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Abstract. Click-Through-Rate (CTR) prediction is one of the most
important challenges in the advertisement field. Nevertheless, it is es-
sential to understand beforehand the voluminous and heterogeneous
data structure. Here we introduce a novel CTR prediction method
using a mixture of generalized linear models (GLMs). First, we de-
velop a model-based clustering method dedicated to publicity cam-
paign time-series, i.e. non-Gaussian longitudinal data. Secondely, we
consider two CTR predictive models derived from the inferred clus-
tering. The clustering step improves the CTR prediction performance
both on simulated and real data. An R package binomialMix for mix-
ture of binomial and longitudinal data is available on CRAN.

1 Introduction

1.1 Context

The field of advertising, and more particularly online advertising, has
been disrupted by the development and success of Real-Time Bid-
ding (RTB) [20, 21]. This process connects advertisers and publish-
ers in real time and gives them the advantage of personalization via
an auction system: the publisher provides a set of information about
the ad slot context and the advertiser can decide whether he is inter-
ested in the auction or not. This system reduces ineffective targeting.
We call ”impression” the advert’s display on the end user’s device.
The Click-Through Rate (CTR) is the most common way to estimate
the efficiency of an advertising campaign. It measures the ratio of the
number of times the user has clicked the ad and the number of times
the ad has been displayed. Many statistical challenges emerged from
online advertising including CTR prediction [2, 3, 9, 19].
In this paper, we address a real-world online issue from TabMo2 ad-
vertising platform. TabMo is an adtech company managing the cam-
paigns for the advertisers. Its business objective is to provide the best
ad slot context for every campaign and increase Key Point of In-
terest as CTR for advertisers. Constraints coming from production
context make the issue interesting in many ways. The data volume is
huge. Every second the predictive model has to answer around 1 mil-
lion auctions with the most adequate advertising campaign among
all available. Also, we are in case of rare events: number of click
is very low compared to the number of impressions (around 1 click
every 1000 impressions). The very imbalanced data makes predic-
tions difficult. Despite all the studies (see Section 1.2) conducted on
the prediction of user response in an online advertising context, the
prediction of CTR remains an open and still relevant issue.
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1.2 Related work

The last three years, Neural Network emerged in the online advertis-
ing state-of-art for CTR prediction. At the same time, the dimension
of features and the data volume has increase. That is one of the
reasons why a lot of research and continuous improvements have
been done in model structure Neural Network. [3] developed an
hybrid predictive model using both the advantages of linear model
and deep network architecture. Predictions from both component
are combined to produce a final prediction. In [19], the proposed
architecture of the DNN focuses on taking into account interactions
between variables beyond order 2. Without the need of a manualy
preprocessing data and with a quite simple implementation for this
kind of modeling, authors assume that there is a significant decrease
of the logloss value compared to a classical DNN architecture.
Neural networks take advantage of their multi-layered architecture
and achieve good predictive results. However, their complexity
makes it difficult to understand the model.
Factorization Machines (FM) [16] models second order polynomial
with a latent vector for each feature. The interaction between two
features is calculated by the inner product of the latent vector from
those variables. The advantage of this method is that it reduces the
complexity of the model when interactions are taken into account.
A lot of extensions emerged from FM [6, 8] in the context of CTR
prediction where capturing the information of feature conjunctions
can be relevant. [8] proposed a modeling based on levels features
interactions while [6] combined the pertinence of Neural Network
with FM in the same architecture. However, until now, the Factor-
ization Machines are mostly used for recommender systems.
Predicting CTR using logistic regression is also one of the most
studied models in the literature [2, 9]. Logistic regression models
present the advantage of an easy implementation for real-world
predictive problem. However, to model more complex and hetero-
geneous data structures from real case studies, the use of logistic
regression may be limited. The use of mixture models allows for
better consideration of heterogeneity and data specificity.

