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Abstract. Estimating global pairwise interaction effects, i.e., the
difference between the joint effect and the sum of marginal effects of
two input features, with uncertainty properly quantified, is centrally
important in science applications. We propose a non-parametric
probabilistic method for detecting interaction effects of unknown
form. First, the relationship between the features and the output is
modelled using a Bayesian neural network, capable of representing
complex interactions and principled uncertainty. Second, interaction
effects and their uncertainty are estimated from the trained model.
For the second step, we propose an intuitive global interaction mea-
sure: Bayesian Group Expected Hessian (GEH), which aggregates
information of local interactions as captured by the Hessian. GEH
provides a natural trade-off between type I and type II error and,
moreover, comes with theoretical guarantees ensuring that the esti-
mated interaction effects and their uncertainty can be improved by
training a more accurate BNN. The method empirically outperforms
available non-probabilistic alternatives on simulated and real-world
data. Finally, we demonstrate its ability to detect interpretable inter-
actions between higher-level features (at deeper layers of the neural
network).

1 Introduction

Estimating interactions between variables, and the uncertainty of the
interactions, is a challenge common to many data science tasks, and
ubiquitously needed in scientific discovery. For instance, gene-gene,
gene-environment, gene-drug and gene-disease interactions are key
elements in explaining genetic mechanisms, diseases and drug ef-
fects in genetics and health applications. Having the right interactions
in a model also makes it more understandable and interpretable. At
the simplest this could mean that the output y depends on inputs x1

and x2 through

y = β1x1 + β2x2 + β12x1x2 + e, (1)

where β1 and β2 represent the main effects, β12 is the strength of the
interaction, and e is noise. In this example, the shape of the inter-
action is known (multiplicative), but this is not true in general. Esti-
mating the uncertainty is equally important, to assess the statistical
significance of the detected interactions. Traditional methods include
two general approaches: 1) conducting tests for each combination of
features, such as ANOVA based methods [11, 42] and information
gains [21, 43]. These method usually require a polynomial number
of tests, and lack statistical power due to multiple testing; 2) interac-
tions are first learned by ‘white-box’ machine learning models, and
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then recover the interaction effects from the trained model. For ex-
ample, Lasso based methods [4, 24, 25], and Gaussian processes [1].
But all possible interactions have to be pre-specified in this approach,
which restricts the type of interactions that can be considered to, for
example, multiplicative as in Eq.1.

In this paper we extend the second approach, and use the repre-
sentation learning power of a neural network to model interactions
without any specified form directly from the data. Intuitively, we first
train a neural network on the data, then find the encoded interactions
by interpreting the trained model. However, the currently available
algorithms that both are interpretable and aim to recover all kinds
of interactions [17, 26, 35, 38] neglect uncertainty, and thus it is not
possible to conduct hypothesis tests and control type I and II errors,
which is not acceptable in critical fields such as healthcare. Another
limitation is that most algorithms mentioned above aim to find local
interactions (dependent on the location in the data space) instead of
global interactions (independent of the location), which is not suit-
able for most scientific discovery applications.

In this work, we propose Bayesian Group Expected Hessian
(GEH) to estimate global interactions by aggregating local interac-
tions from a trained Bayesian neural network. The posterior distri-
bution of GEH represents the uncertainty of the interaction measure,
and it can be seen as a non-parametric analogy to the posterior dis-
tribution of |β12| in Eq.1 which could be learned using a Bayesian
linear regression model. Two significant theoretical advantages of
Bayesian GEH are: 1. it provides a natural trade-off between type
I and type II error by tuning the number of groups; 2. the estimated
interaction effects can be improved by training a more accurate and
better-calibrated Bayesian NN, which is not guaranteed by existing
methods that use NNs to learn interactions.

