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Abstract. We propose a speech emotion recognition system based
on deep neural networks, operating on raw speech data in an end-
to-end manner to predict continuous emotions in arousal-valence
space. The model is trained using time and frequency information
of speech recordings of the publicly available part of the multi-modal
RECOLA database. We use the Concordance Correlation Coefficient
(CCC) as it was proposed by the Audio-Visual Emotion Challenges
to measure the similarity between the network prediction and gold-
standard. The CCC prediction results of our model outperform the
results achieved by other state-of-the-art end-to-end models. The in-
novative aspect of our study is an end-to-end approach to using data
that previously was mostly used by approaches involving combina-
tions of pre-processing or post-processing. Our study used only a
small subset of the RECOLA dataset and obtained better results than
previous studies that used the full dataset.

1 INTRODUCTION

Emotions play an important role in human communication and can
be observed in different channels such as speech and facial expres-
sions. In fact, affective information is a fundamental component of
human and machine communication [30]. Combination of differ-
ent modalities such as physiological signals [20], audio [48, 26],
video [12], hand gestures [24], and body movement [6] leads to
many advancements in the field of affect recognition such as safe
driving, security, and mobile health [22]. Automatic affect recog-
nition systems can help to provide natural interfaces between hu-
mans and machines, whereby affect processing systems are de-
signed to recognize and interpret human emotions and help the
machine respond to perceived emotions. Understanding emotional
states through speech signals as the fastest communication tool be-
tween humans has been investigated by many researchers in the
past [8, 37, 17, 25, 38, 27, 16, 10, 39].

Applications of emotion recognition can be found in a range of
areas. For instance, emotional states have been used for improving
the learning processes and increasing the performance of e-learning
systems [47]. Web designers and service providers try to modify and
display the layout, content, and ads according to users’ profiles that
can be affected by their emotional states [15]. Speech emotion recog-
nition systems can be used in call centers, where the aim is to im-
prove the quality of call answering systems by giving appropriate
feedback taking the emotional state of callers into account [2]. In the
video games industry, that belongs to the wide range of entertain-
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ment applications, designers work on incorporating affective states
and dreams of players into the gameplay [15]. Speech emotion recog-
nition also finds application for violence detection systems in public
places [1].

With the success of Deep Neural Networks (DNN) in solving com-
plex machine learning problems in recent years, research in medical
science, psychology, big data analysis, speech and speaker recog-
nition, and paralinguistic problems tried to find improved solutions
based on DNNs. Numerous researchers in academia, but also in in-
dustry are interested in this active area of research, and it has resulted
in several groundbreaking improvements for many practical prob-
lems such as computer vision, human-machine interaction, speech,
and natural language processing [29].

To date, most of studies on speech emotion recognition have uti-
lized common hand-crafted features such as Mel-frequency Cep-
stral Coefficients (MFCCs), Perceptual Linear Prediction (PLP) co-
efficients, and supra-segmental [32] for emotion classification. To
this end, following extraction of these features referred to as low-
level descriptors (LLDs), by applying some statistical functions such
as mean, variance, and skewness to each of these LLDs, the high-
level statistical functions (HSFs) are calculated. One functionality
of the HSFs is describing the temporal variations of different LLDs
that contain emotional information [23]. However, recent research
methodologies have been directed towards end-to-end optimization,
which only requires a minimum of prior human knowledge about the
task and the data. The networks will eventually learn an intermediate
representation of unprocessed input or raw data, that is necessary for
real-world applications [9]. In the speech emotion recognition do-
main, limited research has been completed on end-to-end emotion
recognition tasks [43, 44, 45, 40].

Inspired by the advancements in DNNs, we present an automatic
affect recognition system that uses speech signals in an end-to-end
manner. We introduce a deep Conv-RNN architecture based Gated
Recurrent Units (GRU) [5] to extract audio features as well as to
perform a regression task. Lin’s Concordance Correlation Coeffi-
cient (ρc) [18] introduced by the Audio-Visual Emotion Challenges
(AVECs) is used as similarity measurement tool between the net-
work prediction and gold-standard, derived from the annotations of
a dimensional model of emotion.

In our proposed model, the raw audio data is considered as the
main input to the model. In addition, as a form of data augmenta-
tion, the FFT of the input signal is fed to the model to improve its
performance.

The Remote Collaborative and Affective interactions (RECOLA)
database [34] was used to show the performance of the proposed
audio model. As the complete database is not publicly available, the
model has been trained and validated on the part of the database that
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is publicly available. This database is recorded for the study of socio-
affective behaviors from multimodal data [33]. This dataset has been
used as the benchmark in AVEC challenges, and hence allows us to
compare our model with other state-of-the-art models that use the
same data.

