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Abstract. Ensemble models comprising of deep Convolutional
Neural Networks (CNN) have shown significant improvements in
model generalization but at the cost of large computation and
memory requirements. In this paper, we present a framework
for learning compact CNN models with improved classification
performance and model generalization. For this, we propose a CNN
architecture of a compact student model with parallel branches which
are trained using ground truth labels and information from high
capacity teacher networks in an ensemble learning fashion. Our
framework provides two main benefits: i) Distilling knowledge from
different teachers into the student network promotes heterogeneity
in learning features at different branches of the student network
and enables the network to learn diverse solutions to the target
problem. ii) Coupling the branches of the student network through
ensembling encourages collaboration and improves the quality of
the final predictions by reducing variance in the network outputs.
Experiments on the well established CIFAR-10 and CIFAR-100
datasets show that our Ensemble Knowledge Distillation (EKD)
improves classification accuracy and model generalization especially
in situations with limited training data. Experiments also show
that our EKD based compact networks outperform in terms of
mean accuracy on the test datasets compared to other knowledge
distillation based methods.

1 Introduction

Ensemble methods have shown considerable improvements in model
generalization and produced state of the art results in several machine
learning competitions (e.g., Kaggle) [4]. These ensemble methods
typically contain multiple deep Convolutional Neural Networks
(CNN) as sub-networks which are pre-trained on large-scale datasets
to extract discriminative features from the input data. The size
of an ensemble is not constrained by training because the sub-
networks can be trained independently, and their outputs can
be computed in parallel. However, in many applications limited
training data is not sufficient to effectively train deep CNN models
compared to small or compact networks. For instance in healthcare
applications, the amount of available data is constrained by the
number of patients. Therefore, improving generalization capability
of compact network without requiring large-scale annotated datasets
is of utmost importance. Furthermore, today’s high performing
deep CNN based ensemble models have Giga-FLOPS compute and
Giga-Bytes storage requirements [12], making them prohibitive in
resource constrained systems (e.g., mobile- or edge-devices) which
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have stringent requirements on memory, latency and computational
power.

To overcome these challenges, model compression techniques
such as parameter pruning [24] is a common way to reduce
model size with trade-offs between accuracy and efficiency. Other
techniques include hand crafting efficient CNN architectures such as
SqueezeNets [13], MobileNets [11], and ShuffleNets [26]. Recently,
neural network search showed an effective way to generate efficient
CNN architectures [21, 3] by extensively tuning parameters such as
network width, depth, filter types and sizes. These models showed
better efficiency than hand-crafted networks but, at the cost of
extremely large tuning cost. Another stream of work in building
efficient networks for resource constrained scenarios is through
Knowledge distillation [10]. It enables small low memory footprint
networks to mimic the behavior of large complex networks by
training small networks using the predictions of large networks as
soft labels in addition to the ground truth hard labels.

In this paper we also explore Knowledge Distillation (KD)
based strategies to improve model generalization and classification
performance for applications with memory and compute restrictions.
For this, we present a CNN architecture with parallel branches
which distill high level features from different teacher networks
during training and maintains low computational overhead during
inference. Our architecture provides two main benefits: i) It combines
a student network with different teacher networks and distills diverse
feature representations into the student network during training.
This promotes heterogeneity in feature learning and enables the
student network to mimic diverse high-level feature spaces produced
by the teacher networks. ii) It combines the distilled information
through parallel-branches in an ensembling manner. This reduces
variance in the branch-level outputs and improves the quality of
the final predictions of the student network. In summary, the main
contributions of this paper are as follows:

1. We present an Ensemble Knowledge Distillation (EKD)
framework which improves classification performance and model
generalization of small and compact networks by distilling
knowledge from multiple teacher networks into a compact student
network using an ensemble architecture.

2. We present a novel training objective function to distill ensemble
knowledge into a single student network. Our objective function
optimizes the parameters of the student network with a goal of
learning mappings between input data and ground truth labels, and
a goal of minimizing the difference between high level features of
the teacher networks and the student network.

3. We perform ablation study of our framework on CIFAR-10 and
CIFAR-100 datasets in terms of different CNN architectures,
varying ensemble sizes, and limited training data scenarios.
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Experiments show that by encouraging heterogeneity in feature
learning through the proposed ensemble distillation, our EKD-
based compact networks produce superior accuracy compared to
the networks without using knowledge distillation.