Mixture model of Generalized Linear Model (GLM) is a well-
studied statistical problem in the literature; [12] gives a complete
overview of different existing methodologies for model-based clus-
tering. The number of R packages have grown significantly in vari-
ous domains of application (such as biology, physics, economics...)
to model data with a finite number of subpopulations. Mixmod [18] is
a popular tool for partitioning observations into groups. The package
allows to fit Gaussian mixture models with different volume, shape
and orientation of the clusters. It can also model mixtures of multi-
nomial distribution. The mclust [5] package is another tool for finite
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normal mixture modeling. In the case of longitudinal data, the pack-
age flexmix [10] provides a mixture modeling when there are M in-
dividuals with respectively nM observations. But to the best of our
knowledge, the existing packages cannot model longitudinal data in
a binomial context

1.3 Contribution

This paper addresses a real-world online advertising issue. Using the
traffic log of a set of campaigns, we build an efficient method that
predicts a context specific click probability for each campaign. Our
main contributions are the following:

• We describe a GLM-based clustering approach for longitudinal
data in a binomial context. Campaigns are clustered according to
their CTR depending on the advertising context described by con-
tinuous and categorical variables. The longitudinal data is defined
as repeated observations for each campaign with a specific length.
The temporal periodicity is captured via 2 categorical variables:
day and time slot. Time slot separation was established with do-
main experts. This model-based clustering allows us to group ad-
vertising campaigns with similar profiles.

• We predict context specific CTR for each campaign using this
model-based clustering as a preliminary step. Various clustered-
based prediction schemes are considered.

• Using GLM mixture for CTR prediction leads to good perfor-
mance while preserving a simple model architecture and a rapid
deployment process. Experiments are performed on data extracted
from a real-world online advertising context.

• We developed an R package: binomialMix (available on CRAN)
implementing a GLM-based clustering approach for longitudinal
data in a binomial context.

1.4 Outline

Section 2 presents the two-step statistical modeling and the resulting
implementation. The first step describes the mixture of binomial for
longitudinal data estimated with an Expectation-Maximization (EM)
algorithm. The second step builds a predictive model to provide a
probability of click using the clustering step. In Section 3, we (i)
present the dataset, the evaluation metrics, the results on simulated
data and (ii) challenge five predictive models on real data. Three are
considered as baseline. The two others use mixture model estima-
tions to predict a probability of click in a given context. We evaluate
the relevance of clustering and the performance of the predictions.

2 Proposed Approach

2.1 A binomial model for the CTR

The proposed approach to address the problem of CTR prediction is
described in two steps. First, as the observed metric is the click ratio
(CTR), we propose a mixture model of Generalized Linear Model
(GLM) to model longitudinal data. Then, taking into account the re-
sulting ad campaigns clusters, we develop a methodology to predict a
probability of click. The proposed model describes each advertising
campaign c as longitudinal data. The CTR is the target variable.

Each day is divided into H time slots. Each campaign c is
observed Jc days and some slots could be missing. Let us consider
Ycjh the number of clicks for each campaign c at a specific time
slot (j, h), for j = 1, . . . , Jc and h = 1, . . . , H . We assume that
each variable Ycjh follows a distribution of the exponential family

as introduced by [11], defined in Equation (1).

∀c = 1, . . . , C, ∀j = 1, . . . , Jc, ∀h = 1, . . . , H

fYcjh(ycjh, θcjh, ψ) = exp

(
ycjhθcjh − b(θcjh)

acjh(ψ)
+ d(ycjh, ψ)

)
(1)

where θcjh is the canonical parameter, ψ the dispersion parameter. b
and d are specific functions depending on the exponential distribution
chosen. We can define acjh as acjh(ψ) = ψ

ωcjh
with ωcjh a weighted

parameter for each observation.
Let us consider a binomial distribution for Ycjh with paramaters ncjh

and phs(c,j):
Ycjh ∼ B(ncjh, phs(c,j)) (2)

where ncjh is the number of observed impressions, phs(c,j) the click
probability of campaign c at time slot h and day of week s(c, j), with
s(c, j) = 1, ..., S. We have a focus on the ratio Ycjh

ncjh
for the follow-

ing.

In the case of the binomial, θcjh = log
(

phs(c,j)

1−phs(c,j)

)
. We can de-

fine a, b and d functions as follows: acjh(ψ) = 1
ncjh

, b(θcjh) =

log (1 + exp θcjh) and d(ycjh, ψcjh) = log
(
ncjh
ycjh

)
.