The remainder of the paper organized as follows: Section 2 dis-
cusses related work on the speech emotion recognition systems. The
contribution of this paper is presented in Section 3. Section 4 in-
troduces the proposed audio model. Section 5 describes the dataset.
Section 6 presents the experimental results, and Section 7 concludes
the paper.

2 RELATED WORK

There exist sufficiently comprehensive surveys on speech emotion
recognition (SER) efforts using traditional machine learning algo-
rithms before 2011 [8, 28, 46]. Hence, in this section, we focus on
discussing related work in speech emotion recognition with DNNs
from 2011 onwards. The methodology of automatic emotion recogni-
tion was highly affected by DNNs. Different variants of DNN archi-
tectures have been used in emotion recognition tasks such as speech
emotion recognition [19, 43, 13, 49, 9], facial emotion recognition
[48], and multimodal emotion recognition [44]. Since this paper in-
vestigates speech signals, recent advancements on speech emotion
recognition using DNNs are briefly reviewed in the remainder of this
section.

With the introduction of DNNs a gradual integration of DNNs
applied to the task of speech emotion recognition could be ob-
served. Li et al. [19] proposed a hybrid DNN-Hidden Markov Model
(HMM) using Restricted Boltzmann Machine (RBM) and trained
it on MFCCs extracted from eNTRFACE’05 and Berlin databases
for Speech Emotion Recognition (SER) in an unsupervised manner.
The obtained results were superior when compared with traditional
Gaussian Mixture Models, shallow-NN-HMMs with two layers, and
Multi-Layer Perceptron HMMs (MLP-HMMs), testifying the suit-
ability of DNNs for this task. Mao et al. [21] used a ConvNet ar-
chitecture that learned affect-salient features using sparse autoen-
coders of speech spectrograms. Mao et al. employed a variant of
the sparse autoencoder using unlabelled samples to learn local in-
variant features (LIF). These LIFs were then used as an input to the
feature extractor, outperforming traditional speech emotion recogni-
tion features. Mao et al. showed the performance of the proposed
model on four benchmarks involving the Surrey Audio-Visual Ex-
pressed Emotion (SAVEE), the Berlin Emotional Database (Emo-
DB), the Danish Emotional Speech database (DES), and the Man-
darin Emotional Speech database (MES). Jaebok et al. [13] used
Multi-Task Learning (MTL) and gender and naturalness as auxil-
iary tasks in DNN to enhance emotion model generalization. In their
DNN, they composed two hidden layers with 256 cells for LSTM-
MTL for modeling temporal dynamics of emotion and three hid-
den layers of 256 nodes for DNN-MTL. In recent work, Zhao et al.
[49] proposed deep 1-D and 2-D CNN-LSTM networks for speech
emotion classification on the Berlin emotion database [3] and on the
IEMOCAP database [4]. Zhao et al. used two different architectures,
1-D CNN-LSTM, and 2-D CNN-LSTM, that, both comprised four
local feature learning blocks and one LSTM layer. Using the 2-D
CNN-LSTM network, they achieved 95.33% and 95.89% classifi-
cation accuracy on the Berlin database for speaker-dependent and
speaker-independent tasks, respectively. Zhao et al. achieved recog-
nition accuracies of 89.16% and 52.14% on the IEMOCAP database
for speaker-dependent and speaker-independent tasks, respectively.

Tatinati et al. [40] proposed an end-to-end speech emotion
recognition system using multi-scale convolution neural networks
(MCNN) to detect features at various time scales and frequencies
from raw speech signals. They showed that this tunable convolution
network on the SAVEE emotion database improves the performance
of the emotion recognition system compared to existing methods. In
another study, Trigeorgis et al. [43] introduced an end-to-end speech
emotion recognition system based on a deep convolutional recurrent
network using the whole RECOLA dataset. They used the convo-
lutional layers to extract features from raw audio data, and using
Bidirectional Long Short-Term Memory (BiLSTM) layers they cap-
tured the temporal dependencies between the sequences of the au-
dio frames. Also, they performed some pre-processing on the input
and performed many post-processing steps such as median filtering,
centering, time-shifting, and scaling to improve the prediction of the
network, especially in the validation phase. More recent work [45]
proposed a deeper network for continuous emotion recognition from
the speech signals in the whole RECOLA dataset. They used three
convolutional layers for feature extraction from the raw speech sig-
nal that each convolution layer followed by a max-pooling layer. The
authors select the stride of each pooling layer such that the rate of
overlap between the kernel size and stride of the pooling layer re-
mains lower than 0.5. Also, they used two stacked LSTM layers on
top of the convolutional and pooling layers, to consider the contex-
tual information of the input data. Moreover, they used the same pre-
processing and post-processing steps that were used in [43] to im-
prove the prediction of the network. Most of the studies covered by
literature for speech emotion recognition utilized hand-crafted au-
dio features, and those that used raw signals, performed either pre-
processing on the raw audio data or a chain of post-processing steps
on the prediction of the network or both. In the present study, we pro-
pose a model trained in an end-to-end manner, with minimum pre-
processing on speech data and without post-processing steps applied
to the prediction of the network.

