
Understanding and Training Deep Diagonal Circulant
Neural Networks

Alexandre Araujo1,2 Benjamin Negrevergne2 Yann Chevaleyre2 Jamal Atif2

Abstract. In this paper, we study deep diagonal circulant neural
networks, which are deep neural networks in which weight matrices
are the product of diagonal and circulant ones. Besides making a
theoretical analysis of their expressivity, we introduce principled tech-
niques for training these models: we devise an initialization scheme
and propose a smart use of non-linearity functions in order to train
deep diagonal circulant networks. Furthermore, we show that these
networks outperform recently introduced deep networks with other
types of structured layers. We conduct a thorough experimental study
to compare the performance of deep diagonal circulant networks with
state-of-the-art models based on structured matrices and with dense
models. We show that our models achieve better accuracy than other
structured approaches while requiring 2x fewer weights than the next
best approach. Finally, we train compact and accurate deep diagonal
circulant networks on a real world video classification dataset with
over 3.8 million training examples.

1 Introduction

The deep learning revolution has yielded models of increasingly large
size. In recent years, designing compact and accurate neural networks
with a small number of trainable parameters has been an active re-
search topic. It is motivated by practical applications in embedded
systems (to reduce memory footprint [23]), federated and distributed
learning (to reduce communication [15]), derivative-free optimization
in reinforcement learning (to simplify the computation of the approxi-
mated gradient [8]), etc. Besides a number of practical applications,
it is also an important research question whether or not models re-
ally need to be this large or if smaller networks can achieve similar
accuracy [5].

Structured matrices are at the very core of most of the work on com-
pact networks. In these models, dense weight matrices are replaced by
matrices with a prescribed structure (e.g. low rank matrices, Toeplitz
matrices, circulant matrices, LDR, etc.). Despite substantial efforts
(e.g. [7, 20]), the performance of compact models is still far from
achieving an acceptable accuracy motivating their use in real-world
scenarios. This raises several questions about the effectiveness of such
models and about our ability to train them. In particular two main
questions call for investigation:

Q1 How to efficiently train deep neural networks with a large
number of structured layers?
Q2 What is the expressive power of structured layers compared to
dense layers?

1 Wavestone, Paris, France, email: alexandre.araujo@dauphine.psl.eu
2 Université Paris-Dauphine, PSL Research University, LAMSADE, CNRS,

UMR 7243, Paris, France

In this paper, we provide principled answers to these questions
for the particular case of deep neural networks based on diagonal
and circulant matrices (a.k.a. Diagonal-circulant neural networks or
DCNNs).

The idea of using diagonal and circulant matrices together comes
from a series of results in linear algebra by Muller et al. [21] and
Huhtanen et al. [13]. The most recent result from Huhtanen et al. [13]
demonstrates that any matrix A in Cn×n can be decomposed into the
product of 2n − 1 alternating diagonal and circulant matrices. The
diagonal-circulant decomposition inspired Moczulski et al. [20] to
design the Structured Efficient Linear Layers (SELL), which is the
building block of DCNNs. However, they were not able to train deep
neural networks based on these layers.

To answer Q1, we first describe a theoretically sound initialization
procedure for DCNN which allows the signal to propagate through the
network without vanishing or exploding. Furthermore, we provide a
number of empirical insights to explain the behaviour of DCNNs and
show the impact of the number of the non-linearities in the network on
the convergence rate and the accuracy of the network. By combining
all these insights, we are able (for the first time) to train large and deep
DCNNs and demonstrate the good performance of these networks
on a large scale application (the YouTube-8M video classification
problem) and obtain very competitive accuracy.

To answer Q2, we propose an analysis of the expressivity of DC-
NNs by extending the results by Huhtanen et al. [13]. We introduce a
new bound on the number of diagonal-circulant products required to
approximate a matrix that depends on its rank. Building on this result,
we demonstrate that a DCNN with bounded width and small depth
can approximate any dense networks with ReLU activations.

Outline of the paper: We present in Section 2 the related work on
structured neural networks and several compression techniques. Sec-
tion 3 introduces circulant matrices, our new result extending the one
from Huhtanen et al. [13]. Section 4 proposes a theoretical analysis
on the expressivity on DCNNs. Section 5 describes two efficient tech-
niques for training deep diagonal circulant neural networks. Finally,
Section 6 presents extensive experiments to compare the performance
of deep diagonal circulant neural networks in different settings with
respect to other state of the art approaches. Section 7 provides a
discussion and concluding remarks.

2 Related Work

Structured matrices exhibit a number of good properties which have
been exploited by deep learning practitioners, mainly to compress
large neural networks architectures into smaller ones. For example,
Hinrichs et al. [11] have demonstrated that a single circulant matrix

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200187

945

can be used to approximate the Johnson-Lindenstrauss transform,
often used in machine learning to perform dimensionality reduction.
Building upon this result, Cheng et al. [7] proposed to replace the
weight matrix of a fully connected layer by a circulant matrix effec-
tively replacing the complex transform modeled by the fully connected
layer by a simple dimensionality reduction. Despite the reduction of
expressivity, the resulting network demonstrated good accuracy using
only a fraction of its original size (90% reduction).

Comparison with ACDC. Moczulski et al. [20] have introduced
two Structured Efficient Linear Layers (SELL) called AFDF and
ACDC, where A and D are diagonal matrices and F and C are the
Fourier and cosine transform respectively. The AFDF structured layer
benefits from the theoretical results introduced by Huhtanen et al.
[13] and can be seen as the building block of DCNNs. However,
Moczulski et al. [20] only experiment using ACDC, a different type
of layer that does not involve circulant matrices. As far as we can tell,
the theoretical guarantees available for the AFDF layer do not apply
on the ACDC layer since the cosine transform does not diagonalize
circulant matrices [24]. Another possible limit of the ACDC paper
is that they only train large neural networks involving ACDC layers
combined with many other expressive layers. Although the resulting
network demonstrates good accuracy, it is difficult the characterize
the true contribution of the ACDC layers in this setting.