We define the logit function η = g(μ) = log μ
1−μ

where μ is the
expectation of ratio Y/n. Then, the function links the linear combi-
nation of the β parameters with the expectation E(

Ycjh

ncjh
):

log

(
E(Ycjh/ncjh)

1− E(Ycjh/ncjh)

)
= β0 + βH

h + βS
s(c,j) (3)

In Equation (3), βH
h and βS

s(c,j) coefficients are associated to the 2
categorical variables: time slot and day of the week. In the following,
the model will be extended by other advertising context variables (see
Section 3.4).

2.2 Mixture of binomial for ads clustering

The objective of our approach is to obtain a mixture model of bi-
nomial distributions. Considering that C campaigns come from K
subpopulations, the mixture allows to model the heterogeneity of
an overall population. We denote for each campaign c the den-
sity function fk(yc;φk), k = 1, ...,K with the model parameters
(φ1, ..., φK). Campaign density function can also be written as fol-
lowing: f(yc) =

∏fc
j=dc

∏H

h=1
f(ycjh), for all k = 1, . . . ,K

where dc and fc respectively are the first and last day of diffusion
observed for the campaign c. We assume that a campaign belongs to
the same subpopulation throughout the time.
The considered mixture model is:

f(yc;φ, λ) =

K∑
k=1

λkfk(yc;φk) (4)

where (λ1, ..., λK) are the mixing proportion with λk ∈ (0, 1) for
all k and

∑K

k=1
λk = 1. The log-likelihood logL is written:

logLn(Y ;φ, λ) =

C∑
c=1

log

{
K∑

k=1

λkfk(yc;φk)

}
(5)

For parameter estimation, the mixture model defined in Equation (5)
can be considered as an incomplete data structure model. We intro-
duce the hidden variable Zkc where Zkc = 1 when campaign c be-
longs to cluster k and 0 otherwise. Using the hidden variables, the
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log-likelihood for complete data is easier to manipulate for estima-
tion:

logLn(Y, Z;φ, λ) =

C∑
c=1

{
K∑

k=1

Zkc log (λkf(yc;φk))

}
(6)

The most popular way to estimate model parameters is to solve iter-
atively likelihood equations in order to obtain maximum likelihood
estimation for each parameter. When we do not have the analytic ex-
pression of the log likelihood, the most efficient algorithms to obtain
parameters estimation are the Expectation-Maximization (EM) type
algorithms introduced by [4].

E-Step For each iteration, the E-Step calculates the ex-
pectation of complete-data likelihood conditionally to observed
data y and current parameters {λk, φk}k=1,...,K . We consider
Q(φ|φ(m)) = E(logLn(Y, Z;φ, λ)|Y = y, φ(m)) at iteration m.
As E(Zkc|Yc, φ

(m)) = P (Zkc = 1|Yc, φ
(m)
k ), thanks to Bayes for-

mula, we calculate :

πkc = P (Zkc = 1|Yc, φ
(m)
k ) (7)

=
P (Yc|Zkc = 1, φ(m))P (Zkc = 1)∑K

l=1
P (Yc|Zlc = 1, φ(m))P (Zlc = 1)

(8)

=
f
φ
(m)

k

(yc)λk∑K

l=1
f
φ
(m)

l

(yc)λl

(9)

The probability πkc represents the probability that the campaign c
belongs to the cluster k at iteration m. π ∈ Mk×n is a matrix of
probabilities where the sum of each column is equal to one.

M-Step The M Step consists in maximizing Q(φ|φ(m)) in order
to update the model parameters. As we model a mixture of binomial,
there is no explicit solution for the βk parameters. We use the itera-
tive Fisher algorithm [14] to estimate βk at each M Step :

β
(m+1)
k = β

(m)
k −

(
E

[
∂2Q(φ|φ(m))

∂βk∂βk′

])−1
∂Q(φ|φ(m))

∂βk
(10)

This algorithm is based on Newton-Raphson algorithm, in which the

search direction of the new value
(
− ∂2Q(φ|φ(m))