3 CONTRIBUTION OF THIS WORK

The main contribution of the present study is to use a relatively small
set of data for training a deep neural network model on the time and
frequency domain information of the raw audio data in an end-to-
end manner. To our knowledge, this is the first work in literature that
uses such a small set of raw audio signals as the input to the network,
where the raw input is only complemented by the FFT of the sig-
nal. No post-processing on the raw prediction of the network is per-
formed. All previous end-to-end learning models applied some pre-
processing on the input data and a chain of post-processing steps on
the prediction of the network [43, 44, 45]. The proposed model that
uses the information of the time and the frequency domains shows
very good performance for speech emotion recognition tasks, espe-
cially for the case of the arousal state. In fact, adding the informa-
tion of the frequency domain acts as a data augmentation method
to reduce the over-fitting problem caused by the low volume of the
data during the training phase. The other point to mention about our
neural network model is that it was trained using a similar number
of CNN layers as the state-of-the-art end-to-end emotion recogni-
tion model of Tzirakis et al. [45] but used a smaller subset of the
RECOLA dataset that was used by them for training. In all other
end-to-end studies that use the RECOLA dataset, the authors have
used the data of 16, 15, and 15 subjects for training, validation, and
testing, respectively. In this paper, since the whole of the RECOLA
dataset is not publicly available, we applied k-fold cross-validation
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and utilized the data of 9 subjects for training and validating, and the
data of separate 9 subjects for testing.

4 PROPOSED MODEL

In this study, we propose a Conv-BiGRU network as a feature extrac-
tor and predictor, to detect emotional states from speech signal data.
Taking into account the characteristics of the time and frequency in-
formation in raw speech signals, we designed the deep speech emo-
tion recognition model shown in figure 1. The design of our model
and the associated experiments took into account experience from a
series of pilot experiments where we tested different combinations
of batch sizes, sequence lengths, and numbers of hidden layers. The
final model comprises several stages where the different parts can be
described as follows:

Stage 1: Two different inputs, the raw audio signal in the time-
domain (upper stream in figure 1) and frequency-domain (lower
stream in figure 1), with a specific time sequence length, are fed to
the network. As illustrated in figure 1, there are three convolutional
layers that extract features at the sampling rates of 16 kHz, 8 kHz,
and 4 kHz. In the 16 kHz sampling rate of the input signal, each 1-
sec sequence of the input signal corresponds to a 16000-dimensional
vector.

Stage 2: Each input passes through a convolutional layer (Conv
Layer 1) with a filter size of 40 and a kernel size of 16 to extract the
finer-scale features of the speech signal.

Stage 3: In this stage, two max-pooling layers with different stride
sizes are applied to the time and frequency domain features. A max-
pooling layer with a stride of 2 (M-P1), decreases the frame rate of
the data in the time domain. The max-pooling layer with a stride of
2 can be used as a down-sampling method to convert the input signal
from 16 kHz to 8 kHz. In the frequency domain, the pooling layer
with a stride of 8 (M-P) is applied across the channel to decrease the
dimensionality of the data. In Stage 8, the output of the pooling layer
in the frequency domain will be added to the final feature vector that
is used as the input of BiGRU.

Stage 4: The second convolutional layer (Conv Layer 2) extracts
the long term characteristic features of the speech signal. To this pur-
pose, a convolution layer with a kernel size of 512 and a feature map
size of 20 is applied to the input signal in the time domain.

Stage 5: In the time domain, the second pooling layer (M-P2) with
a stride of 2 is applied to down-sample the signal to 4 kHz. As the
telephony range of the human voice is below 4 kHz, considering the
information extracted from this range can improve the performance
of the network.

