solution approaches

As stated earlier, there are two ways to tackle the permutation learn-
ing problem. The first consists in treating the permutation, (or the
permutation matrix) as it is, while the second approach transforms
the permutation into a different representation. In other words, the
first approach learns the following parameterized function:

gθ : X −→ P
minimizeθ

∑
(X ,P)∈D

Δ(P, fθ(X̃)) +R(θ)

where X̃ is the sequence of shuffled objects, P is a permutation,
Δ is the loss, θ the parameters of the objective function and R(θ)
a regularization term. Permutation matrices are discrete points in
the Euclidean space, hence the object of (4.2) is actually a convex
surrogate of the permutation matrix at hand, i.e., a doubly stochastic
matrix.

The second approach, which is the object of this paper, learns the
following function:

fθ : X −→ φ(P)

minimizeθ
∑

(X ,P)∈D
Δ(φ(P ), fθ(X̃)) +R(θ)

where φ is the Lehmer embedding function defined in (3). We chose
to format the Lehmer code in matrix form, which is simply the one-
hot encoding of the vector itself. In a nutshell, given a tuple consist-
ing of shuffled items and a ground-truth permutation, our objective
is to learn the Lehmer code of the ground-truth permutation. The
encoded prediction is subsequently decoded in order to map it back
to the original combinatorial space.

4.3 Permutation learning using Lehmer codes

To solve the permutation learning problem, we propose to leverage
Lehmer codes to provide a surrogate representation of permutations.
In fact, permutation matrices, as mentioned in section 2 are partic-
ular discrete elements with a specific structure where columns and
rows sum to one. A convex relaxation of permutation matrices is
represented by doubly stochastic matrices which can be interpreted
as marginals over the matrices themselves.

However, learning a mapping to the set of doubly stochastic matri-
ces, (i.e., to the Birkhoff polytope) is not easy because said matrices
are difficult to parameterize. Instead, we propose to learn a matrix
form of the Lehmer encoding of the permutations. As previously
stated, Lehmer codes are permutation codes, which provide several
computational advantages. One of them, particularly relevant for our
goal, is the property of independence of relative ranks. That is to
say that the coordinates of the Lehmer embedding are decoupled.
Loosely speaking, a Lehmer code is a sequence of random variables,
independently drawn from uniform distributions on [N − i], where
i defines the i-th position in the sequence. We motivate this choice
by the fact that such representation doesn’t have the constraints of
double stochasticity proper of permutation matrices. Moreover, the
disjoint nature of the coordinates of the Lehmer code allows to
represent them as a simple concatenation of feature vectors of the
elements of the sequence to sort. In other terms, Lehmer codes allow
to map permutation matrices to row-stochastic matrices. This is an
advantage because we can easily construct a surjective function using
row-wise softmax function in order, followed by the decoding step in
order to retrieve the original permutation.

4.4 Neural network training strategy

After encoding the training permutations, we perform end-to-end
learning with gradient descent. The least surrogate loss framework
provides an alternative way to standard empirical risk minimization.
The goal of aforesaid framework is to directly find the model that
best explains the training data within a determined hypothesis space.

All experiments rely on networks that have the same structure.
First, a convolutional neural network shared among all elements is
employed for the feature extraction step. We concatenate the feature
vectors into a matrix form and feed this matrix to the network that
will compute the final square matrix. Row-wise softmax is then
applied in order to transform the output matrix into a row-stochastic
matrix. A natural loss function for such setting is the binary cross
entropy between the prediction and the ground-truth matrix, which
we use for all baselines.
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5 EXPERIMENTS

In this section, we report the results of various experiments com-
paring our proposed approach to previous works on learning permu-
tations. We provide experimental results that allow us to assess the
advantages of predicting Lehmer codes over the direct prediction of
the permutation or the prediction of some convex surrogates of the
permutation matrix.

We recall that we wish to predict the latent permutation in
order to sort a collection of given shuffled objects according to a
criterion c. With this objective in mind, we perform two experiments
comparing the use of Lehmer codes to existing methods: In the first
setting, we explore the capabilities of Lehmer codes for the task
of solving jigsaw puzzles. This task consists of reconstructing an
image from a sequence a tiles in order to recover the original spatial
layout, as illustrated in Figure 2. The second experiment aims at
sorting a set of random unsorted objects into a sorted list. We will
present quantitative and qualitative results of reconstructed images
and sorted sequences, but first start with a brief description of our
experimental setup.

5.1 Experimental Setup

Baselines. As representatives of the state-of-the-art in permutation
learning, we implemented the following baselines:

• Vanilla row-stochastic: This is the naive approach which consists
in casting the permutation learning problem to an n2 binary
classification problem and optimizing the cross entropy in a row-
wise fashion. It is worth noting that this approach does not take
into account the geometry of permutation matrices and for this
reason has several inefficiencies.