Comparison with Low displacement rank structures. More re-
cently, Thomas et al. [27] have generalized these works by proposing
neural networks with low-displacement rank matrices (LDR), that are
structured matrices encompassing a large family of structured matri-
ces, including Toeplitz-like, Vandermonde-like, Cauchy-like and more
notably DCNNs. To obtain this result, LDR represents a structured
matrix using two displacement operators and a low-rank residual.
Despite being elegant and general, we found that the LDR frame-
work suffers from several limits which are inherent to its generality
and makes it difficult to use in the context of large and deep neural
networks. First, the training procedure for learning LDR matrices
is highly involved and implies many complex mathematical objects
such as Krylov matrices. Then, as acknowledged by the authors, the
number of parameters required to represent a given structured matrix
(e.g. a Toeplitz matrix) in practice is unnecessarily high (higher than
required in theory).

Other compression techniques. Besides structured matrices, a
variety of techniques have been proposed to build more compact
deep learning models. These include model distillation [12], Tensor
Train [22], Low-rank decomposition [9], to mention a few. However,
Circulant networks show good performances in several contexts (the
interested reader can refer to the results reported by Moczulski et al.
[20] and Thomas et al. [27]).

3 A primer on circulant matrices and a new result

An n-by-n circulant matrix C is a matrix where each row is a cyclic
right shift of the previous one as illustrated below.

C = circ(c) =

⎡
⎢⎢⎢⎢⎣

c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 c2
c2 c1 c0 c3
...

. . .
...

cn−1 cn−2 cn−3 c0

⎤
⎥⎥⎥⎥⎦

Circulant matrices exhibit several interesting properties from the
perspective of numerical computations. Most importantly, any n-by-n
circulant matrix C can be represented using only n coefficients instead

of the n2 coefficients required to represent classical unstructured
matrices. In addition, the matrix-vector product is simplified from
O(n2) to O(n log n) using the convolution theorem.

As we will show in this paper, circulant matrices also have a strong
expressive power. So far, we know that a single circulant matrix can
be used to represent a variety of important linear transforms such
as random projections [11]. When they are combined with diagonal
matrices, they can also be used as building blocks to represent any
linear transform [25, 13] with an arbitrary precision. Huhtanen et
al. [13] were able to bound the number of factors that is required to
approximate any matrix A with arbitrary precision.

Relation between diagonal circulant matrices and low rank ma-
trices We recall this result in Theorem 1 as it is the starting point of
our theoretical analysis (note that in the rest of the paper, ‖ · ‖ denotes
the �2 norm when applied to vectors, and the operator norm when
applied to matrices).

Theorem 1. (Reformulation from Huhtanen et al. [13]) For every
matrix A ∈ Cn×n, for any ε > 0, there exists a sequence of matri-
ces B1 . . . B2n−1 where Bi is a circulant matrix if i is odd, and a
diagonal matrix otherwise, such that ‖B1B2 . . . B2n−1 −A‖ < ε.

Unfortunately, this theorem is of little use to understand the expres-
sive power of diagonal-circulant matrices when they are used in deep
neural networks. This is because: 1) the bound only depends on the
dimension of the matrix A, not on the matrix itself, 2) the theorem
does not provide any insights regarding the expressive power of m
diagonal-circulant factors when m is much lower than 2n− 1 as it is
the case in most practical scenarios we consider in this paper.

In the following theorem, we enhance the result by Huhtanen et
al. [13] by expressing the number of factors required to approximate
A, as a function of the rank of A. This is useful when one deals with
low-rank matrices, which is common in machine learning problems.

Theorem 2. 3 (Rank-based circulant decomposition) Let A ∈ Cn×n

be a matrix of rank at most k. Assume that n can be divided by k. For
any ε > 0, there exists a sequence of 4k+1 matrices B1, . . . , B4k+1,
where Bi is a circulant matrix if i is odd, and a diagonal matrix
otherwise, such that ‖B1B2 . . . B4k+1 −A‖ < ε

A direct consequence of Theorem 2, is that if the number of
diagonal-circulant factors is set to a value K, we can represent all
linear transform A whose rank is K−1

4
.

Compared to [13], this result shows that structured matrices with
fewer than 2n diagonal-circulant matrices (as it is the case in practice)
can still represent a large class of matrices. As we will show in the
following section, this result will be useful to analyze the expressivity
of neural networks based on diagonal and circulant matrices.

4 Analysis of Diagonal Circulant Neural Networks
(DCNNs)

Zhao et al. [31] have shown that circulant networks with 2 layers
and unbounded width are universal approximators. However, results
on unbounded networks offer weak guarantees and two important
questions have remained open until now: 1) Can we approximate any
function with a bounded-width circulant networks? 2) What function
can we approximate with a circulant network that has a bounded

3 All proofs are in the extended version of the paper.
https://arxiv.org/abs/1901.10255

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks946

https://arxiv.org/abs/1901.10255

width and a small depth? We answer these two questions in this
section.

First, we introduce some necessary definitions regarding neural
networks and we provide a theoretical analysis of their approximation
capabilities.