2 Related Work

In this section, we discuss related work on model compression and
knowledge distillation.

2.1 Model Compression

Network pruning is a popular approach to reduce a heavy network
to obtain a light-weight form by removing redundancy in the heavy
network. In this approach, a complex over-parameterized network is
first trained, then pruned based on come criterions, and finally fine-
tuned to achieve comparable performance with reduced parameters.
In this context, methods such as [24] compress large networks
through the reduction of connections based on weight magnitudes or
importance scores. Other methods used quantization of the weights
to 8 bits [7], filter pruning [15] and channel pruning [16] to reduce
network sizes. However, the trimmed models are generally sub-
graphs of the original networks and there is less flexibility in
changing the original architecture design.

2.2 Knowledge Distillation

Knowledge Distillation (KD) aims at learning a light-weight student
network such that it can mimic the behavior of a complicated
teacher network. In this context, the work of [1] was the first to
introduce knowledge distillation by minimizing L2 distance between
the features from the last layers of two networks. Later, the work of
[10] showed that the predicted class probabilities from the teacher
are informative for the student and the probabilities can be used as
a supervision signal in addition to the regular labeled training data
during training. Romero et. al. [19] bridged the intermediate layers of
the student and teacher networks in addition to the class probabilities
and used L2 loss to supervise the student network. The method of [5]
minimized the difference between teacher and student derivatives of
the loss combined with the divergence from the teacher predictions.
Other methods explored knowledge distillation using activation maps
[9], attention maps [25], Jacobians [20], and unsupervised feature
factors [14].

Ensembling is a promising technique to improve model
generalization compared to the performance of individual models.
Since different CNN architectures can achieve diverse distributions
of errors due to the presence of several local minima, the combination
of the outputs of individually trained networks leads to improved
performance and better generalization to unseen test data. In
the light of these studies, methods such as [22, 6] combined
ensemble learning and knowledge distillation to improve model
generalization. For instance, the method of [22] trained an ensemble
of 16 CNN models and compressed the learned function into
shallow multi-layer perceptrons containing 5 layers. The work
of [6] presented an iterative technique to transform a student
model into the teacher model at each iteration. At the end of
the iterations, all the student outputs were combined to form an
ensemble. Our work also follows ensemble learning coupled with
knowledge distillation however, compared to [6], we train a compact
student network through knowledge distillation in a single iteration.
Furthermore, our ensemble architecture distills knowledge from

different teacher networks into the student network. This increases
heterogeneity in student feature learning and enables the student
network to mimic diverse feature representations produced by
different teacher networks. Consequently, our EKD-based compact
networks demonstrate better generalization capability compared to
conventional KD methods [10].

3 The Proposed Framework

Fig. 1 shows the overall architecture of our Ensemble Knowledge
Distillation (EKD) framework. It consists of two main modules: i)

A compact student network (CompNet) which is composed of Ns

branches connected in parallel (Fig. 1-A). The branches follow a
common architecture constituting convolutional and pooling layers.
ii) A Teacher Ensemble Network (TeachNet) which is composed of
Nt CNN models with different architectures or layer configurations
(Fig. 1-B). In the following, we describe in detail the individual
modules of the proposed framework.

3.1 The Proposed Compact Network (CompNet)

Our compact network is composed of Ns branches connected in
parallel. The branches follow a common architecture where each
branch is composed of multiple convolutional layers interconnected
through residual connections. The branch outputs are fed into
linear layers (Qs) to produce probabilistic distributions of the input
data with respect to the target classes. Our branch architecture
is composed of ResNet structure which contain multiple residual
blocks. Specifically, the branch architecture starts with a 3 × 3
convolution followed by Batch Normalization (BN), and a Rectified
Linear Unit (ReLU). Next, there are three residual blocks, where
each residual block consists of two convolution layers with skip
connections, followed by a pooling layer. Each convolution in
the residual block is followed by BN, and a ReLU operation.
Each branch ends with global average pooling and produces Y ∈
R

1×M−dimensional feature maps which are then fed to a linear
layer of 1 × K dimensions to produce probabilitic distributions
(Qs ∈ R

1×K ) with respect to K target classes. Mathematically, the
output of a linear layer can be written as:

Qs = Y ∗W s +Bs (1)

where, W s and Bs represent weights and bias matrices, respectively.
Finally, the outputs of the linear layers are summed to produce a
combined feature representation Ps as shown in Fig. 1-A. It is given
by:

Ps =

Ns∑

i=1

Qs
i (2)

3.2 The Proposed Teacher Ensemble Network
(TeachNet)

Our teacher ensemble is composed of multiple CNN models which
act as independent classifiers. The teacher sub-networks should use
different architectures or layer configurations in order to produce
diverse feature representations at the final convolutional layers.
Similar to our CompNet architecture, the teacher outputs are first
fed into linear layers to produce probabilistic distributions (Qt) of
the input data with respect to the target classes, and finally summed
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Figure 1: Overview of our framework which consists of a Compact Network (CompNet)-A and a teacher ensemble network (TeachNet)-B.
CompNet is composed of parallel branches with similar architecture topology. During training, the branches are coupled with the sub-networks
of the teacher ensemble and the parameters of the CompNet model are optimized with respect to the ground truth labels as well as the high-level
features produced by the teacher ensemble. During testing, the branches of CompNet are executed in parallel (to increase inference speed) and
their outputs are summed before Softmax to produce final predictions.

together to produce a combined feature representation Pt as shown
in Fig. 1-B. It is given by:

Pt =

Nt∑

i=1

Qt
i (3)

In the following we describe our specialized training objective
function which optimizes the parameters of our CompNet using
ground truth labels as well as high-level feature representations from
the teacher ensemble.

3.3 The Proposed Ensemble Knowledge
Distillation (EKD)

Consider a training dataset of images and labels (x, y) ∈ (X ,Y),
where each sample belongs to one of the K classes (Y =
1, 2, ...,K). To learn the mapping fs(x) : X → Y , we train
our CompNet parameterized by fs(x, θ

∗), where θ∗ are the learned
parameters obtained by minimizing a training objective function
Ltrain:

θ∗ = argmin
θ

Ltrain(y, fs(x, θ)) (4)

Our training function Ltrain is a weighted combination of three
loss terms. A CrossEntropy loss term LCE which is applied on the
outputs of the teacher ensemble and the CompNet model with respect
to the ground truth labels (y), and a distillation loss term LKD which
matches the outputs of the sub-networks of the teacher ensemble and
the outputs of the branches of the CompNet model. Mathematically,
Ltrain can be written as:

Ltrain = α · LCE(Pt, y) + β · LCE(Ps, y) + γ · LKD, (5)

where Pt = ft(x) and Ps = fs(x) represent the logits (the inputs
to the SoftMax) of the teacher ensemble and the CompNet model,
respectively. The terms α ∈ [0, 0.5, 1], β ∈ [0, 0.5, 1], and γ ∈
[0, 0.5, 1] are the hyper-parameters which balance the individual loss
terms. Mathematically, the CrossEntropy loss LCE can be written
as:

LCE(Pt, y) =
K∑

k=1

I(k = y) log σ(Pt, y), (6)

where I is the indicator function and σ is the SoftMax operation. It
is given by:

σ(z) =
exp(z)

∑K
k=1 exp(zk)

. (7)

Our KD-based loss LKD in Eq. 5 is composed of Kullback-Leibler
(KL) divergence loss (LKL) and Mean-Squared-Error loss (LMSE).
Mathematically, LKD can be written as:

LKD = LKL(Ps, Pt/T ) + LMSE(Ps, Pt)+

Ns∑

i=1

(LKL(Q
s
i , Q

t
i/T ) + LMSE(Q

s
i , Q

t
i)), (8)

where i indexes the sub-networks of the teacher ensemble and
the branches of the CompNet model. The term T in Eq. 8 is a
temperature hyper-parameter which controls the softening of the
output of the teacher sub-networks. A higher value of T produces
a softer probability distribution over the target classes. The KL
divergence loss LKL is defined between log-probabilities computed
from the outputs of a student network and probabilities computed
from the outputs of a teacher network. Mathematically, it can be
written as:

LKL(Q
s
1, Q

t
1) =

K∑

k=1

σ(Qs
1) ·

(
log(σ(Qs

1))− σ(Qt
1)
)
, (9)

where σ represents the SoftMax operation.