2 Related Work

Several approaches, such as neural networks and ensemble trees,
have been proposed for detecting interactions with unknown forms.
Neural Interaction Detection (NID) [38] was proposed to learn in-
teractions by inspecting the weights of a neural network: if some
features are connected to the same node in the first hidden layer with
large weight and if the path(s) from the node to the output also have
large weights, then an interaction between the features is detected.
An interpretable neural network architecture [39] that contains inter-
action information has also been proposed based on this idea. These
methods can detect higher-order interactions of unrestricted forms,
but they can only be applied to fully connected vanilla multi-layer
perceptrons, not to convolutional neural networks for instance, which
limits their usage in applications such as computer vision. Deep Fea-
ture Interaction Map [17] is similar to our work in that it uses the
Hessian, but it is designed for discrete features only, such as DNA
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sequences. SHAP interaction score [26] extends the SHAP value of
game theory to detect interactions, and it is efficiently implemented
in ensemble tree methods. Additive Groves [35] is another tree-based
method, which compares the difference in performance of two re-
gression trees, one with all interactions, and the other with the in-
teraction of interest removed. If probabilistic models are used in-
stead, such as Gaussian processes [30], feature interactions can be
estimated by comparing predictive distributions through Kullback-
Leibler divergence [33]. However, none of these methods estimates
the uncertainty of the learned interactions, and thus is unable to con-
trol two types of error.

Bayesian Neural Networks (BNNs) [27, 29] have been studied
since the 90s, but they have not been generally applicable to large
datasets until scalable variational inference algorithms [19, 22] were
proposed. Recent works [12, 23] show that the standard dropout
training in NNs can be interpreted as a form of variational inference,
and that the prediction uncertainty can be obtained by simply using
dropout during testing. This approach can be applied to most neural
networks, such as RNNs [13], and leads to sparse neural networks
[28]. By optimizing dropout probabilities, calibration of uncertainty
can be improved [14]. In this work, we use the concrete dropout from
[14], and extend the model by including a separate component for
main effects to better capture interactions with uncertainty.

3 Modeling Interactions and their Uncertainty

To learn interactions and their uncertainty, we first train a Bayesian
neural network (BNN), which both models a rich family of functions
that automatically incorporates all kinds of interactions, and captures
uncertainty.

3.1 Practical Bayesian Neural Network

Bayesian neural networks are defined by placing a prior distribu-
tion on the weights W of a neural network. Then, instead of find-
ing a point estimate of the weights by minimizing a cost function,
a posterior distribution of the weights is calculated conditionally on
the data. Let gw(x) denote the output of a BNN and p(y|gw(x))
the likelihood. Then, given a dataset X = {x(1), . . . ,x(N)}, Y =
{y(1), . . . ,y(N)}, training a BNN is equivalent to learning the pos-
terior distribution p(W|X,Y). Variational inference can be used
to approximate the intractable p(W|X,Y) with a simpler distribu-
tion, qθ(W), by minimizing the KL(qθ(W)||p(W|X,Y)). This is
equivalent to minimizing the negative ELBO

L(θ) =
∫

−qθ(W) log p(Y|gw(X))dW + KL(qθ(W)||p(W)).

(2)

According to recent research on dropout variational inference [12],
a practical Bayesian neural network for a wide variety of archi-
tectures can be obtained by simply training a neural network with
dropout (MC dropout), and interpreting this as being equivalent to
maximizing Eq.2. Concrete dropout [14] extends this by learning a
different Bernoulli dropout probability for each layer to obtain better-
calibrated uncertainty. In this case the variational distribution is de-
fined as qp,M(W) =

∏L
l=1

∏Kl
k=1 ml,kBernoulli(1− pl), where pl

is the dropout probability for layer l, and ml,k is a vector of outgo-
ing weights from node k in layer l, and the prior p(W) is a Gaussian
distribution with a fixed length-scale. Eq.2 can be optimized w.r.t. the
variational parameters θ = {p,M} by using the re-parametrization
trick and concrete relaxation [14]. In this paper, we adopt concrete

dropout BNNs to learn interactions and corresponding uncertainty.
However, instead of learning a single dropout probability for each
layer, we learn a separate dropout probability for each node. This not
only improves the calibration of uncertainty, but the learned dropout
probabilities also provide information about importance of features
[5]. When the dimension is high, we can reduce the computation
by detecting interactions only among important features (with low
dropout probabilities). Note that other BNNs can also be used to
model interactions, and we consider an alternative BNN formulation
using the mean-field algorithm in Appendix 4.