Definition 1 (Deep ReLU network). Given L weight matrices
W = (W1, . . . ,WL) with Wi ∈ Cn×n and L bias vectors b =
(b1, . . . , bL) with bi ∈ Cn, a deep ReLU network is a function
fWL,bL : Cn → Cn such that fW,b(x) = (fWL,bL ◦ . . .◦fW1,b1)(x)
where fWi,bi(x) = φ(Wix+ bi) and φ(·) is a ReLU non-linearity
4 In the rest of this paper, we call L and n respectively the depth and
the width of the network. Moreover, we call total rank k, the sum of
the ranks of the matrices W1 . . .WL. i.e. k =

∑L
i=1 rank(Wi).

We also need to introduce DCNNs, similarly to Moczulski et al. [20].

Definition 2 (Diagonal Circulant Neural Networks). Given L di-
agonal matrices D = (D1, . . . , DL) with Di ∈ Cn×n, L circu-
lant matrices C = (C1, . . . , CL) with Ci ∈ Cn×n and L bias
vectors b = (b1, . . . , bL) with bi ∈ Cn, a Diagonal Circulant
Neural Networks (DCNN) is a function fWL,bL : Cn → Cn

such that fD,C,b(x) = (fDL,CL,bL ◦ . . . ◦ fD1,C1,b1)(x) where
fDi,Ci,bi(x) = φi(DiCix + bi) and where φi(·) is a ReLU non-
linearity or the identity function.

We can now show that bounded-width DCNNs can approximate any
Deep ReLU Network, and as a corollary, that they are universal ap-
proximators.

Lemma 1. LetN be a deep ReLU network of width n and depth L,
and letX ⊂ Cn be a bounded set. For any ε > 0, there exists a DCNN
N ′ of width n and of depth (2n−1)L such that ‖N (x)−N ′(x)‖ < ε
for all x ∈ X .

We can now state the universal approximation corollary:

Corollary 1. Bounded width DCNNs are universal approximators in
the following sense: for any continuous function f : [0, 1]n → R+ of
bounded supremum norm, for any ε > 0, there exists a DCNNNε of
width n+3 such that ∀x ∈ [0, 1]n+3,

∣∣f(x1 . . . xn)− (Nε (x))1
∣∣ <

ε, where (·)i represents the ith component of a vector.

This is a first result, however (2n+ 5)L is not a small depth (in our
experiments, n can be over 300 000), and a number of work provided
empirical evidences that DCNN with small depth can offer good
performances (e.g. [3, 7]). To improve our result, we introduce our
main theorem which studies the approximation properties of these
small depth networks.

Theorem 3 (Rank-based expressive power of DCNNs). Let N be
a deep ReLU network of width n, depth L and a total rank k and
assume n is a power of 2. Let X ⊂ Cn be a bounded set. Then, for
any ε > 0, there exists a DCNN with ReLU activationN ′ of width n
such that ‖N (x)−N ′(x)‖ < ε for all x ∈ X and the depth of N ′

is bounded by 9k.

Remark that in the theorem, we require that n is a power of 2. We
conjecture that the result still holds even without this condition. This
result refines Lemma 1, and answer our second question: a DCNN

4 Because our networks deal with complex numbers, we use an extension of the
ReLU function to the complex domain. The most straightforward extension
defined in [28] is as follows: ReLU(z) = ReLU (R(z))+ iReLU (I(z)),
where R and I refer to the real and imaginary parts of z.

of bounded width and small depth can approximate a Deep ReLU
network of low total rank. Note that the converse is not true: because
n-by-n circulant matrix can be of rank n, approximating a DCNN of
depth 1 can require a deep ReLU network of total rank equals to n.

Expressivity of DCNNs For the sake of clarity, we highlight the
significance of these results with the two following properties.

Properties. Given an arbitrary fixed integer n, letRk be the set of
all functions f : Rn → Rn representable by a deep ReLU network of
total rank at most k and let Cl the set of all functions f : Rn → Rn

representable by deep diagonal-circulant networks of depth at most l,
then:

∀k, ∃l Rk � Cl (1)

∀l, �k Cl ⊆ Rk (2)

We illustrate the meaning of this properties using Figure 1. As we
can see, the setRk of all the functions representable by a deep ReLU
network of total rank k is strictly included in the set C9k of all DCNN
of depth 9k (as by Theorem 3).

C1,n. .
.C9,n.
. .
C18,n

R1,n

R2,n

Figure 1. Illustration of Properties 1 and 2.

These properties are interesting for many reasons. First, Property 2
shows that diagonal-circulant networks are strictly more expressive
than networks with low total rank. Second and most importantly, in
standard deep neural networks, it is known that the most of the sin-
gular values are close to zero (see e.g. [26, 4]). Property 1 shows that
these networks can efficiently be approximated by diagonal-circulant
networks. Finally, several publications have shown that neural net-
works can be trained explicitly to have low-rank weight matrices
[17, 10]. This opens the possibility of learning compact and accurate
diagonal-circulant networks.

5 How to train very deep DCNNs

Training DCNNs has revealed to be a challenging problem. We de-
vise two techniques to facilitate the training of deep DCNNs. First,
we propose an initialization procedure which guarantee the signal is
propagated across the network without vanishing nor exploding. Sec-
ondly, we study the behavior of DCNNs with different non-linearity
functions and determine the best parameters for different settings.

Initialization scheme The following initialization procedure which
is a variant of Xavier initialization. First, for each circulant matrix
C = circ(c1 . . . cn), each ci is randomly drawn from N (

0, σ2
)
,

with σ =
√

2
n

. Next, for each diagonal matrix D = diag(d1 . . . dn),

each di is drawn randomly and uniformly from {−1, 1} for all i.
Finally, all biases in the network are randomly drawn fromN (

0, σ′2),
for some small value of σ′. The following proposition states that the
covariance matrix at the output of any layer in a DCNN, independent
of the depth, is constant.