4 Experimental Setup

In this section we describe the details of our experiments.

4.1 Network Architectures

We evaluated our ensemble knowledge distillation using ResNet8
structure as the student network as used in other knowledge
distillation based studies [8, 17]. For the teacher ensemble, we
considered up to 7 sub-networks based on ResNet14, ResNet20,
ResNet26, ResNet32, ResNet44, ResNet56, and ResNet110
architectures as used in [8, 17].

U. Asif et al. / Ensemble Knowledge Distillation for Learning Improved and Efficient Networks 955



Table 1: Ablation study of our ensemble distillation based student network in terms of the Ensemble Size (ES), number of training parameters,
number of FLOPS, and mean test accuracy on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets for ResNet8 as the student network
architecture.

Model
ES Teachers

CIFAR10 CIFAR100 Tiny ImageNet No. of param No. of FLOPS
no EKD with EKD no EKD with EKD no EKD with EKD (million) (million)

ResNet8

1 T1 87.51 89.66 60.03 60.57 34.98 36.84 0.08 12.75
2 T1-T2 86.60 91.11 60.58 62.79 37.85 40.36 0.16 25.50
3 T1-T3 87.41 91.40 62.78 64.09 37.99 41.58 0.23 38.25
4 T1-T4 87.74 91.72 63.25 65.45 38.00 41.86 0.31 51.01
5 T1-T5 87.81 92.15 64.24 66.54 38.16 42.63 0.39 63.76
6 T1-T6 88.14 92.24 60.75 67.36 39.45 42.59 0.47 76.51
7 T1-T7 88.05 92.33 60.83 67.78 39.06 43.89 0.55 89.26
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Figure 2: Comparison of TSNE visualizations of 2-dimensional embeddings generated using features produced by a 7-branch ResNet8 model
with EKD (A), a 7-branch ResNet8 model without distillation (B), a 1-branch ResNet8 model with EKD (C), and a 1-branch ResNet8 model
without distillation (D) on the test data of CIFAR-10 dataset. The comparison shows that the embeddings produced by our EKD based models
show better separation of the target classes compared to the embeddings produced by models trained without distillation.

4.2 Training and Implementation

For training, we initialized the weights of the convolutional and
the fully connected layers from zero-mean Gaussian distributions.
The standard deviations were set to 0.01, the biases were set to
0, and a parameter decay of 0.0005 was set on the weights and
biases. The teacher ensemble was first trained independently from
the scratch, and then fine-tuned simultaneously and collaboratively
with the student network. The distillation from the teacher sub-
networks to the student network was performed throughout the whole
training process by optimizing the training objective function in Eq.
5. Specifically, we trained the networks for 500 epochs starting with
a learning rate of 0.01 which was divided by 10 at 50% and 75% of
the total number of epochs. Our implementation is based on the auto-
gradient computation framework of the Torch library [18]. Training
was performed by ADAM optimizer with a batch size of 128 using
2 nvidia V100 GPU hardware. For hyper-parameter optimization,
we used the toolkit of [2] to tune the loss weighing parameters
α = 0.5, β = 0.5, γ = 0.6, and the temperature parameter T = 10.

4.3 Datasets

We evaluated our framework on three well calibrated image
classification datasets CIFAR-10, CIFAR-100, and Tiny ImageNet4.
CIFAR-10 and CIFAR-100 consist of 60,000 RGB images

4 https://tiny-imagenet.herokuapp.com/

distributed into 10 and 100 classes, respectively. Specifically, the
training set contains 50,000 images and the test set contains 10,000
images of sizes 64 × 64 pixels. Tiny ImageNet is a subset of the
ImageNet dataset. It contains 100k training images and 10k test
images distributed into 200 classes.

5 Results and Analysis

5.1 Ensemble Distillation Improves Model
Performance

Here, we evaluate our compact student networks with and without the
proposed Ensemble Knowledge Distillation (EKD) on the CIFAR-
10, CIFAR-100, and Tiny ImageNet datasets. Table 1 shows the
results of these experiments for different ensemble sizes. From Table
1 we see that EKD based networks improve accuracy for all the tested
ensemble sizes on all the target datasets. For instance, EKD with an
ensemble size of 7 improves accuracy by upto 4%, 7%, and 4% on the
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, respectively.