Stage 6: The third convolutional layer (Conv Layer 3) with a chan-
nel size of 10 and a kernel size of 1024 is applied across the time
domain to extract more long term characteristics and higher-level ab-
stractions of the input speech signal.

Stage 7: The final max-pooling layer (M-P3) with a stride of 8 is
applied across the channel to reduce the dimensionality of the data.

Stage 8: The output features of the third max-pooling layer (M-
P3) in the time domain and the output of the first pooling layer in the
frequency domain (M-P) create the final feature vector that is used as
the input of the BiGRU.

Stage 9: A two stacked-layer Bidirectional Gate Recurrent Unit
(BiGRU) is used on top of the convolution and max-pooling layers
to keep the temporal dependency between the samples in a sequence
of audio frames and capturing the contextual information of the input
data. When the training set is small, the GRU usually shows better
results than LSTM.

Stage 10: The last BiGRU layer is followed by a linear fully
connected layer with two outputs, corresponding to the arousal and
valence dimensions.

Additional notes and details of the model:

• The first convolutional layer (Conv Layer 1) is followed by a
ReLU function.

• All convolutional layers are followed by a batch normalization
term where a momentum of 0.1 has been added.

• In several stages we employed max-pooling as a down-sampling
method. Although resampling a signal from one frequency to a
higher or lower frequency is a complicated process, in this case,
the pooling layer operates like a down-sampling method. To un-
derstand the performance of the max-pooling layers for down-
sampling we ran a number of tests: After the first convolutional
layer, both, a down-sampling method and a max-pooling layer
with a stride of 2 have been used in parallel to down-sample the
data to 8 kHz. The CCC that was calculated between the outputs of
the two down-sampling methods was above 0.95 indicating a high
correlation between the outputs of the two methods. This means
both methods perform similar in our situation but max-pooling is
faster and simpler.

• Dropout regularization terms have been added in the time and fre-
quency domain streams after each convolutional layer [41] to pre-
vent over-fitting of the model. The dropout probability was set to
0.5 for the first convolutional layer (Conv Layer 1), and 0.75 for
other convolutional layers (Conv Layers 2 and 3).

• The recurrent GRU layers address the sequence nature of the audio
data and capture any long-term dependencies in the signal stream.
The input feature size of the GRU layer is 320 in all experiments
to match the structure of available data of the RECOLA database.

5 DATASET

Our study used the Remote Collaborative and Affective (RECOLA)
database introduced by Ringeval et al. [34] as benchmark data for
emotion recognition. This database consists of 9.5 hours of record-
ings of 46 French-speaking participants in four modalities; au-
dio, visual, and two physiological (electrocardiogram (ECG) and
electro-dermal activity (EDA)). The annotation was performed by
six French-speaking assistants for each 40 msec interval within the
first five minutes of interaction. This has resulted in 7500 values
for arousal and valence states for each 5-minute video clip. The
RECOLA provider team policies and the consent matter permitted
only the data for half of the participants to be available in pub-
lic. Consequently our study was restricted to use only that half of
the data. In the RECOLA dataset, the time-continuous prediction
of spontaneous emotions (arousal and valence) is considered. In the
present study, the part of the RECOLA dataset that was used in the
AVEC challenge has been utilized to make the performance of our
network more comparable with a state-of-the-art model. This part of
the RECOLA data includes the records of 27 subjects that are di-
vided equally into 9 subjects for training, 9 subjects for validation,
and 9 subjects for testing. Since the labels of the test data are only
available for participants of the AVEC challenge, we used 10-fold
cross-validation, where we used the data of 9 subjects for training
and validating, and the data of separate 9 subjects for testing.

A. Bakhshi et al. / End-To-End Speech Emotion Recognition Based on Time and Frequency Information Using Deep Neural Networks 971



 

 

M-P1 

Conv Layer 1 Conv Layer 2 Conv Layer 3 BiGRU 

b – batch size    ,    s – sequence length    ,    n – sample size    ,    M-P – Max-Pooling 

Arousal 

Valence 

Outputs 

Linear Fully 

Connected 
Speech Signal 

b × s × n 

b × s × 2 

M-P 

FFT 
Conv Layer 1 

M-P2 M-P3 

Figure 1. Proposed network architecture

6 EXPERIMENTS AND RESULTS

6.1 Objective function

In our experiments we use the Concordance Correlation Coefficient
(ρc) [18] to evaluate the performance of our proposed emotion recog-
nition model on speech signals extracted from video clips in the
RECOLA database. Unlike most previous work that minimizes the
MSE during training the network and then evaluates it using ρc
[32, 31], we trained and evaluated our model using this metric (ρc)
directly. That is, Lc = 1− ρc is used as an objective function where
ρc is fully differentiable and can be integrated into gradient descent.
Hence the cost function Lc that we used in the training and the eval-
uation phases can be described as follows:

Lc = 1− ρc = 1− 2σ2
xy

σ2
x + σ2

y + (μx − μy)2
(1)

where μx = E(x), μy = E(y), σ2
x = var(x), σ2

y = var(y), and
σ2
xy = cov(x, y). To minimize Lc (or maximize ρc), the gradients

of Lc with respect to the last layer are backpropagated, where

∂Lc

∂x
∝ 2

σ2
xy(x− μy)

ψ2
+

μy − y

ψ
, (2)

where ψ = σ2
x + σ2

y + (μx − μy)
2 and all vector operations are

performed element-wise [44]. Since the mean and variance of x have
to be estimated as part of this approach, the gradient described in
equation (2) can only be used at batch mode [11].

6.2 Experimental setup

In this paper, various combinations of batch sizes and time-sequence
lengths have been considered for evaluating the performance of the
proposed model. We conducted several experiments where different
segmentations of the raw speech signal were used as input: Each ex-
periment used a fixed segment length. The segment length of the dif-
ferent experiments were 2, 4, 6, .. , 20 sec. At a 16 kHz sampling rate,
each 1 sec corresponds to a 16000-dimensional vector. Hence, the 2,
4, 6, .. , 20 sec segments correspond to 32000 to 320000 dimensional
input vectors.

In the training phase, the RMSProp optimizer [42] was used be-
cause it performed better in our pilot tests than other optimizers such
as Adam [14], SGD [36], and Adagard [7]. A fixed learning rate of

10−4 with a learning rate decay of 10−5 was used throughout all our
experiments.

6.3 Experimental results

The prediction performance of the model for different time sequence
lengths and batch size 25 on the test set is shown in table 1. In this
table, the prediction values for arousal and valence are the average
prediction results of several runs, and the value in parenthesis is the
standard deviation from the mean.

Table 1. The table shows the prediction performance of the proposed
model for different input time sequence lengths and batch size 25. The best

results are highlighted in bold font.

Sequence Length (sec) Arousal Valence

2 0.398 (0.0009) 0.142 (0.0016)
4 0.496 (0.0015) 0.174 (0.0034)
6 0.548 (0.0011) 0.237 (0.0019)
8 0.646 (0.0010) 0.266 (0.0025)

10 0.622 (0.0038) 0.246 (0.0038)
12 0.635 (0.0047) 0.243 (0.0036)
14 0.649 (0.0006) 0.229 (0.0022)
16 0.650 (0.0106) 0.209 (0.0052)
18 0.629 (0.0204) 0.181 (0.0477)
20 0.624 (0.0325) 0.176 (0.0150)

The values in parenthesis indicate the standard deviation.

As can be seen from table 1, for the Arousal dimension, the pre-
diction performances of the network for time sequence lengths be-
tween 8 sec to 16 sec are very similar and the best performance was
achieved for the sequence length of 16 sec. In case of the Valence
dimension, the best prediction performance was achieved for 8 sec
long input time sequences. Similar as in the case of the Arousal di-
mension, the prediction performances of the network for the Valence
dimension for input time sequence lengths between 8 sec to 16 sec
are very similar. If input time sequences become too short towards 2
sec or too long towards 20 sec the performance of the model drops
for both input dimensions. The prediction results in table 1 indicate
that input time sequence lengths above 8 sec and below 16 sec repre-
sent for this data the best time window size to recognize and capture
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important emotional context and take the continuous nature of the
emotional states during these time intervals into account.

To investigate the effect of selecting different batch sizes on the
prediction performance of the network, training runs with batch sizes
of 10, 25, and 50 were performed. The results are shown in table 2.
As can be inferred from table 2, it is hard to specify a general best

Table 2. The prediction of the proposed model for different batch sizes.