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks 947

10 20 30 40

0.1

0.2

0.3

0.4

0.5

#layers
Te

st
A

cc
ur

ac
y

ReLU(DC)
ReLU(DCDC)
ReLU(DCDCDC)

(a)

10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

#layers

Te
st

A
cc

ur
ac

y

Leaky ReLU 0.2
Leaky ReLU 0.3
Leaky ReLU 0.5

(b)

Figure 2. Experiments on training DCNNs and other structured neural networks on CIFAR-10. Figure 2(a): impact of increasing the number of ReLU activations
in a DCNN. Deep DCNNs with fewer ReLUs are easier to train. Figure 2(b): impact of increasing the slope of a Leaky-ReLU in DCNNs. Deep DCNNs with a
larger slope are easier to train.

Proposition 4. Let N be a DCNN of depth L initialized according
to our procedure, with σ′ = 0. Assume that all layers 1 to L− 1 have
ReLU activation functions, and that the last layer has the identity
activation function. Then, for any x ∈ Rn, the covariance matrix
of N (x) is 2.Id

n
‖x‖22. Moreover, note that this covariance does not

depend on the depth of the network.

Proof. Let N = fDL,CL ◦ . . . ◦ fD1,C1 be a L layer DCNN. All
matrices are initialized as described in the statement of the proposition.
Let y = D1C1x. Lemma 2 shows that cov(yi, yi′) = 0 for i
= i′

and var(yi) =
2
n
‖x‖22. For any j ≤ L, define zj = fDj ,Cj ◦ . . . ◦

fD1,C1(x). By a recursive application of lemma 2, we get that then
cov(zji , z

j
i′) = 0 and var(zji) =

2
n
‖x‖22.

Lemma 2. Let c1 . . . cn, d1 . . . dn, b1 . . . bn be random variables in
R such that ci ∼ N (0, σ2), bi ∼ N (0, σ′2) and di ∼ {−1, 1}
uniformly. Define C = circ(c1 . . . cn) and D = diag(d1 . . . dn).
Define y = DCu and z = CDu for some vector u in Rn. Also
define ȳ = y + b and z̄ = z + b. Then, for all i, the p.d.f. of yi, ȳi, zi
and z̄i are symmetric. Also:

• Assume u1 . . . un is fixed. Then, we have for i
= i′ :

cov(yi, yi′) = cov(zi, zi′) = cov(ȳi, ȳi′) = cov(z̄i, z̄i′) = 0

var(yi) = var(zi) =
∑
j

u2
jσ

2

var(ȳi) = var(z̄i) = σ′2 +
∑
j

u2
jσ

2

• Let x1 . . . xn be random variables in R such that the p.d.f. of xi is
symmetric for all i, and let ui = ReLU(xi). We have for i
= i′ :

cov(yi, yi′) = cov(zi, zi′) = cov(ȳi, ȳi′) = cov(z̄i, z̄i′) = 0

var(yi) = var(zi) =
1

2

∑
j

var(xi).σ
2

var(ȳi) = var(z̄i) = σ′2 +
1

2

∑
j

var(xi).σ
2

Proof. By an abuse of notation, we write c0 = cn, c−1 = cn−1

and so on. First, note that: yi =
∑n

j=1 cj−iujdj and zi =∑n
j=1 cj−iujdi. Observe that each term cj−iujdj and cj−iujdi have

symmetric p.d.f. because of di and dj . Thus, yi and zi have symmetric
p.d.f. Now let us compute the covariance.

cov(yi, yi′) =
n∑

j,j′=1

cov (cj−iujdj , cj′−i′uj′dj′)

=
n∑

j,j′=1

E [cj−iujdjcj′−i′uj′dj′]

− E [cj−iujdj]E [cj′−i′uj′dj′]

Observe that E [cj−iujdj] = E [cj−iuj]E [dj] = 0 because
dj is independent from cj−iuj . Also, observe that if j
=
j′ then E [djdj′] = 0 and thus E [cj−iujdjcj′−i′uj′dj′] =
E [djdj′]E [cj−iujcj′−i′uj′] = 0. Thus, the only non null terms
are those for which j = j′. We get:

cov(yi, yi′) =
n∑

j=1

E [cj−iujdjcj−i′ujdj]

=

n∑
j=1

E
[
cj−icj−i′u

2
j

]

Assume u is a fixed vector. Then, var(yi) =
∑n

j=1 u
2
jσ

2 and
cov(yi, yi′) = 0 for i
= i′ because cj−i is independent from cj−i′ .
Now assume that uj = ReLU(xj) where xj is a r.v. Clearly, u2

j is
independent from cj−i and cj−i′ . Thus:

cov(yi, yi′) =
n∑

j=1

E [cj−icj−i′]E
[
u2
j

]

For i
= i′, then cj−i and cj−i′ are independent, and thus
E [cj−icj−i′] = E [cj−i]E [cj−i′] = 0. Therefore, cov(yi, yi′) =
0 if i
= i′. Let us compute the variance. We get var(yi) =∑n

j=1 var(cj−i).E
[
u2
j

]
. Because the p.d.f. of xj is symmet-

ric, E
[
x2
j

]
= 2E

[
u2
j

]
and E [xj] = 0. Thus, var(yi) =

1
2

∑n
j=1 var(cj−i).E

[
x2
j

]
= 1

2

∑n
j=1 var(cj−i).var(xj).

Finally, note that cov(ȳi, ȳi′) = cov(yi, yi′) + cov(bi, bi′). This
yields the covariances of ȳ.