∂βk∂βk′

)
is replaced by its

expectation. We recognize the Fisher Information expression.
Using the mixture model of binomial defined in Equation (1) and (3),
a Fisher algorithm iteration from Equation (10) leads to the following
estimation of parameters β(m+1)

k :

β
(m+1)
k =

(∑C

c=1
πkcM

t
cW

−1

cβ
(m)

k

Mc

)−1

×∑C

c=1
πkcM

t
cW

−1

cβ
(m)

k

[
Mcβ

(m)
k + ∂ηkc

∂μk

(
Yc
nc
− μk

)] (11)

with Mc the design matrix of the campaign c, μk the ratio of click
(CTR) expectation in cluster k. The diagonal matrices are defined :

W
cβ

(m)

k

= diag

(
1

ncjh

(1+expMcjhβ
(m)

k
)2

expMcjhβ
(m)

k

)
cjh

and

∂ηk
∂μk

= diag

(
(1+expMcjhβ

(m)

k
)2

expMcjhβ
(m)

k

)
cjh

For each step M, we repeat a few iterations of the Fisher scoring al-
gorithm.

This GLM model-based clustering is implemented in the R package
binomialMix (available on CRAN2). Note that the number of obser-
vations nc for each campaign c do not need to be equal.

2.3 Predict CTR from clustering results

According to the problem statement described in the Section 1, the
final goal is to predict the probability of click for each campaign c.
The predictions are made in order to choose one campaign c as soon
as there is an advertising position available. We consider five predic-
tive approaches. Three are considered as baseline: two naive baseline
predictions and a standard GLM (without mixture). The other two
predictive models are based on GLM mixture estimations.

A) A vector of zeros Data is very imbalanced: 71% of the CTR
value equals zero. The most naive baseline is to consider a CTR pre-
diction always equal to 0 no matter what the context is.

B) Yesterday’s CTR This second approach is an other naive way
to model the prediction. We consider that for each observation Ycjh,
the observed CTR at exactly the same time slot but one day before is
the predicted CTR for the current moment. We make the hypothesis
that from one day to another, CTR values remain stable in a similar
context.

C) Binomial predictive model We consider a classical Gener-
alized Linear Model with a binomial distribution as described in
equations (2) and (3). With this simple modeling, we analyze if there
is a relevant linear combination of features able to predict a click
probability for any given context for all the campaigns.

We consider these three models A), B) and C) as baselines.

D) Mixture of binomial The most intuitive methodology to im-
plement from clustering results is to use the estimated βk from each
cluster. With these estimations, we can naturally obtain prediction for
each cluster of campaigns.

E) Mixture of binomial + individual random effect for each clus-

ter We now assume that the nc observations (n =
∑C

c=1
nc) from

one campaign c are no longer independent. For each target CTR value
y, we define a random effect ξc to model dependence of observations
from a same campaign c. Lets consider η the logit function defined
for Equation (3). The Generalized Linear Mixed Model (GLMM) for
the C campaigns can be written

ηξ =Mβ + Uξ (12)

where ηξ is defined from linked function g : ηξ = g(μξ) with
μξ = E(Y |ξ). β ∈ RB is the vector of the B fixed effects. M
is the design matrix associated. We denote ξ ∈ RC the random ef-
fect vector of size C and U the design matrix. We suppose that ξc
follows a Gaussian distribution N (0, σ2Ic). Conditionally to ξ, the
model has the same properties as the GLM from Equation (2), (3).
In this approach, we run the GLMM model (see Equation (12)) for
each cluster using the R package lme4. The model estimates fixed
effects β as well as the random effect ξ, i.e. specific coefficients for
each campaign present in the cluster in question. Once all the param-
eters are estimated, we can calculate predictions for each campaign
and for each cluster.
2 https://cran.r-project.org/web/packages/binomialMix/index.html
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3 Experiments

3.1 Dataset

We consider a dataset from TabMo’s3 real traffic. The platform pro-
vides us with a very large volume of data as the incoming traffic hits a
million bid requests per second. The data has first been preprocessed
in order to obtain the expected format. We aggregate by campaign,
time slot, day of week and ad slot features the observed number of
clicks and impressions (number of times a given advertising is seen).
Some campaigns last few days and others are displayed for months.
The whole dataset contains 70123 rows and 12 columns. An extract
of 4 rows randomly chosen is available in Table 1. We differentiate 2
types of variables:

1. The response variable CTR (in bold) is calculated as the ratio
of the number of clicks (Ycjh) and the number of impressions
(ncjh). The data is very imbalanced with around one click for
1000 impressions.