3.1.1 Separating Interactions from Main Effects

Real world data often contain both main effects and interactions,
where a main effect represents the influence of one of the features
on the target alone, irrespective of the other features. Interaction is
then defined as the joint effect of multiple features that cannot be
explained by the main effects [41].

In practice it is beneficial for deterministic NNs to model the main
effects separately from the interactions [6, 7, 38], and we extend this
idea to Bayesian NNs. We will use linear regression, ym = βTx,
for the main effects, and a BNN, yin = gW(x), to capture the inter-
actions. A univariate NN could be applied to each feature to model
non-linear main effects, but investigating this further is beyond the
scope of the present work. A prediction from this hybrid model is
the sum of the two components ŷ = ym + yin, such that the objec-
tive function in Eq.2 can be rewritten as

L(θ, β) =
∫

−qθ(W) log p(Y|βTX+ gw(X))dW

+ KL(qθ(W)||p(W)).

(3)

If the uncertainty of main effects is of interest, a prior may be placed
also on β. However, the prior on β should impose weaker regular-
ization than the prior on W, otherwise the main effect would not
be separated properly. The motivation for this model structure stems
from the fact that in real-world data the main effects usually dom-
inate interactions, such as genomics data. A BNN gW(x) with a
small capacity would likely capture the main effects only, unless they
are modeled separately. By separating the main effects we can use a
much smaller BNN to learn the interactions.

4 Detecting Interactions

After a BNN gW(x) has been learned from data, interactions must be
detected from the BNN. Previously, the gradient of gW(x) has been
used to detect main effects from a neural network [3, 18, 34, 36]. We
extend these works and formulate Bayesian Group Expected Hessian
(GEH), which now quantifies global interactions with uncertainty,
and can be easily calculated for any given BNN.

4.1 Local Interaction Aggregation

One way to measure interactions is to use the Hessian of gW(x)
w.r.t. the input. For the simple multiplicative interaction in Eq.1 this
recovers the coefficient β12. For non-multiplicative interactions the
Hessian is not constant and represents interaction only at the point
at which it was calculated, making it a local interaction measure. To
estimate global interaction effects (interaction regardless of the eval-
uation point), an intuitive way is to aggregate local effects into one
global effect [9, 40], and we propose below three ways of aggregating
local interactions.
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4.1.1 Expected Absolute Hessian (EAH)

EAH aggregates point-wise Hessian by calculating the expectation
of its absolute value. To estimate an interaction between features xi

and xj , we define EAHi,j
g , as

EAHi,j
g (W) = Ep(x)

[∣∣∣∂2gW(x)

∂xi∂xj

∣∣∣
]
, (4)

where p(x) is the empirical distribution of x. Similar idea has been
widely used in aggregating local marginal effects of features in
[26, 40]. EAH has the lowest FNR (False Negative Rate or type II
error) of the three methods, because as long as there is some region in
the domain of x (dom(x)) where the corresponding Hessian is non-
zero, EAHi,j

g will also be non-zero. However, EAH has the highest

FPR (False Positive Rate or type I error), since even when xi and
xj do not interact with each other in the data generating process, the
input Hessian of gW(x) between xi and xj will not be exactly 0 due
to noise inherent in the data set and inevitable modeling error. This
noisy effect will then be also aggregated into the global interaction
effect according to Eq.4, and thus false interactions may be detected.

4.1.2 Absolute Expected Hessian (AEH)

AEH is defined as the absolute value of expected Hessian, given by

AEHi,j
g (W) =

∣∣∣Ep(x)

[∂2gW(x)

∂xi∂xj

]∣∣∣. (5)

In contrast with EAH, AEH has the lowest FPR but the highest

FNR. To understand this, assume that noise is distributed with zero
mean independently of the location in dom(x). Then, the noise will
cancel when we take the expectation over dom(x). Consequently,
FPR will be low. On the other hand, AEH may also cancel out some
true interactions, if some subregions of dom(x) have positive and
some subregions negative interaction effects, leading to a high FNR.
AEH can be regarded as an extension of an expected gradient method
[9], where marginal feature effects are aggregated.