To derive cov(zi, zi′) and cov(z̄i, z̄i′) , the required calculus is
nearly identical. We let the reader check by himself/herself.

Non-linearity function We empirically found that reducing the
number of non-linearities in the networks simplifies the training of
deep neural networks. To support this claim, we conduct a series
of experiments on various DCNNs with a varying number of ReLU
activations (to reduce the number of non-linearities, we replace some
ReLU activations with the identity function). In a second experiment,

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks948

we replace the ReLU activations with Leaky-ReLU activations and
vary the slope of the Leaky ReLU (a higher slope means an activa-
tion function that is closer to a linear function). The results of this
experiment are presented in Figure 2(a) and 2(b). In Figure 2(a),
“ReLU(DC)” means that we interleave ReLU activation functions be-
tween every diagonal-circulant matrix, whereas ReLU(DCDC) means
we interleave a ReLU activation every other block etc. In both Fig-
ure 2(a) and Figure 2(b), we observe that reducing the non-linearity
of the networks can be used to train deeper networks. This is an in-
teresting result, since we can use this technique to adjust the number
of parameters in the network, without facing training difficulties. We
obtain a maximum accuracy of 0.56 with one ReLU every three layers
and leaky-ReLUs with a slope of 0.5. We hence rely on this setting in
the experimental section.

6 Empirical evaluation

This experimental section aims at answering the following questions:

Q6.1 – How do DCNNs compare to other approaches such as
ACDC, LDR or other structured approaches?
Q6.2 – How do DCNNs compare to other compression based
techniques?
Q6.3 – How do DCNNs perform in the context of large scale
real-world machine learning applications?

6.1 Comparison with other structured approaches
(Q6.1)

Comparison with ACDC [20]. In Section 2, we have discussed the
differences between the ACDC framework and our approach from
a theoretical perspective. In this section, we conduct experiments
to compare the performance of DCNNs with neural networks based
on ACDC layers. We first reproduce the experimental setting from
[20], and compare both approaches using only linear networks (i.e.
networks without any ReLU activations). The synthetic dataset has
been created in order to reproduce the experiment on the regression
linear problem proposed by [20]. We draw X and W from a uniform
distribution between [-1, +1] and ε from a normal distribution with
mean 0 and variance 0.01. The relationship between X and Y is
define by Y = XW + ε. The results are presented in Figure 3(a). On
this simple setting, while both architectures demonstrate good perfor-
mance, we can observe that DCNNs offer a better convergence rate.
In Figure 3(b), we compare neural networks with ReLU activations
on CIFAR-10.

We found that networks which are based only on ACDC layers are
difficult to train and offer poor accuracy on CIFAR-10 (we have tried
different initialization schemes including the one from the original
paper, and the one we introduce in this paper). Moczulski et al. [20]
manage to train a large VGG network however these networks are
generally highly redundant and the contribution of the structured
layer is difficult to quantify. We also observe that adding a single
dense layer improves the convergence rate of ACDC in the linear
case, which explains the good results of [20]. However, it is difficult
to characterize the true contribution of the ACDC layers when the
network has a large number of expressive layers.

In contrast, deep DCNNs can be trained and offer good perfor-
mance without additional dense layers (these results are in line with
our experiments on the YouTube-8M dataset). We can conclude that
DCNNs are able to model complex relations at a low cost.

Comparison with Dense networks, Toeplitz networks and Low
Rank networks. We now compare DCNNs with other state-of-the-art

structured networks by measuring the accuracy on a flattened version
of the CIFAR-10 dataset. Our baseline is a dense feed-forward net-
work with a fixed number of weights (9 million weights). We compare
with DCNNs and with DTNNs (see below), Toeplitz networks, and
Low-Rank networks [30]. We first consider Toeplitz networks which
are stacked Toeplitz matrices interleaved with ReLU activations since
Toeplitz matrices are closely related to circulant matrices. However,
Toeplitz networks have a different structure than DCNNs (they do
not include diagonal matrices), therefore, we also experiment using
DTNNs, a variant of DCNNs where all the circulant matrices have
been replaced by Toeplitz matrices. Finally we conduct experiments
using networks based on low-rank matrices as they are also closely
related to our work. For each approach, we report the accuracy of
several networks with a varying depth ranging from 1 to 40 (DCNNs,
Toeplitz networks) and from 1 to 30 (from DTNNs). For low-rank
networks, we used a fixed depth network and increased the rank of
each matrix from 7 to 40. We also tried to increase the depth of low
rank matrices, but we found that deep low-rank networks are difficult
to train so we do not report the results here. We compare all the net-
works based on the number of weights from 21K (0.2% of the dense
network) to 370K weights (4% of the dense network) and we report
the results in Figure 4(a). First we can see that the size of the networks
correlates positively with their accuracy which demonstrate successful
training in all cases. We can also see that the DCNNs achieves the
maximum accuracy of 56% with 20 layers (∼ 200K weights) which is
as good as the dense networks with only 2% of the number of weights.
Other approaches also offer good trade-off but they are not able to
reach the accuracy of a dense network.

Table 1. LDR networks compared with DCNNs on a flattend version
of CIFAR-10. DCNNs outperform all LDR configurations with fewer
weights.2

Architectures #Params Acc.

Dense 9.4M 0.562
DCNN (5 layers) 49K 0.543
DCNN (2 layers) 21K 0.536
LDR–TD (r = 2) 64K 0.511
LDR–TD (r = 3) 70K 0.473
Toeplitz-like (r = 2) 46K 0.483
Toeplitz-like (r = 3) 52K 0.496

Table 2. Two depths scattering on CIFAR-10 followed by LDR or DC
layer. Networks with DC layers outperform all LDR configurations
with fewer weights.