2. The other variables are the explainable features used for the
modeling. Most of them are categorical as described in Ta-
ble 2. Time slot contains 6 different labels (00h-7h,7h-12h,12h-
14h,14h-18h,18h-00h) defined by domain experts and extracted
from timestamp variable. The ID column is a distinct of all the
373 observed campaigns for the dataset that we want first to clas-
sify and then predict CTR.

Table 1. Extracted rows from Dataset which is composed of 70123 rows,
12 columns and 373 advertising campaign

ID Timestamp DayWeek TimeSlot OS Support

622 2018-11-20 3 3 Android Site
622 2018-11-20 3 4 Android Site
377 2019-01-26 7 2 Android App
101 2018-12-02 1 4 iOS App

Ad Type Ad Length Ad Height Impressions Clicks CTR

banner 320 480 31 0 0

banner 320 480 57 1 0.017

custom 320 480 180 2 0.011

banner 300 250 64 0 0

Table 2. Description of explainable features used for the model-based
clustering

Type #Label Description

1-Day of Week Categorical 7 Monday to Sunday
2-Time Slot Categorical 6 Slots of few hours
3-OS Type Categorical 3 iOS, Android, Other
4-Support Type Categorical 2 Application, Site
5-Advertising Type Categorical 3 Example : Type 1
6-Advertising Length Numerical Pixels dimension
7-Advertising Height Numerical Pixels dimension

3.2 Evaluation metrics

Model choice metrics To select the right number of clusters in the
mixture model, we use the BIC criterion [17]. The selected model is

3 https://hawk.tabmo.io/

the one that minimizes its value. BIC is defined:

BIC = −2× (log L̂) +m× log (n) (13)

where (log L̂) is the maximized value of the incomplete log-
likelihood defined in Equation (5). m is the global number of pa-
rameters for the model and n the total number of observations in the
dataset.
We can also use the Integrated Complete Likelihood (ICL) criterion
[1] which is an adaptation of the BIC dedicated to clustering.

Clustering robustness metrics In order to compare clustering re-
sults, we use Adjusted Rand Index (ARI) introduced by [7]. It is
based on Rand Index (RI) [15] which is a measure of similarity be-
tween two partitions and calculates the percentage of pairs in agree-
ment. The RI and ARI values are between 0 and 1. A Rand Index (or
Adjusted Rand Index) equal to 1 corresponds to two identical clus-
tering partition. The Adjusted Rand Index is a corrected version of
the Rand Index. The calculation of this index is presented in Equa-
tion (14) with notation from the contingency table described in Table
3. In this table, we consider two partitions P andQ with respectively
k and j clusters.

ARI =

∑
l,k

(
njk
2

)
−
[∑

l

(
nl.
2

)∑
k

(
n.k
2

)]
/
(
n
2

)
1
2

[∑
l

(
nl.
2

)
+
∑

k

(
n.k
2

)]
−
[∑

l

(
nl.
2

)∑
k

(
n.k
2

)]
/
(
n
2

)
(14)

Table 3. Contingency table for two clustering partitions P and Q

Partition 1
Partition 2 p1 p2 . . . pk Sums

q1 n11 n12 . . . n1k n1.

q2 n21 n22 . . . n2k n2.

. . . . . . . . .
. . . . . .

...
ql nl1 nl2 . . . nlk nl.

Sums n.1 n.2 . . . n.k n = n..

Predictive accuracy metric In order to evaluate the predictive ac-
curacy, we consider the logloss [13]. The logloss is used to calculate
the difference between a prediction and its associated target variable
(which is between 0 and 1). For example, if a model predicts a prob-
ability p̂ = 0.004 and that true observation is 1, the logloss will
be very bad. Logloss increases as the predicted probability diverges
from the actual label. In our case, each observation is an aggrega-
tion. We study the number of times an ad is clicked (ycjh) among
the number of times the ad is displayed (ncjh) for each campaign c
at a specific time j, h (see Equation (2)). We define the number of
”no click” : ncjh−ycjh. The logloss (LogLosscjh) is calculated for
each observation of the dataset (Equation (15)).