4.1.3 Group Expected Hessian (GEH)

One intuitive way to trade-off between EAH and AEH, and thus be-
tween FPR and FNR, is by clustering dom(x) into subregions, calcu-
lating AEH for each subregion, and then computing their weighted
average. Based on this idea, we propose Group Expected Hessian
with M groups, M-GEHi,j

g as

M-GEHi,j
g (W) =

M∑
m=1

|Am|∑M
k=1 |Ak|

∣∣∣Ep(x|x∈Am)

[∂2gW(x)

∂xi∂xj

]∣∣∣.
(6)

where |Am| is the size of the mth subregion Am, and
⋃M

m=1 Am =
dom(x). The benefit of GEH is that, by choosing the subregions Am

properly, it has the potential to aggregate only interactions while can-
celing out the noise. To see this, assume that the noise distribution is
independent of location in dom(x), but interaction effects are simi-
lar for close-by points in dom(x). Then, a partition can be estimated
by a clustering algorithm, such as k-means, with the number of clus-
ters equal to M . Consequently, datapoints within Am are close to
each other, and are expected to have interaction effects mostly of the
same sign, which Eq.6 will aggregate similarly to Eq.4. On the other
hand, Eq.6 will act like Eq.5 canceling out the noise when integrat-
ing over the subregion. Similar ideas have been proposed to denoise

and compress signals by vector quantization [2, 32] in signal process-
ing, where using less clusters can reduce more noise in the signal but
also has a higher distortion error. When M = 1, 1-GEH reduces to
AEH, and when M = N , N-GEH becomes EAH, where N is the
number of data. FNR can be reduced by increasing M with the cost
of increasing FPR. Another benefit of GEH is that we can immedi-
ately investigate the interaction effects in each subregion. Because
the sign of a complex interaction may be different in different parts
of the input space, investigating the subregional interactions can lead
to interesting further insights about the data. We leave this for future
work.

In Eq.6, W is the weight in a BNN, i.e. a random variable. There-
fore, M-GEHi,j

g (W) is also a random variable whose distribution
follows from the posterior distribution qθ(W) of W, thus we call it
Bayesian Group Expected Hessian. Unbiased estimators for the mean
m̂i,j and variance v̂i,j of M-GEHi,j

g (W) can be obtained through
Monte Carlo (MC) integration with K samples. For concrete dropout
BNN, MC integration only requires O(KD) backward-passes with
dropout, where D is the number of features (see Appendix 1 for com-
plexity analysis and a detailed algorithm).

To calculate the FPR, FNR, and ROC curves in our experiments,
we determine the significance of an interaction between features i
and j as follows. We assume M-GEHi,j

g (W) to be approximately
Gaussian, which follows from the CLT for large K. Consequently, a
95% credible interval is given by (m̂i,j − 2

√
v̂i,j , m̂i,j + 2

√
v̂i,j).

The interaction is considered significant iff the 95% CI does not con-
tain 0. When comparing with deterministic alternatives which ignore
uncertainty, we simply use the mean m̂i,j of M-GEHi,j

g (W) to rep-
resent the interaction effect.

4.2 Accuracy Improvement Properties

The error when learning interactions from data can be caused both
by modeling error and error in detecting interactions from the model.
Interaction detection algorithms, such as NID, intertwine these two
errors, thus training a better NN does not guarantee learning of more
accurate interaction effects. This makes it difficult to improve the
detected interactions [36]. Suppose f(·) is the true data generating
mechanism and g(·) is the learned model. If we further assume that
f(·) and g(·) are Lipschitz functions, we can prove M-GEH has the
following two properties (proofs are given in the Appendix 2):

Property 1 The estimation error in interaction measures, Le =∑
i,j |M-GEHi,j

g −M-GEHi,j
f |, is linearly upper bounded by the pre-

diction error ε of g(·).
Property 2 When gW(·) is a probabilistic model (e.g. BNN),

we can make the uncertainty of the Bayesian GEH arbitrarily well-
calibrated by improving the calibration of the distribution of predic-
tions from gW(·).