Architectures #Params Acc.

DC (1 layers) 124K 0.757
DC (3 layers) 217K 0.785
Ensemble x5 DC (3 layers) 1.08M 0.811
LDR-SD (r = 1) 140K 0.701
LDR-SD (r = 10) 420K 0.728
Toeplitz-like (r = 1) 110K 0.711
Toeplitz-like (r = 10) 388K 0.720

Comparison with LDR networks [27]. We now compare DCNNs
with the LDR framework using the network configuration experi-
mented in the original paper: a single LDR structured layer followed

2 Remark: the numbers may differ from the original experiments by [27]
because we use the original dataset instead of a monochrome version.

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks 949

(a) (b)

Figure 3. Comparison of DCNNs and ACDC networks on two different tasks. Figure 3(a) shows the evolution of the training loss on a regression task with
synthetic data. Figure 3(b) shows the test accuracy on the CIFAR-10 dataset.

50 100 150 200 250 300 350
0.2

0.3

0.4

0.5

0.6

#weights (x1000)

Te
st

A
cc

ur
ac

y

Dense (9M weights)
DCNN
DTNN
Toeplitz network
Low Rank network

(a)

100 200 300 400

0.7

0.72

0.74

0.76

0.78

#weights (x1000)
Te

st
A

cc
ur

ac
y

Scattering + LDR-SD (r=1)
Scattering + LDR-SD (r=10)
Scattering + Toeplitz-like (r=1)
Scattering + Toeplitz-like (r=10)
Scattering + 1 DC
Scattering + 3 DC
Scattering Avg pooling + 3 DC
Scattering by channel + 4 DC

(b)

Figure 4. Figure 4(a): network size vs. accuracy compared on Dense networks, DCNNs (our approach), DTNNs (our approach), neural networks based on
Toeplitz matrices and neural networks based on Low Rank-based matrices. DCNNs outperforms alternatives structured approaches. Figure 4(b) shows the accuracy
of different structured architecture given the number of trainable parameters.

by a dense layer. In the LDR framework, we can change the size of
a network by adjusting the rank of the residual matrix, effectively
capturing matrices with a structure that is close to a known structure
but not exactly (e.g. in the LDR framework, Toeplitz matrices can
be encoded with a residual matrix with rank=2, so a matrix that can
be encoded with a residual of rank=3 can be seen as Toeplitz-like.).
The results are presented in Table 1 and demonstrate that DCNNs
outperforms all LDR networks both in terms in size and accuracy.

Exploiting image features. Dense layers and DCNNs are not de-
signed to capture task-specific features such as the translation invari-
ance inherently useful in image classification. We can further improve
the accuracy of such general purpose architectures on image classifica-
tion without dramatically increasing the number of trained parameters
by stacking them on top of fixed (i.e. non-trained) transforms such
as the scattering transform [18]. In this section we compare the ac-
curacy of various structured networks, enhanced with the scattering
transform, on an image classification task, and run comparative exper-
iments on CIFAR-10.

Our test architecture consists of 2 depth scattering on the RGB
images followed by a batch norm and LDR or DC layer. To vary the
number of parameters of Scattering+LDR architecture, we increase
the rank of the matrix (stacking several LDR matrices quickly ex-
hausted the memory). The Figure 4(b) and 2 shows the accuracy of
these architectures given the number of trainable parameters.

First, we can see that the DCNN architecture very much benefits
from the scattering transform and is able to reach a competitive ac-
curacy over 78%. We can also see that scattering followed by a DC
layer systematically outperforms scattering + LDR or scattering +
Toeplitz-like with less parameters.

6.2 Comparison with other compression based
approaches (Q6.2)

Table 3. Comparison with compression based approaches

Architecture #Params Error (%)

LeNet [16] 4 257 674 0.61

DCNN 25 620 1.74
31 764 1.60

HashNet [6] 46 875 2.79
78 125 1.99

Dark Knowledge [12] 46 875 6.32
78 125 2.16

We provide a comparison with other compression based approaches
such as HashNet [6], Dark Knowledge [12] and Fast Food Transform
(FF) [29]. Table 3 shows the test error of DCNN against other know
compression techniques on the MNIST datasets. We can observe that
DCNN outperform easily HashNet [6] and Dark Knowledge [12] with
fewer number of parameters. The architecture with Fast Food (FF)
[29] achieves better performance but with convolutional layers and
only 1 Fast Food Layer as the last Softmax layer.

6.3 DCNNs for large-scale video classification on
the YouTube-8M dataset (Q6.3)

To understand the performance of deep DCNNs on large scale appli-
cations, we conducted experiments on the YouTube-8M video classifi-
cation with 3.8 training examples introduced by [2]. Notice that we
favour this experiment over ImageNet applications because modern

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks950

image classification architectures involve a large number of convo-
lutional layers, and compressing convolutional layers is out of our
scope. Also, as mentioned earlier, testing the performance of DCNN
architectures mixed with a large number of expressive layers makes
little sense. The YouTube-8M includes two datasets describing 8 mil-
lion labeled videos. Both datasets contain audio and video features for
each video. In the first dataset (aggregated) all audio and video fea-
tures have been aggregated every 300 frames. The second dataset (full)
contains the descriptors for all the frames. To compare the models we
use the GAP metric (Global Average Precision) proposed by [2]. On
the simpler aggregated dataset we compared off-the-shelf DCNNs
with a dense baseline with 5.7M weights. On the full dataset, we de-
signed three new compact architectures based on the state-of-the-art
architecture introduced by [2].
Experiments on the aggregated dataset with DCNNs: We com-
pared DCNNs with a dense baseline with 5.7 millions weights. The
goal of this experiment is to discover a good trade-off between depth
and model accuracy. To compare the models we use the GAP metric
(Global Average Precision) following the experimental protocol in [2],
to compare our experiments.