5.2 Ensemble Learning Improves Knowledge
Distillation

Here, we evaluate the performance of our EKD based student
networks by varying the size of the ensemble to explore the benefits
of ensembling for knowledge distillation. Table 1 shows the results
of these experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet
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Figure 3: Comparison of mean accuracy of a 7-branch ResNet8 model with and without the proposed EKD for different sizes of data used for
training the models on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. The comparison shows that compared to ResNet8 without using
knowledge distillation, our EKD-based ResNet8 produced considerably higher mean accuracy for all the tested data sizes. Our EKD-based
7-branch ResNet8 also produced higher mean accuracy compared to ResNet110 when limited data was used to train the models.

Table 2: Ablation study of a 7-branch ResNet8 model (ES=7) with and without the proposed EKD and the proposed teacher networks in terms
of number of training parameters, number of FLOPS, and inference speed. The results show that the proposed EKD based ResNet8 produces
higher average accuracy compared to the other networks without knowledge distillations on all the tested datasets.

Model
CIFAR-10 CIFAR-100 Tiny ImageNet No. of param. No. of FLOPS Inference time

data size 10% data size 10% data size 10% (million) (million) (ms)

ResNet14 64.39 20.77 15.89 0.19 27.09 2
ResNet20 64.38 22.98 16.67 0.28 41.42 5
ResNet26 63.61 23.13 14.79 0.38 55.75 5
ResNet32 62.74 24.48 13.69 0.48 70.07 6
ResNet44 63.95 22.74 14.80 0.67 98.73 9
ResNet56 62.33 21.48 16.14 0.87 127.39 10
ResNet110 56.66 20.75 12.51 1.74 256.34 18

ResNet8 (ES=7) 69.65 31.98 17.49 0.55 89.26 11
ResNet8+EKD (ES=7) 79.97 56.13 31.32 0.55 89.26 11

datasets. The results show that the accuracy increases with the
increase in ensemble size (ES) at the cost of increase in the number
of parameters and the number of FLOPS. For instance, a student
network with 7 branches improves accuracy by around 2%, 7%,
and 7% compared to a 1-branch student network on the CIFAR-10,
CIFAR-100, and Tiny ImageNet datasets, respectively. Fig. 2 shows
a comparison of TSNE embeddings of features produced by ResNet8
models with different ensemble sizes. From the figure, it is clear that
the embeddings produced by the 7-branch model with EKD shows
better seperation of the target classes compared to the embeddings
produced by the 1-branch model without distillation.

5.3 Model Generalization Performance

Here we evaluate the generalization performance of the proposed
ensemble knowledge distillation. For this, we conducted experiments
for different sizes of the data used for training the teacher and
the student networks. Fig. 3 and Fig. 4 show the results of these
experiments using ResNet8 as the student network. The results show
that the performance gap increases for all the tested networks as
the size of the dataset is reduced. For instance, the accuracy drop
by around 25%, 40%, and 30% when 10% of the data was used
to train the networks without the proposed EKD on CIFAR-10,

CIFAR-100, and Tiny ImageNet datasets, respectively as shown
in Fig. 3. Fig. 3 and Fig. 4 also show that using the proposed
EKD, ResNet8 based models improve test accuracy for all the
tested sizes of training data with considerable margins compared
to ResNet8 models without distillation and the other networks used
as teachers (ResNet14, ResNet20, ResNet26, ResNet32, ResNet44,
ResNet56, and ResNet110). For instance, EKD-based ResNet8
models produced improvements of upto 12%, 10%, and 25% when
10% of data was used for training on CIFAR-10, CIFAR-100
and Tiny ImageNet datasets, respectively compared to networks
without distillation as shown in Fig. 3. These improvements are
attributed to our ensemble distillation which promotes diversity in
feature learning by transfering knowledge from different teachers
into the student network and improves model generalization to
test data. These experiments show that for situations where non-
KD methods fail to achieve generalization due to insufficient
data, the proposed ensemble distillation achieves considerable
performance improvements, thereby demonstrating potentials for
uses in applications with limited-data constraints.