Intuitively, these two properties relate the accuracy of predictions
to the accuracy of interpretations (interaction effects in this case).
This is needed since testing whether the estimated interactions are
accurate or not is almost impossible in practice, because of the lack
of a ground truth. Here we use calibration to represent the ’accuracy’
of the estimated uncertainty [16]. In detail, the calibration of a distri-
bution is defined in terms of its ’frequentist properties’. For instance,
a 95% credible interval is well-calibrated if it contains the true value
95% of times. Property 1 guarantees that by training a better model
with a smaller ε, Le will have a tighter upper bound, which improves
the learning of interactions. Property 2 provides a way to improve the
uncertainty of Bayesian GEH, i.e., by using a better calibrated BNN
(more discussion and empirical evidence can be found in Appendix
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Figure 1. The ranks of true interactions as a function of S/N for different methods. The 11-GEH method detects the ground-truth interactions clearly better
than the others (top left panel), with performance very close to the Oracle. The rest of the panels show the ranks assigned to each of the seven true interactions.

4).

4.3 Determining the Number of Clusters

By increasing the number of clusters, GEH can be more flexible to
detect more complex interactions, but can also lead to a higher FPR.
An ideal number of cluster M is the smallest number of clusters that
can capture rich enough interactions for a specific problem, which
means the detected interactions should not change significantly by
further increasing M . Inspired by Spearman’s Rho distance [20], we
propose rank weighted distance to compare two attribution vectors
(interaction effect vectors) corresponding to consecutive numbers of
clusters:

Δ2
M =

L∑
i=1

(wM (i)− wM−1(i))
2(πM (i)− πM−1(i))

2. (7)

Here, wM (i) is the ith interaction effect with M (M ≥ 2) clusters,
πM (i) is the rank of wM (i) among the interactions, and L is the
number of interactions. We ignore the tiny changes of interaction ef-
fect vectors that do not result in a change of ranks to emphasize the
importance of finding the top ranked interactions, which also leads
to a much smoother Δ2

M . In Eq.7, the contribution to Δ2
M of those

interactions whose relative rank does not change is equal to 0. Other-
wise it will be proportional to the squared Euclidean distance of the
effect sizes. When M is small, Δ2

M is usually large, implying that a
small M is usually not enough to find all complex interactions and
increasing M will lead to large changes in the detected interactions.
One way to determine the number of clusters is to inspect values of
Δ2

M , plotted as a function of M , and choose M when Δ2
M approxi-

mately converges to 0. We use this approach to determine M in fol-
lowing experiments (see Figure 3 right for an example and Appendix
6 for all plots).

5 Experiments

We apply our approach to simulated toy data sets, 3 public real-world
data sets with and without injected artificial interactions, and to the

MNIST data. We show that our method can identify interpretable
interactions with well-characterized uncertainty, and outperforms 3
state-of-the-art baselines.

5.1 Simulated Data

Experimental setup: We simulate datasets with 8 features and 7 in-
teraction pairs, using model

yi =
8∑

j=1

βm
j xj +

7∑
k=1

βi
khk(xk, xk+1) + ε (8)

where βm
j is the weight of feature xj , hk(·) is the functional form

of the kth interaction (specified above the panels in Figure 1) with
weight βi

k, and xk, xk+1 are features involved in this interaction. xj

is drawn uniformly from (0.5, 1.5) when j = 1, 3, 5, 6, 8, and from
(−0.5, 0.5) when j = 2, 4, 7. Noise ε is Gaussian with zero mean
and variance adjusted to a specified signal-to-noise ratio. Each sim-
ulated dataset includes 20000 samples for training, 5000 for valida-
tion, and 5000 for testing. To model interactions, we use a concrete
dropout Bayesian neural network with 3 hidden layers of sizes 100,
100, and 100 nodes for gw(x). During training, we set the length-
scale of the Gaussian prior distribution to 10−4, temperature of the
Sigmoid function in the concrete distribution to 0.1, and the learning
rate of Adam to 10−3.
Comparison methods: We apply Bayesian M-GEH and NID on the
same trained BNN, using M = 11 which is determined by Δ2