Table 4 shows the results of our experiments on the aggrgated
YouTube-8M dataset in terms of number of weights, compression
rate and GAP. We can see that the compression ratio offered by
the circulant architectures is high. This comes at the cost of a little
decrease of GAP measure. The 32 layers DCNN is 46 times smaller
than the original model in terms of number of parameters while having
a close performance.

Table 4. This table shows the GAP score for the YouTube-8M dataset
with DCNNs. We can see a large increase in the score with deeper
networks.

Architecture #Weights GAP@20

original 5.7M 0.773
4 DC 25 410 (0.44) 0.599
32 DC 122 178 (2.11) 0.685
4 DC + 1 FC 4.46M (77) 0.747

Table 5. This table shows the GAP score for the YouTube-8M dataset
with different layer represented with our DC decomposition.

Architecture #Weights GAP@20

original 45M 0.846
DBoF with DC 36M (80) 0.838
FC with DC 41M (91) 0.845
MoE with DC 12M (26) 0.805

Experiments with DCNNs Deep Bag-of-Frames Architecture:
The Deep Bag-of-Frames architecture can be decomposed into three
blocks of layers, as illustrated in Figure 5. The first block of layers,
composed of the Deep Bag-of-Frames embedding (DBoF), is meant
to model an embedding of these frames in order to make a simple
representation of each video. A second block of fully connected layers
(FC) reduces the dimensionality of the output of the embedding and
merges the resulting output with a concatenation operation. Finally,
the classification block uses a combination of Mixtures-of-Experts
(MoE) [14, 1] and Context Gating [19] to calculate the final class
probabilities. Table 5 shows the results in terms of number of weights,
size of the model (MB) and GAP on the full dataset, replacing the
DBoF block reduces the size of the network without impacting the

accuracy. We obtain the best compression ratio by replacing the MoE
block with DCNNs (26%) of the size of the original dataset with a
GAP score of 0.805 (95% of the score obtained with the original
architecture). We conclude that DCNN are both theoretically sound
and of practical interest in real, large scale applications.

Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE
Context
Gating

Figure 5. This figure shows the state-of-the-art neural network architecture,
initially proposed by [2] and later improved by [19], used in our experiment.

Architectures & Hyper-Parameters: For the first set of our ex-
periments (e.g. experiments on CIFAR-10), we train all networks for
200 epochs, a batch size of 200, Leaky ReLU activation with a differ-
ent slope. We minimize the Cross Entropy Loss with Adam optimizer
and use a piecewise constant learning rate of 5× 10−5, 2.5× 10−5,
5× 10−6 and 1× 10−6 after respectively 40K, 60K and 80K steps.
For the YouTube-8M dataset experiments, we built a neural network
based on the SOTA architecture initially proposed by [2] and later
improved by [19]. Remark that no convolution layer is involved in this
application since the input vectors are embeddings of video frames
processed using state-of-the-art convolutional neural networks trained
on ImageNet. We trained our models with the CrossEntropy loss and
used Adam optimizer with a 0.0002 learning rate and a 0.8 exponen-
tial decay every 4 million examples. All fully connected layers are
composed of 512 units. DBoF, NetVLAD and NetFV are respectively
8192, 64 and 64 of cluster size for video frames and 4096, 32, 32 for
audio frames. We used 4 mixtures for the MoE Layer. We used all the
available 300 frames for the DBoF embedding. In order to stabilize
and accelerate the training, we used batch normalization before each
non linear activation and gradient clipping.

7 Conclusion

This paper deals with the training of diagonal circulant neural net-
works. To the best of our knowledge, training such networks with a
large number of layers had not been done before. We also endowed
this kind of models with theoretical guarantees, hence enriching and
refining previous theoretical work from the literature. More impor-
tantly, we showed that DCNNs outperform their competing structured
alternatives, including the very recent general approach based on LDR
networks. Our results suggest that stacking diagonal circulant layers
with non linearities improves the convergence rate and the final accu-
racy of the network. Formally proving these statements constitutes
the future directions of this work. We would like to generalize the
good results of DCNNs to convolutional neural networks. We also
believe that circulant matrices deserve a particular attention in deep
learning because of their strong ties with convolutions: a circulant
matrix operator is equivalent to the convolution operator with circular
paddings. This fact makes any contribution to the area of circulant
matrices particularly relevant to the field of deep learning with im-
pacts beyond the problem of designing compact models. As future
work, we would like to generalize our results to deep convolutional
neural networks.

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks 951

References

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Apostol (Paul) Nat-
sev, George Toderici, Balakrishnan Varadarajan, and Sudheendra Vi-
jayanarasimhan, ‘Youtube-8m: A large-scale video classification bench-
mark’, in arXiv:1609.08675, (2016).

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George
Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan,
‘Youtube-8m: A large-scale video classification benchmark’, arXiv
preprint arXiv:1609.08675, (2016).

[3] Alexandre Araujo, Benjamin Negrevergne, Yann Chevaleyre, and Jamal
Atif, ‘Training compact deep learning models for video classification
using circulant matrices’, in The 2nd Workshop on YouTube-8M Large-
Scale Video Understanding at ECCV 2018, (2018).

[4] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo, ‘Implicit regu-
larization in deep matrix factorization’, in Neurips, (05 2019).

[5] Jimmy Ba and Rich Caruana, ‘Do deep nets really need to be deep?’,
in Advances in neural information processing systems, pp. 2654–2662,
(2014).