• Sinkhorn [1]: As discussed in Section 3, the Sinkhorn operator
allows to transforms a non-negative square matrix into a doubly
stochastic matrix by repeatedly normalizing rows and columns.
The Sinkhorn networks interpret such matrices as marginals of
the distribution over permutations.

• Gumbel-Sinkhorn [14]: This approach uses the Sinkhorn operator
with the addition of Gumbel noise to obtain doubly stochastic
matrices that define a latent distribution over the permutation
matrices themselves. This allows to perform posterior inference
on the distribution of permutation matrices.

All implemented baselines as well as our approach based on
Lehmer code have a joint feature extraction layer in common, which
is a deep convolutional neural network shared across all items in
the sequence to sort (cf. Section 4.4). The aim is to map each
concatenated image to intermediate representations in a feature
space.

Evaluation metrics. We use three commonly used metrics for
comparing our results obtained with our approach against the base-
lines [14]:

• Kendall’s tau coefficient (kτ ): A distance function of interest
focuses on transpositions. A transposition (i, j) is a swap of
elements at positions i and j, with i �= j. The smallest number
of such transpositions denotes the Kendall’s tau distance between
σ and π, dτ (σ, π), which is defined as

kτ (σ, π) = #{(i, j) : π(i) > π(j), σ(i) < σ(j)} (7)

• Proportion of Correctly identified permutations (PC): This mea-
sure is useful to assess the capabilities of our approach to correctly
identify entire permutations. This metric is particular relevant for
permutation learning where the underlying goal is to correctly
match elements to their correct position in the ordered sequence.

• Proportion of Any Correctly identified element (PAC): In addition
to the proportion of entire permutations correctly found, another
interesting metric is the proportion of individual items correctly
ranked in the sequence. In combination with the previous metric,
these two metrics evaluate the performance of permutation learn-
ing models with respect to accuracy.

5.2 Jigsaw Puzzles

Our first experiment concerns the task of solving jigsaw puzzles
which is a complex scenario to test the capabilities of the proposed
approach in the context of convolutional neural networks. The goal
is to reconstruct an image from a collection of shuffled pieces of
the same image (see also Figure 2). In this particular case, the input
consists of N non-overlapping, equally-sized pieces in the same
orientation as the original image. Specifically, given a a puzzle of
size H ×W , the input is a sequence of N = H ×W :

X = (x1, x2, ..., xN ) = π(1, 2, ..., N)

such that xi is the index of the piece of puzzle. The objective is to
learn a function π(X) which takes the input sequence X and returns
a permutation:

π(X) = σ(1, 2, ..., N)

that represents the order in which the input image pieces should be
sorted to reconstruct the original image. Figure 3 illustrates the task.

Figure 3: Illustration of the jigsaw puzzle task. Given an image
of shuffled pieces, the task is to recover the permutation that will
recover the original spatial layout.

In this particular case, the latent ranking criterion c is the recon-
struction of the original spatial layout, i.e., the first rank should be
assigned to the image part that constitutes the upper left corner of
the image, and last rank to the lower right corner. A good model for
the task of solving jigsaw puzzles has to be able to identify individual
tiles, and compare them against each other in order to determine their
correct relative position in the sequence.

We evaluate our approach using two benchmark image datasets,
MNIST and CIFAR10, the second one being more challenging due
to the high multimodality and the lack of a clear sequential structure
that generalizes over images. Nonetheless, we will see that our
approach based on Lehmer codes outperforms the baseline models.

Setting For both datasets, we first normalize the inputs to have
zero mean and standard deviation one. MNIST is composed of
images of dimensions 28×28 pixels, whereas CIFAR10 images have
32× 32 pixels. For cases in which the image is not exactly divisible
by the number of tiles, we pad the original image to the next larger
size that allows such a partition. Finally, the tiles are arranged into a
sequence and randomly shuffled.
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Table 1: Jigsaw puzzle results. We evaluate Kendall’s tau coefficient, the proportion of correctly identified permutations (PC) and the proportion
of individual elements correctly ranked (PAC). We compare our results to [14] for the available datasets (MNIST) and to a Sinkhorn based
network as in [1] which doesn’t need fine-tuning additional parameters. Randomly sorted elements have a PAC score of (n− 1)/n.