LogLosscjh = −(ycjh log p̂+ (ncjh − ycjh) log (1− p̂)) (15)

The resulting value that we want to analyze is the mean logloss :

LogLoss =

∑
c

∑
j

∑
h
LogLosscjh∑

c

∑
j

∑
h
ncjh

(16)

where the numerator is the sum of logloss for each aggregated obser-
vations and the denominator is the total number of impressions.
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3.3 A short simulation study

Before evaluation on real data with significant size, we carry out a
two-step simulation study: in the first step, we try to find the right
partition when we know the model. In the second step, the objective
is to find both the right model and the right partition.

We first assess the ability of our approach to find the right parti-
tion when the Generalized Linear Model is known. We simulate ratio
of clicks for C (here, C = 373) advertising campaigns, uniformly
distributed in K = 2 to 5 clusters. For each cluster, the CTR is sim-
ulated according to a binomial distribution with only 2 explanatory
variables: day and time slot. Expectation of the rate of clicks is se-
lected in 3 different intervals ([0.2, 0.5], [0.1, 0.2], and [0.01, 0.1])
so that we can estimate the impact of a low CTR in the modeling. 10
simulations were carried out in each situation. The results are pre-
sented in Figure 1. The number of clusters is correctly estimated for
2 and 3 simulated clusters, regardless of the click rate expectation.
From 4 simulated clusters, the number of clusters is not always cor-
rectly estimated, especially since the expectation of the CTR is low.
This is an expected behavior of the model since there are fewer cam-
paigns involved in parameter estimation in each class. Looking at the

0.2<Proba<0.5 0.1<Proba<0.2 0.01<Proba<0.1

2 3 4 5 2 3 4 5 2 3 4 5

0.0

2.5

5.0

7.5

10.0

K simulé

K estimé (BIC)
2
3

4
5

Figure 1. Comparison of the number of clusters simulated and estimated
by BIC when the model is known

Adjusted Rand Index in Figure 2, conclusions are mostly identical.
Indeed, up to 4 simulated clusters, for a click rate expectation greater
than 0.1, the estimated partitions are very close to the simulated par-
titions. The partition estimation quality deteriorates for a click rate
expectation of less than 0.1, even for a small number of clusters.
According to these first simulations, a data set of 373 campaigns al-
lows to correctly identify up to 3 to 4 clusters, for a CTR expectation
higher than 0.1 in the case of a binomial model defined by 11 free
parameters.
We are now evaluating the ability of our approach to find the right

0.2<Proba<0.5 0.1<Proba<0.2 0.01<Proba<0.1

K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5

0.7

0.8

0.9

1.0

Valeur de K simulée

In
di

ce
 d

e 
R

an
d 

aj
us

té

Figure 2. Adjusted Rand Index boxplot when the model is known

partition and model simultaneously. We simulated CTR for 400 ad-
vertising campaigns, uniformly distributed in K=2 to 5 clusters. The
click rate is simulated according to a binomial distribution with dif-
ferent parameters: 2 explanatory variables (day and time slot), a sin-
gle day feature, a single time slot feature, the intercept only. The
expectation of the click rate is set in the interval [0.2, 0.5]. For each
of the 8 simulations performed in each case, the model and partition
chosen are the ones minimizing the BIC criterion. The results for the
case K=4 and 2 explanatory variables model are presented in Table
4. The correct partition and model are found in 7 out of 8 cases, with
just an error on the partition for the last case. The results leads us to
the same conclusion in the other cases.

Table 4. Example of simulation where the number of clusters is equal to 4
and features used are day of week and time slot. The correct model and right

number of clusters is retrieved in 7 out of 8 simulations.