[6] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger,
and Yixin Chen, ‘Compressing neural networks with the hashing trick’,
in Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pp. 2285–2294.
JMLR.org, (2015).

[7] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S. F. Chang,
‘An exploration of parameter redundancy in deep networks with circulant
projections’, in 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 2857–2865, (Dec 2015).

[8] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E.
Turner, and Adrian Weller, ‘Structured evolution with compact architec-
tures for scalable policy optimization’, in ICML, (2018).

[9] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and
Nando de Freitas, ‘Predicting parameters in deep learning’, in Advances
in Neural Information Processing Systems 26, eds., C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 2148–
2156, Curran Associates, Inc., (2013).

[10] S. Goyal, A. Roy Choudhury, and V. Sharma, ‘Compression of deep
neural networks by combining pruning and low rank decomposition’, in
2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 952–958, (2019).

[11] Aicke Hinrichs and Jan Vybı́ral, ‘Johnson-lindenstrauss lemma for cir-
culant matrices’, Random Structures & Algorithms, 39(3), 391–398,
(2011).

[12] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean, ‘Distilling the knowl-
edge in a neural network’, in NIPS Deep Learning and Representation
Learning Workshop, (2015).

[13] Marko Huhtanen and Allan Perämäki, ‘Factoring matrices into the prod-
uct of circulant and diagonal matrices’, Journal of Fourier Analysis and
Applications, 21(5), 1018–1033, (Oct 2015).

[14] M. I. Jordan and R. A. Jacobs, ‘Hierarchical mixtures of experts and
the em algorithm’, in Proceedings of 1993 International Conference on
Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp. 1339–1344
vol.2, (Oct 1993).

[15] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon, ‘Federated learning: Strate-
gies for improving communication efficiency’, in NIPS Workshop on
Private Multi-Party Machine Learning, (2016).

[16] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
‘Gradient-based learning applied to document recognition’, in Proceed-
ings of the IEEE, pp. 2278–2324, (1998).

[17] Chong Li and C. J. Richard Shi, ‘Constrained optimization based low-
rank approximation of deep neural networks’, in Computer Vision –
ECCV 2018, eds., Vittorio Ferrari, Martial Hebert, Cristian Sminchis-
escu, and Yair Weiss, pp. 746–761, Cham, (2018). Springer International
Publishing.

[18] Stéphane Mallat, ‘Recursive interferometric representation’, in Proc. of
EUSICO conference, Danemark, (2010).

[19] Antoine Miech, Ivan Laptev, and Josef Sivic, ‘Learnable pooling with
context gating for video classification’, CoRR, abs/1706.06905, (2017).

[20] Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando
de Freitas, ‘Acdc: A structured efficient linear layer’, arXiv preprint
arXiv:1511.05946, (2015).

[21] Jörn Müller-Quade, Harald Aagedal, Th Beth, and Michael Schmid,

‘Algorithmic design of diffractive optical systems for information pro-
cessing’, Physica D: Nonlinear Phenomena, 120(1-2), 196–205, (1998).

[22] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P
Vetrov, ‘Tensorizing neural networks’, in Advances in Neural Informa-
tion Processing Systems, pp. 442–450, (2015).

[23] Tara Sainath and Carolina Parada, ‘Convolutional neural networks for
small-footprint keyword spotting’, in Interspeech, (2015).

[24] Victoria Sanchez, Pedro Garcia, Antonio M Peinado, José C Segura,
and Antonio J Rubio, ‘Diagonalizing properties of the discrete cosine
transforms’, IEEE transactions on Signal Processing, 43(11), 2631–
2641, (1995).

[25] Michael Schmid, Rainer Steinwandt, Jörn Müller-Quade, Martin
Rötteler, and Thomas Beth, ‘Decomposing a matrix into circulant and di-
agonal factors’, Linear Algebra and its Applications, 306(1-3), 131–143,
(2000).

[26] Hanie Sedghi, Vineet Gupta, and Philip Long, ‘The singular values of
convolutional layers’, in ICLR, (2018).

[27] Anna Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré,
‘Learning compressed transforms with low displacement rank’, in Ad-
vances in Neural Information Processing Systems 31, eds., S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, 9066–9078, Curran Associates, Inc., (2018).

[28] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep
Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh,
Yoshua Bengio, and Christopher J. Pal, ‘Deep complex networks’, in
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, (2018).

[29] Z. Yang, M. Moczulski, M. Denil, N. d. Freitas, A. Smola, L. Song, and
Z. Wang, ‘Deep fried convnets’, in 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 1476–1483, (Dec 2015).

[30] X. Yu, T. Liu, X. Wang, and D. Tao, ‘On compressing deep models
by low rank and sparse decomposition’, in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 67–76, (July
2017).

[31] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan,
‘Theoretical properties for neural networks with weight matrices of low
displacement rank’, in Proceedings of the 34th International Confer-
ence on Machine Learning, eds., Doina Precup and Yee Whye Teh,
volume 70 of Proceedings of Machine Learning Research, pp. 4082–
4090, International Convention Centre, Sydney, Australia, (06–11 Aug
2017). PMLR.

A. Araujo et al. / Understanding and Training Deep Diagonal Circulant Neural Networks952

	Introduction
	Related Work
	A primer on circulant matrices and a new result
	Analysis of Diagonal Circulant Neural Networks (DCNNs)
	How to train very deep DCNNs
	Empirical evaluation
	Comparison with other structured approaches (Q6.1)
	Comparison with other compression based approaches (Q6.2)
	DCNNs for large-scale video classification on the YouTube-8M dataset (Q6.3)

	Conclusion