MNIST CIFAR10
2x2 3x3 4x4 5x5 2x2 3x3 4x4 5x5

kτ

Sinkhorn 1.0 0.82 0.42 0.31 0.82 0.72 0.35 0.21
Gumbel Sinkhorn 1.0 0.83 0.43 0.39 – – – –

Lehmer code 1.0 0.85 0.50 0.39 0.99 0.96 0.73 0.69

PC
Sinkhorn 1.0 0.89 0.0 0.0 0.74 0.11 0.0 0.0

Gumbel Sinkhorn 1.0 0.91 0.0 0.0 – – – –
Lehmer code 1.0 0.84 0.0 0.0 0.99 0.75 0.0 0.0

PAC
Sinkhorn 1.0 0.69 0.44 0.37 0.84 0.50 0.18 0.06

Gumbel Sinkhorn 1.0 0.97 0.45 0.45 – – – –
Lehmer code 1.0 0.66 0.41 0.11 0.99 0.92 0.34 0.18

Implementation details Following previous works, we process
each tile with a 5 × 5 convolutional network, with padding and
stride 1 and 2 × 2 max pooling. This step is to obtain intermediate
representations for each tile which are then fed to our network to
output a square matrix. Figure 4 summarizes the network architecture
used for this task.

Conv[Kernel: 5x5, Stride: 1, Output: 28x28x32, Act.: Relu]

−→ Pool[Stride: 2, Output: 14x14x32]

−→ FC[Units: 64, Activation: Relu]

Figure 4: Network architecture for the jigsaw puzzle task. It consists
of an CNN for feature extraction of each tile and a fully connected
network that maps each vector to a hidden dimension of 64.

Evaluation Measures Following the work of [14], evaluation
on the test data is assessed with different metrics: (i) Kendall tau
coefficient, which is a measure of rank correlation on ranked data,
(ii) proportion of individual tile ranks correctly assigned and (iii) the
proportion of permutations correctly identified. We train the model
with Adam optimizer at a learning rate of 1e−3 and a batch size of
32. The CNN maps each tile to a feature vector of dimension d = 64
for both datasets.

Results As stated earlier, we compare the results obtained from
our approach with two alternative methods to optimize permutations.
The results are presented in Table 1. These two methods, namely
Sinkhorn and Gumbel-Sinkhorn are designed particularly for the
task of recovering permutation matrices for matchings. On the other
hand, our method is based on Lehmer codes which by nature are
designed to minimize the Kendall tau’s correlation. This explanation
is highlighted by the obtained results, in fact we can notice that
our approach outperforms the baselines for all n with respect to

the Kendall’s tau metric. The lower performance of our approach
shown in Table 1 compared to the Sinkhorn baselines is due to the
peculiarity of Lehmer codes. In fact, the coordinates of the encoding
are disjointed so an error in the prediction is actually an error in
estimating the relative position of the elements with index bigger
than that particular coordinate. This characteristic is particularly
desirable for the task of ranking but is sub-optimal for matching.

Moreover, the gap of performance between the datasets is of
particular interest. In fact, for a growing number of tiles, the jigsaw
puzzle becomes ill-posed in particular for the MNIST dataset. In
fact, when n increases, there are many black tiles that become
indistinguishable between each other. We can notice that the low
accuracy problem is not present CIFAR10 dataset, even though it is a
more challenging dataset than MNIST. This confirms our hypothesis
that learning a matrix form of the Lehmer code allows to learn
permutations with the objective of sorting according to the spatial
layout.

5.3 Sorting Sequences of Handwritten Digits

For this particular experiment, we adapt the MNIST dataset in order
to create sequences of random handwritten digits. More specifically,
the dataset we used for this particular experiment is a set of multi-
digit images obtained by concatenating 4 random MNIST images,
and the task is to sort resulting set of 4-digit numbers. Figure 5 is an
illustration of the task of sorting handwritten multi-digits. Training,
validation and test sets are then obtained by random sampling of
multi-MNIST images.

Figure 5: Illustration of the task of sorting a sequence of multi
handwritten MNIST digits. The goal is to recover the ascending order
of the items of each sequence.

Given a sequence of n multi-MNIST images, the task is to
predict the permutation such that the sequence of images is sorted
in ascending order. The supervision signal comes from the ground
truth permutation. This task is more challenging than sorting scalar
numbers. In fact, in order to perform well on this task, a model has
to learn meaningful semantics of the high-dimensional elements and
learn the structure of the elements in order to be able to sort the multi-
digits.
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Table 2: Average performance for sorting handwritten digits. Shown are Kendall’s tau coefficients as well as the proportions of fully correctly
predicted permutations and the proportion of individual objects of the sequence whose position was correctly predicted.