M .
NID is applied on the mean NN of the trained BNN, as NID is de-
signed only for deterministic NN. We implement SHAP interaction
score with learning rate equal to 0.01, and a Lasso regression con-
taining all pairwise multiplicative interactions with regularization set
to 5 × 10−4. We include a linear regression model with the correct
functional forms for the true interactions and the multiplicative form
for all the other interactions as the ’Oracle’. We rank feature pairs ac-
cording to the absolute values of interaction scores from each method
from high to low. A good interaction measure should assign the av-
erage rank of true interactions as close to 1 as possible.
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Results: In Figure 1, we increase the signal-to-noise ratio (S/N) grad-
ually from 0 to see which method can recover the ground-truth inter-
actions with the smallest S/N. The panels in the figure are sorted
according to the variance of the corresponding interaction (which is
adjusted by weight βi

k). Interactions with higher variances (e.g. h6,
h4) should be easier to detect, because they contribute more to the
prediction. We find that 11-GEH identifies on average the true in-

teractions with a smaller S/N ratio than the other methods. While
it is impossible to assign the highest rank for all interactions, the aver-
age rank 11-GEH assigns is by far the highest, and the performance
of 11-GEH is close to that of the Oracle. SHAP interaction score
works very well for most interactions, but it fails to detect h4 and h1.
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Figure 2. Uncertainty estimation of interaction effects in a simulated
dataset. Most of true interaction effects (red crosses) are covered by the

corresponding 95% credible intervals (blue bars).
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Figure 3. Left: ROC curves for three global interaction measures on 100
datasets with same S/N. Right: Determining the number of clusters based on

rank weighted distance. When M = 11, increasing M will not affect
detected interactions significantly.

Figure 2 shows the estimated uncertainty of interaction effects ac-
cording to Bayesian 11-GEH based on concrete dropout (see Ap-
pendix 4 for a mean-field BNN). We observe that almost all true

interaction effects (red crosses) are covered by the correspond-

ing 95% credible intervals (blue bars), centered on the point esti-
mates (black dots). Figure 3 left shows the ROC curves for the three
global interaction methods introduced above on 100 datasets, where
FPR and FNR are calculated based on the decision rule from Section
4.1.3. We see that M-GEH has the highest AUC. Specifically, AEH

failed to detect h6 and h2, which are symmetric functions in dom(x)
and hence are cancelled out by AEH (thus a high FNR). On the other
hand, EAH failed to reject any false interactions on the basis of its
95% CI (thus a high FPR), so neither method is suitable (see details
in Appendix 3). Figure 3 right shows Δ2

M as a function of M on sim-
ulated data. When M ≥ 11, the detected interactions did not change
significantly by increasing M further, hence we selected M = 11.

5.2 Public real-world regression datasets

Datasets: We analyze 3 publicly available regression datasets: Cal-
ifornia housing prices, Bike sharing, and Energy efficiency datasets.
California housing prices dataset [31] aims to predict housing prices
using 9 features, such as location, number of rooms, number of peo-
ple, etc. Bike sharing dataset [10] predicts the hourly bike rental
count from environmental and seasonal information. Energy effi-
ciency dataset [37] aims to predict the load of heating and cooling
from the shape of a building. We use 70% of data for training, 20%
for validation, and 10% for testing.

Table 1. Average FPRs for different M on permuted datasets

AEH M-GEH EAH
California Housing 0.015 0.097 1.000
Bike Sharing 0.017 0.042 0.210
Energy Efficiency 0.013 0.051 0.089
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Figure 4. Visualization of one detected interaction for each dataset. The
colour shows the value of the regression target (light: high; dark: low).

Experimental setup: We design 3 separate experiments to illustrate
the benefits of the new proposed method: (1) we construct a null
hypothesis by permuting the target variable in each dataset, allowing
us to estimate FPRs of the different methods, (2) we modify the data
sets by injecting artificial interactions to the data sets (without per-
mutation), which establish a ground truth against which we compare
the results from the different methods, (3) we analyse the original
datasets without injecting any artificial interactions and report and
interpret the results.