Batch Size 10 Batch Size 25 Batch Size 50

Seq_Length Ar Val Ar Val Ar Val

2 0.324 0.114 0.398 0.142 0.434 0.157
4 0.419 0.148 0.496 0.174 0.494 0.198
6 0.501 0.195 0.548 0.237 0.554 0.289
8 0.585 0.211 0.646 0.266 0.660 0.314

10 0.578 0.198 0.622 0.246 0.636 0.312
12 0.633 0.177 0.635 0.243 0.586 0.284
14 0.608 0.209 0.649 0.229 0.611 0.220
16 0.610 0.216 0.650 0.209 0.639 0.211
18 0.630 0.192 0.629 0.181 0.624 0.223
20 0.621 0.193 0.624 0.176 0.612 0.228

Seq_Length: Sequence Length Ar: Arousal Val: Valence

value for the batch size. But if we want to determine a suitable batch
size value for the Arousal and the Valence dimension, the combina-
tion of a batch size of 50 with a time sequence length of 8 sec can be
a good selection. Table 2 also shows that for each of the two input
dimensions the prediction performances of the model for sequence
lengths above 8 sec are very similar. The prediction results of table 2
are summarized and visualized in figure 2.
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Figure 2. Comparison of the prediction performances of the proposed
model when using different batch sizes (blue lines: Arousal, red lines:

Valence)

Our results in table 2 confirm that the selection of a well-
performing batch size highly depends on the type of input data and
the nature of the problem. As can be seen in figure 2, the behavior of
the model for prediction of the arousal state for batch sizes 25 and 50
is almost the same, but for prediction of the valence state batch size
50 performs better.

A direct comparison between the prediction of the proposed model

and other state-of-the-art models on the RECOLA dataset was not
possible, due to the different versions and combinations of training,
validation, and test sets. Therefore, we restricted our comparative
evaluation of the performance of other state-of-the-art end-to-end
models to the same subset of the RECOLA dataset that we used in the
present paper. Table 3 compares the prediction performances of these
networks in terms of ρc for the Arousal and Valence dimensions. For
all methods, a batch size of 50 and a time sequence length of 8 sec
of the input signal has been used. The prediction results of the pro-
posed model for the Arousal and Valence dimensions outperformed
the results of the two other models that were used for comparison.
Although our network does not predict the Valence dimension very
well, the prediction results for the Arousal dimension are comparable
with the models that used the whole RECOLA dataset for training,
validating, and testing [43, 44].

Table 3. Prediction performance of the proposed model and related work
on the RECOLA dataset

Method Arousal Valence
ConvBiLSTM [43] 0.559 0.128
ConvLSTM [45] 0.546 0.183
Proposed 0.660 0.314

6.4 Discussion

There are many pre-trained deep network models that are designed
for two-dimensional data like images or video, but there are not so
many trained models for one-dimensional data like speech. In one
dimensional data and particularly in the speech signals, most of the
useful information exists in a particular frequency range, usually be-
low 8 kHz [35]. Therefore, selecting a suitable sampling rate for the
input signal can strongly influence the operation of the deep net-
works. Besides, some hyper-parameters of the deep model, such as
kernel size and the number of channels in the convolutional layers, as
well as the stride of the pooling layers can be selected regarding the
information available in various sampling rates of the speech signal.
For example, selecting a suitable kernel size for the first convolu-
tional layer is very important because using an inappropriate kernel
size can cause undesired changes on the input features and structure,
and thus it can considerably change the prediction of the network.
We found in our experiments that selecting large values for the ker-
nel size of the first convolution layer can corrupt the prediction ability
of the network. Although the kernel sizes of other convolution lay-
ers are important, they have not the same significant impact on the
prediction ability of the network as the kernel size of the first layer.
We also found that a suitable batch size and time sequence length of
the input data are among the effective parameters that most impact
on the prediction of the network. According to our experiments for
spoken data in the RECOLA dataset, the best batch value is 50, al-
though the prediction results of the network for the batch size 25 are
very close. Given the continuous nature of emotions over a period
of time, considering a temporal sequence of speech signals as net-
work inputs can improve model prediction because recurrent layers
can capture the contextual information of the data sequences. In this
study, different sequence lengths of input data were considered, and
the best predictions for the time sequence are greater than 8 seconds.
It is very difficult to select a particular time sequence length as it
depends on many parameters, such as the structure of the data and
batch size.
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7 CONCLUSION

In this paper we proposed a speech emotion recognition system based
on Conv-BiGRU layers that uses the raw audio data of the RECOLA
dataset in an end-to-end manner. Our experiments addressed vari-
ous combinations of time sequence lengths and batch sizes to un-
derstand the impact of these parameters on the prediction perfor-
mance of the network better. By using the information of the time
and the frequency domain, we designed a deep network that could
be trained on a relatively small set of training data. In the experi-
ments, our model outperformed state-of-the-art end-to-end models
in the prediction of arousal and valence states on the available part of
the RECOLA dataset.
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