Model n = 3 n = 5 n = 7 n = 9 n = 15

kτ

Vanilla RS 0.75 0.58 0.28 0.23 0.11
Sinkhorn 0.56 0.47 0.39 0.32 0.21

Gumbel-Sinkhorn 0.56 0.46 0.40 0.27 0.19
Lehmer code 0.80 0.62 0.49 0.38 0.25

PC
Vanilla RS 0.467 0.093 0.009 0.0 0.0
Sinkhorn 0.462 0.038 0.001 0.0 0.0

Gumbel Sinkhorn 0.484 0.033 0.001 0.0 0.0
Lehmer code 0.809 0.379 0.112 0.013 0.0

PAC
Vanilla RS 0.801 0.603 0.492 0.113 0.067
Sinkhorn 0.561 0.293 0.197 0.143 0.078

Gumbel Sinkhorn 0.575 0.295 0.189 0.146 0.078
Lehmer code 0.869 0.676 0.511 0.367 0.155

The learning process is supervised by the ground-truth permu-
tation. It is worth mentioning that this is a weak signal for this
task. In fact, ideally, the model should be able to learn to separate
the individual digits of each element of the sequence of multi-
MNIST images. Then, it should rank the digits in order to retrieve
the underlying correct permutation, while lacking the image labels
available when optimizing for the classification task.

Implementation Details As in the previous experiment, we com-
pare against the Vanilla row-stochastic model, and the two variants
of the Sinkhorn networks. We slightly modified the configuration
of the previous network in order to adapt to the complexity of this
experiment. In this case, the architecture is composed by stacking
two convolutional networks of the same type used in the jigsaw
experiment. We follow the common practice of normalizing to 0
mean and standard deviation equal to 1 for every individual MNIST
image before concatenation. Thus, the sequence of input images has
dimension n×4×28, i.e., each element of the sequence is a 112×28
image. Figure 6 summarizes the network architecture for this task.

Conv[Kernel: 5x5, Stride: 1, Output: 140x28x32, Act.: Relu]

−→ Pool[Stride: 2, Output: 70x14x32]

−→ Conv[Kernel: 5x5, Stride: 1, Output: 70x14x64, Ac.: Relu]

−→ Pool[Stride: 2, Output: 35x7x64]

−→ FC[Units: 64, Activation: Relu]

Figure 6: Network architecture for the handwritten digits sorting task.

Evaluation Measures In order to assess the performance of
our model, we compute the same metrics as in the jigsaw puzzle
experiment. The proportion of individual ranks correctly identified
and permutations correctly identified constitutes good metrics to
assess the accuracy of the sorting task. Moreover, we again compare
models based on the Kendall tau coefficient, which is the the optimal

metric to assess the capabilities of a model to learn an ordinal
association between objects.

Results The results are shown in Table 2. For this particular
task, we can observe that the Lehmer code based approach consis-
tently outperforms the baselines with respect to the Kendall’s tau
metric. Moreover, in many cases, we can also see a considerable
improvement for the PC and the PAC metrics. It is, however, worth
mentioning, that the Vanilla RS baseline performs well in ranking
individual elements but the same performance is not found for
predicting the overall permutation. This experiment is more related to
the ranking task rather than the sorting task, hence the improvement
over the baselines across all metrics for most cases of sequences with
increasing length.

6 CONCLUSION

In this paper, we have proposed a new way to perform optimization
for the task of permutation learning. We present an alternative
methodology to obtain encode permutations which is based on
Lehmer codes, which have previously been proposed for label
ranking tasks. framing the problem in this way allows to optimize for
the objective of minimizing the Kendall tau rank correlation, which is
an ordinal metric for assessing the association between permutations.
Moreover, Lehmer codes come with the natural advantage of not
relying on the hard constraint of doubly stochastic matrices in
which columns and rows have to sum to one, but can optimize on
simpler row-stochastic matrices. We motivated our choices on two
challenging experiments regarding sorting and matching complex
items (images), namely solving jigsaw puzzles and sorting multi-
MNIST digits, where we generally outperformed competitive models
based on approximations of permutations matrices, in particular with
respect to Kendall’s tau. In future work, we would like to explore the
use of Lehmer codes in more complex scenarios, such as variational
inference permutation.
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[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville, ‘Estimating
or propagating gradients through stochastic neurons for conditional
computation’, arXiv preprint arXiv:1308.3432, (2013).

[3] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon, ‘Stochas-
tic optimization of sorting networks via continuous relaxations’, in
Proceedings of the 7th International Conference on Learning Repre-
sentations (ICLR), New Orleans, LA, (2019).

[4] Jonathan Huang, Carlos Guestrin, and Leonidas Guibas, ‘Fourier the-
oretic probabilistic inference over permutations’, Journal of Machine
Learning Research, 10(May), 997–1070, (2009).

[5] Philip A Knight, ‘The Sinkhorn–Knopp algorithm: convergence and
applications’, SIAM Journal on Matrix Analysis and Applications,
30(1), 261–275, (2008).

[6] Risi Kondor, Andrew Howard, and Tony Jebara, ‘Multi-object tracking
with representations of the symmetric group’, in Artificial Intelligence
and Statistics, pp. 211–218, (2007).

[7] Anna Korba, Alexandre Garcia, and Florence d’Alché Buc, ‘A struc-
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