In detail, in (1) we permute each data set 500 times. Since all the
interactions in permutation datasets are false, if any 95% CI excludes
0, it will be considered as a false positive, thus we can calculate the
FPRs for AEH, M-GEH, and EAH on each dataset. In (2), we inject
three types of interactions Iin: a multiplicative, an exponential, and a
division, whose detailed functional forms are given above the panels
in Figure 5. We only inject one interaction at a time. The output is
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Figure 5. Results on real-world datasets as ranks of the injected interactions for different interaction strengths w (smaller rank is better). Columns correspond
to the three datasets, and rows to different types of interactions. The detailed form of the interaction is shown above each panel. In California housing dataset, x
and y are the numbers of rooms and households. In bike sharing dataset, x and y are temperature and windspeed. In energy efficiency dataset, x and y are the

orientation and glazing area.

Table 2. Top 3 interactions for real-world datasets without injected interactions

Datasets Interacting Features M-GEH 95% CI PBayes PPermute

total room, population 1.532 (0.030, 3.034) 0.026 0.000
California Housing longitude, latitude 0.901 (0.241, 1.561) 0.003 0.000

total room, income 0.531 (0.065, 0.997) 0.011 0.000
workingday, hour 0.337 (0.253, 0.421) 0.001 0.000

Bike Sharing temperature, humidity 0.183 (0.141, 0.225) 0.001 0.000
hour, temperature 0.180 (0.122, 0.238) 0.002 0.000
roof area, wall area 1.223 (0.689, 1.757) 0.000 0.000

Energy Efficiency roof area, height 0.938 (0.539, 1.336) 0.001 0.000
compactness, roof area 0.699 (0.384, 1.013) 0.000 0.000

the sum of the true output and injected interactions: ỹ = y + Iin.
In (3), we explore the results by visualizing some top interactions
in each dataset. We also calculate a ’Bayesian’ p-value [15] for the
top interactions using our model and assuming the Gaussian distri-
bution of the interaction score (see Section 4.1.3), and compare these
with the corresponding p-values from permutation, which represents
a ’frequentist’ score of significance. The same settings are used as in
the previous section, except that only one hidden layer with 30 units
is used for the third dataset, which has only around 600 data points.
Results: The optimal M for original datasets is 10, 9, and 15 for
California housing, bike sharing, and energy efficiency, respectively.

Table 1 shows the results of experiment (1), i.e. estimating the av-
erage FPR of different global interaction measures on the 3 datasets.
As expected, AEH has the lowest FPRs, but it is unable to detect
complex interactions such as the one between working day and hour
in the bike sharing dataset (see Figure 4). EAH has the highest FPR,
and in the California Housing dataset in particular it considers all
false interactions significant. The FPRs for M-GEH are approxi-

mately correct (close to 5% when using 95% CIs to make deci-

sions).

Results with injected interactions (experiment (2)) of varying
strengths are shown in Figure 5. We only use M = 1 (i.e. AEH) in
this experiment to avoid selecting M every time; this gives a lower
bound of the performance of out method compared with other meth-
ods as it is the weakest interaction measure among the M-GEH fam-
ily. We see that 1-GEH is consistently the best (or shared best)

method in California housing and Bike sharing data sets, irre-

spective of the type of interaction. SHAP works well for the simple
interaction form (the first row), and small datasets (the third column).
We notice that SHAP and Lasso achieve better performance in the
third energy efficiency dataset than our method, because it is hard to
train a good neural network when the dataset size is small.

Table 2 shows results of experiment (3) which contains top 3
interactions in each dataset (without any injected interactions). M-
GEH, CI, and PBayes are the estimated means, credible intervals, and
Bayesian p-values from our method. We also show a p-value obtained
by permuting the target multiple times (PPermute), to create an empir-
ical null distribution of the maximum interaction score (details in
Appendix 7). All top interactions are meaningful and statistically

significant based on both our CIs and permutation. Examples of
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Figure 6. Higher-level feature interactions on MNIST dataset. The structure of the NN is simplified for illustrative purposes.

strong interactions are shown in Figure 4 (see more in Appendix 5).
One strong interaction in the California housing data set is between
longitude and latitude, which together specify the location that ob-
viously affects the price. As another example, whether the day is a
working day or not will affect the peak hours of bike renting.