Table 2 shows a comparison between our EDK-based 7-branch
student network and the teacher networks on the CIFAR-10, CIFAR-
100, and Tiny ImageNet datasets when 10% of the data was used
for training. The results show that our EKD based 7-branch ResNet8

U. Asif et al. / Ensemble Knowledge Distillation for Learning Improved and Efficient Networks 957



Figure 4: Comparison of mean accuracy of our EKD-based ResNet8 model and teacher networks for different sizes of data used for training
on CIFAR-10 and CIFAR-100 datasets. The comparison shows that the proposed EKD-based ResNet8 produces higher accuracy compared to
the models trained without knowledge distillation under limited training data cases.

produced the best accuracy on the test datasets with 3× less number
of parameters, 2.8× less number of FLOPS, and faster inference
speed compared to the ResNet110 network. We also conducted
experiments to visualize the features space learnt by our EKD
based networks. Fig. 5 shows the 2-dimensional TSNE-embeddings
generated using the features produced by the teacher networks
and our 7-branch ResNet8 models with and without using the
proposed ensemble distillation under different sizes of data used
during training. These experiments show that training a student
network using high-level features from multiple teacher networks
enables the student network to produce embeddings which exhibit

better separation of the target classes compared to the embeddings
produced by the models without using distillation.

5.4 Comparison with Other Knowledge Distillation
Methods

Here, we compare our Ensemble Knowledge Distillation (EKD)
with some of the recent state-of-the-art knowledge distillation based
methods including: activation based attention transfer (AAT) [25],
the method of [23] (FSP), the method of [10], hint based transfer
(FitNet) [19], the method of [8](BSS), the method of deep mutual

U. Asif et al. / Ensemble Knowledge Distillation for Learning Improved and Efficient Networks958
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Figure 5: Comparison of TSNE visualizations of 2-dimensional embeddings generated using features produced by the proposed teacher
networks (A, B, and C), our EKD-based ResNet8 (D), and a ResNet8 model without distillation (E), on the test data of CIFAR-10 dataset. The
comparison shows that the embeddings produced by our EKD based models show better separation of the target classes especially in cases
with limited training data compared to the embeddings produced by models trained without distillation.

learning [27](MUTUAL), and the method of [17] (TAKD). For
a fair comparison, we used exactly the same setting for CIFAR-
10 experiments, and a ResNet8 based student network as used in
the baseline studies. Table 3 shows that our EKD based ResNet8
improved accuracy on the tested dataset compared to the other KD
methods. This improved performance is attributed to the proposed
ensemble distillation architecture where the proposed training
objective function enabled the student network to successfully
mimic diverse feature embeddings produced by different teachers
and improve generalization to unseen test data. Furthermore, the

combination of distilled information through ensembling reduced
variance in the outputs and improved the quality of the final
predictions of the student network.

5.5 Conclusion and Future Work

Recently, deep CNN based ensemble methods have shown state-of-
the-art performance in image classification but at the cost of high
computation cost and large memory requirements. In this paper, we
show that knowledge distillation using an ensemble architecture can
improve classification accuracy and model generalization especially

U. Asif et al. / Ensemble Knowledge Distillation for Learning Improved and Efficient Networks 959



Table 3: Comparison of our ensemble distillation using 1-branch
ResNet8 base student network and other Knowledge Distillation
(KD) methods on the CIFAR-10 dataset.

Method Dataset Accuracy

Hinton [10] CIFAR-10 86.66
FITNET [17] CIFAR-10 86.73
Attention [25] CIFAR-10 86.86
FSP [23] CIFAR-10 87.07
BSS [8] CIFAR-10 87.32
MUTUAL [27] CIFAR-10 87.71
TAKD [17] CIFAR-10 88.01
(this work) ResNet8+EKD (ES=1) CIFAR-10 89.66

with fewer training data for small and compact networks. Unlike
traditional ensembling techniques which reduce variance in outputs
by combining independently trained networks, we show that
Ensemble Knowledge Distillation (EKD) encourages heterogeneity
in student feature learning through collaboration between different
teachers and the student network. This enables student networks to
learn more discriminative and diverse feature representations while
maintaining small memory and compute requirements. Experiments
on well-established CIFAR-10, CIFAR-100, and Tiny ImageNet
datasets show that compact networks trained through the proposed
ensemble distillation improved classification accuracy and model
generalization especially in situations with fewer training data. In
future, we plan to explore a fully data-driven automated ensemble
selection. We also plan to evaluate our framework for video
classification tasks to gain more insights into the benefits of ensemble
distillation.
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