2 3 4 5

Day feature 0 0 0 0
Time Slot feature 0 0 0 0

Intercept only 0 0 0 0
Day feature + Time Slot feature 0 0 7 1

3.4 Results on Real Data

First results on real data concern mixture of binomial for advertising
campaigns. Based on Equation (3) and features described in Table 2,
the model (7 features, 19 free parameters) is defined in Equation (17)
with βOS

os corresponding to categorical feature OS type, βAS
as to Sup-

port Type, βAD
ad to Advertising Type (see Table 2). The advertising

size (length and width) is measured by two numerical variables xl
and xw.

log

(
E(Ycjh/ncjh)

1− E(Ycjh/ncjh)

)
= β0 + βH

h + βS
s(c,j) + βOS

os +

βAS
as + βAD

ad + αlxl + αwxw (17)

For sake of clarity, we keep the index cjh which should be aug-
mented by os, as, ad.

Optimal number of clusters The number of clusters varies from
K = 2 to K = 6. We evaluate the number of clusters with the BIC
criterion (Equation 13). Based on Figure 3, the optimal number of
clusters is K = 5. Same evaluation is done with ICL and gives the
same results with a minimum value for K = 5.

3e+05

4e+05

5e+05

6e+05

2 3 4 5 6
Number of cluster

BI
C

Figure 3. Evaluation of BIC for K = 2 to K = 6
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Inferred profiles The resulting mixture model is composed of 5
groups divided as following: clusters 1, 2, 3, 4 and 5 contain respec-
tively 39, 217, 29, 37 and 73 campaigns.
We analyze the inferred profiles for each cluster in Figure 4. As there
are 7 day of week levels and 6 time slot levels, the x-axis represents
the 42 combinations from those temporal features. The scale of the
y-axis is the mean CTR estimated (in percentage).
Each figure corresponds to a cluster. From left to right on the top
line, cluster 1, cluster 2 and cluster 3 are respectively displayed. On
the bottom line, still from left to right, are displayed cluster 4 and
cluster 5.
Figure 4 displays the mean estimated profiles for the 18 possible
combinations of features levels, for banner width set to 320 and ban-
ner length to 480. The highlighted profile for cluster corresponds to
the combination: Android, Application and Advertising Type 3. This
is the configuration we want to compare. The scale of the y-axis is

Figure 4. Estimation of inferred profiles for each cluster when Type of OS
is Android, Type of support is Application, Ad Type is of Type 3 and Ad size

is 320x480

different from one cluster to another. For cluster 1, the average CTR
is around 0.2 while for the other clusters, the average CTR is well
below 0.1. For any given combined levels, the inferred profiles are
very different. We conclude that the clustering model groups adver-
tising campaign with similar profiles and distinguishes specific types
of campaigns from one group to another one. We analyze more in de-
tails two clusters. In Figure 5, eight different profiles are displayed.
Dash line represents profiles when Support Type level feature is Ap-
plication. Solid line is used for Site level. Red shaded lines corre-
spond to Android profiles and blue ones to iOS.

• Cluster 1 groups campaigns with high CTR, especially for Site
support and advertising of Type 3.

• Cluster 5 is composed of campaigns mainly affected by the App
or Site feature, regardless of the type of advertising and the type
of OS.

Prediction accuracy We evaluate the predictive performance of
the models described in Section 2. Models (A) and (B) are naive
modeling whose learning is respectively done from a vector of zeros
or from information of the previous day. Model (C) is a generalized
linear model with a logit link function with the features described
in Table 2. Models (D) and (E) result from the mixture model: in
model (D), we calculate the predictions based on the estimated β
coefficients for each cluster. For model (E), for each cluster, we run
a GLMM with a random ”campaign” effect. To compare accuracy
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Figure 5. Inferred profiles for clusters 1 and 5. Cluster 1 groups campaign
with high CTR, especially for Site support and advertising of Type 3. Cluster

5 is composed of campaigns mainly affected by the App or Site feature,
regardless of the type of advertising and the type of OS.

of the models, we calculate the mean logloss (Equation 16) in two
different cases:

1. Test 1: the dataset is extracted from one day randomly chosen
(15-04-19). For models A and B, there is no learning set since
we either use a vector of zeros or the vector of CTR observed
the day before. For the three other models, the learning dataset is
extracted from March 14th to April 14th, 2019.