5.3 Higher-level feature interactions in MNIST

Motivation: We aim to demonstrate the ability of our method to de-
tect interpretable interactions between higher-level features. Here,
higher-level features are those features learned by neural network
(i.e. nodes in deeper layers). For this, we design a classification task
where the positive label represents a combination of interpretable
characteristics of the input. The classification task here is to identify
a given combination of two digits, e.g. (5,3), and the inputs are ob-
tained by concatenating randomly chosen MNIST digits. Our expec-
tation is that nodes in upper layers represent interpretable properties
of the inputs (e.g. ”5 on the left”), such that an interaction between
two such nodes corresponds to the positive label (e.g. ”5 on the left”
and ”3 on the right”).
Datasets: We repeat the experiment twice: the first dataset consists
of pairs (7,4), (4,7), (0,4), (4,0), (7,0), (0,7), and the positive label
is (7,0); the second dataset consists of pairs (5,4), (4,5), (3,4), (4,3),
(5,3), (3,5), and the positive label is (5,3). These pairs and labels are
chosen randomly.
Experimental setup: We train a LeNet (2 convolutional and 3 fully
connected layers) with concrete dropout, and use M-GEH to detect
interactions between nodes in the second top fully connected layer,
where nodes can be regarded as some high-level features learned by
previous layers. Clustering is also implemented on the same layer,
and the optimal M for each task is 4 and 2, respectively. We provide
interpretations for these high-level features by finding one-digit im-
age inputs with white on the other side, e.g. (1,-) or (-,6) that, from
all possible one-digit images in the MNIST data, maximize the acti-
vation of the node. This is the activation maximization with experts
technique for interpreting nodes in intermediate NN layers [8], with
empirical distribution of digits in MNIST as the expert.
Results: Figure 6 shows the top two interactions in the second-
highest layer, and presents interpretations for the interacting nodes.
We see that all the interacting nodes represent digits related to the
prediction tasks instead of unrelated digits, such as 7 in the first task
or 3 in the second task. Interestingly, in both tasks the strongest

interaction is between nodes whose interpretation matches the

human intuition exactly. In the first task, (7,0) is obtained as an in-
teraction between ”7 on the left” and ”0 on the right”, and similarly
for the task of classifying (5,3). The second strongest interaction in
the (5,3) classification is between nodes with interpretations (4,-) and
(-,3), which may be interpreted as excluding digit 4 on the left, when
there is 3 on the right. The interaction between nodes which both
have interpretation (7,-) may be related to learning different parts of
digit 7.

6 Conclusion

We presented a novel method to learn global pairwise interactions
using Bayesian neural networks. Our work addresses the problem of
providing second-order explanations for neural network predictions
which, unlike the case of first-order explanations, is relatively under-
studied in the field of interpretable machine learning. In addition, the
method provides a practical means to extract meaningful information
about complex feature interactions from real-world data sets. Based
on the Hessian, the method is intuitive and easy to calculate, and,
unlike the alternatives, does not require further investigation of the
structure of the neural network. Other strengths of the method are
that it provides uncertainty for the detected interactions, and comes
with appealing theoretical properties which ensure that by improv-
ing the underlying BNN, interaction detection can be improved. The
method empirically outperformed several state-of-the-art baselines
and, for the first time, we also demonstrated the ability to learn inter-
pretable interactions between higher-level features.

To estimate global effects for complex interactions, it is necessary
to merge information from possibly conflicting regions in the input
space. We resolved this by clustering the data in the input space and
aggregating interaction scores across the clusters. A simple L2 dis-
tance was used for clustering. Combined with a heuristic to define
the number of clusters, this approach performed consistently well in
the experiments. However, this may not be the optimal choice as it
ignores interactions when calculating the distance. We leave it for
future work to explore alternative ways to define the clustering.

7 Appendix

The appendix can be found at:
https://github.com/aalto-ml4h/InteractionDetection
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