Mean Logloss for baseline Models (A) and (B) are 0.52 and 0.11.
The binomial model (C) gives a mean logloss of 0.10. Models
(D) and (E) resulting from the clustering step have a mean logloss
respectively equal to 0.0812 and 0.0799. The addition of a random
effect for each campaign ID seems to be relevant since the model
(E) mean logloss outperforms other modeling.

2. Test 2: As the first test on one randomly chosen day provides good
results, we repeat the same test procedure as before but on more
days. We make the test and learning timestamp window evolve
by shifting them from one day to the next one. For each new
test/learning set, we run the test procedure. It allows to obtain a
more global mean logloss since we learn and test on more distinct
datasets. For this experiment, two periods of the year are stud-
ied: November/December and March/April. These two moments
of year are very different. In November and December, activity on
the bidding platform is very dense due to the end-of-year holidays,
which generate a lot of advertising to display. March and April pe-
riod is much calmer in terms of traffic observed on the platform.
First, we shift from the first learning (01/11 - 30/11) and test set
(01/12) to the last learning (30/11 - 30/12) and test set (31/12).
Second, we do the learning on March/April. We shift from the
first learning (01/03 - 31/03) and test set (01/04) to the last learn-
ing (30/03 - 29/04) and test set (30/04). The predictive procedure
is done 30 times for both period. We analyze the resulting predic-
tions.

For both periods, Model (A) is widely outperformed by the 4 others.
The GLM mixtures outperforms the others: the mean logloss is the
lowest with models (D) and (E). The clustering step with the mixture
model seems to be relevant for the predicting step. Adding a random
effect for each campaign in Model (E) provides a better logloss com-
pared to the prediction with model-based clustering only. Even if it
seems to be a small improvement in terms of logloss evaluation, it
can lead to a significant increase for the company. In Figure 6 , we
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Table 5. Mean logloss value for five models described in Section 2.3. In
the first column, we calculate the mean Logloss for 30 days in December

2018. In the last column, the mean logloss is calculated for 30 days in April
2019

Mean Logloss (December) Mean Logloss (April)

Model (A) 0.2041 0.3468
Model (B) 0.0572 0.0948
Model (C) 0.0465 0.0711
Model (D) 0.0413 0.0598
Model (E) 0.0405 0.0592

Model (A) Model (B) Model (C) Model (D) Model (E)

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Rank 5

Rank 4

Rank 3

Rank 2

Rank 1

Number of test

Figure 6. Ranking of the five models (see Section 2.3) obtained for each of
the 30 tests performed in December 2018. Rank 1 corresponds to a model

whose logloss is minimized compared to other models. Rank 5 corresponds
to a model that has the worst logloss for a given test.

analyze more in details the mean logloss obtained for each models
and each test day of December 2019. Rank 1 corresponds to a model
whose logloss is minimized compared to other models. Rank 5 cor-
responds to a model that has the worst logloss for a given test. Model
(A) always provides the worst mean logloss. Model (D) and (E) re-
sulting from the clustering step almost always outperform the three
other models. We obtain the same conclusions as before for Table
5: a preliminary model-based clustering step improves the prediction
accuracy according to the mean logloss.

4 Conclusion and Perspectives

In this paper, we proposed a two-step methodology for the prediction
of CTR in an industrial context.
First objective was to obtain a mixture model for binomial and lon-
gitudinal data. In the second step, several predictive models were in
competition. Three were considered as baselines and the two others
used estimated coefficients from each cluster to predict a probabil-
ity of click. Using a preliminary clustering step before prediction
improved the performance of prediction with a relevant logloss de-
crease. For future work, we want to study the optimal history window
necessary for the learning step. We also want to expand the model by
adding new contextual features such as the IAB category4 for each
application/site. It could be useful for the predictive task to consider
second order interactions between features.
For further experiments, the model will be implemented in the large
scale auction system. The objective is to evaluate its performance by
A/B testing feedback in production.

4 https://www.iab.com/wp-content/uploads/2016/03/OpenRTB-API-
Specification-Version-2-5-FINAL.pdf
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