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Abstract. In this paper, we propose a new framework for mitigating
biases in machine learning systems. The problem of the existing
mitigation approaches is that they are model-oriented in the sense that
they focus on tuning the training algorithms to produce fair results,
while overlooking the fact that the training data can itself be the
main reason for biased outcomes. Technically speaking, two essential
limitations can be found in such model-based approaches: 1) the
mitigation cannot be achieved without degrading the accuracy of the
machine learning models, and 2) when the data used for training
are largely biased, the training time automatically increases so as to
find suitable learning parameters that help produce fair results. To
address these shortcomings, we propose in this work a new framework
that can largely mitigate the biases and discriminations in machine
learning systems while at the same time enhancing the prediction
accuracy of these systems. The proposed framework is based on
conditional Generative Adversarial Networks (cGANs), which are
used to generate new synthetic fair data with selective properties
from the original data. We also propose a framework for analyzing
data biases, which is important for understanding the amount and
type of data that need to be synthetically sampled and labeled for
each population group. Experimental results show that the proposed
solution can efficiently mitigate different types of biases, while at the
same time enhance the prediction accuracy of the underlying machine
learning model.

1 INTRODUCTION

The world is facing a historical shift toward adopting Artificial Intelli-
gence (AI) to automate the decision-making process in many sectors,
including those of health, transportation and public services. This,
however, has led to growing concerns about the bias and discrimina-
tion that these systems might produce, which might negatively affect
citizens especially those who belong to ethnic and racial minorities.
The hazard of bias becomes even more crucial when these systems
are applied to critical and sensitive domains such as health care and
criminal justice. In fact, biased AI systems are mainly engendered by
the data used to feed the training process of the machine learning algo-
rithms [16] [44][52]. Training data can be incomplete, insufficiently
diverse, biased, and/or consisting of non-representative samples that
are not well (or poorly) defined before use [16], which might lead to
biased results and lower accuracy [16] [49]. Obtaining and labeling
new data to compensate and overcome these problems is one possible
solution to fight against biases. However, it has been shown that such
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a strategy is largely difficult, costly, privacy-sensitive and dangerous,
especially in some critical domains like transportation and health [24]
[36].

Many approaches have been recently proposed to fight against bias
and discrimination in machine learning systems. The problem of the
existing mitigation approaches [40] [42] [35] is that they overlook the
fact that the data used to train the machine learning algorithm might be
the root cause of unfair results. In particular, these approaches focus
on tuning the training algorithms to decrease the chances of producing
biased results. Although such a model-based strategy might end up
producing fair results, the accuracy of the underlying machine learn-
ing algorithm will be largely degraded. In other words, the mitigation
will be achieved on the account of the overall prediction accuracy [17]
[44] [21]. Besides, when the training data are largely biased, the time
needed to complete the training and obtain a fair model will dramati-
cally increase, compared to the case of traditional training algorithms.
The reason is that these approaches not only try to minimize the loss
function (in order to teach the machine learning model), but also work
on minimizing the chances of producing unfair results. Thus, a longer
training time is needed to find the suitable parameters for a fair model.

To address the above-mentioned shortcomings, we propose a new
framework for mitigating biases in machine learning systems, with-
out degrading their accuracy. The proposed framework is based on
conditional Generative Adversarial Networks (cGANs) [43], special
versions of the Generative Adversarial Networks (GANs) [25], which
have shown unprecedented success in generating high-quality new
synthetic data with selective properties. The proposed framework al-
lows the designers of the machine learning systems to estimate the
real distribution of the original data pertaining to the targeted popu-
lation groups (population groups that are victims of biases) through
formulating a minimax two-player game [7] [9]. The game is played
between two models, which are trained simultaneously, i.e., the Dis-
criminator (Dis) and the Generator (Gen). Gen is trained to capture
the data distribution through trying to maximize the probability of Dis
committing a mistake. On the other hand, Dis is trained to maximize
the probability that a data sample came from a targeted population
group rather than the Gen. The training of both Dis and Gen is re-
peated over many iterations until a generative model that can generate
new synthetic data pertaining to the targeted population groups is
obtained. The resulting generative model is then used to synthetically
produce new data, which are used to augment the training set so as
to compensate and overcome the bias problem. In this way, machine
learning algorithms can be trained on these data in order to produce
unbiased predictions.

Unlike similar works (e.g., [55]), the proposed model gives the
designers of the machine learning systems the flexibility to decide
on the amount of data that needs to be synthetically sampled and
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labeled, taking into account their domain knowledge. The proposed
framework is also designed to be integrated into another framework
for analyzing and understanding data biases. The objective is to guide
the machine learning model designers on the amount and type of
data that needs to be synthetically sampled and labeled. This, in turn,
minimizes the chances of synthetically generating unnecessary data.
Our contributions are summarized as follows. First, we propose a new
framework for mitigating biases in machine learning systems while at
the same time enhancing their overall accuracy. Second, we integrate
the proposed mitigation framework into an analytical framework for
understanding data biases. This allows us to infer the type and amount
of data that needs to be synthetically sampled in order to augment
the training data. Finally, we propose a new framework that gives the
designers of the machine learning systems the flexibility to decide on
the amount of data that needs to be synthetically sampled and labeled,
taking into account their domain knowledge.

2 RELATED WORK

The idea of using adversarial training for mitigating biases in machine
learning systems has recently been addressed in several works. For
example, Madras et al. [42] propose a “fair” representation of data
[39] that can be used by the classifier to generate fair decisions. They
employ GANs to ensure that the generated representation of data
is fair. Similarly, Louppe et al. [40] propose a new approach called
“Pivot-based approach”. The framework also uses GANs not to gener-
ate new synthetic data but to create a new classifier that guarantees
unbiased predictions. The method modifies the GANs design through
changing the role of the generator from learning how to generate new
synthetic data to a classifier that is used to produce fair results. During
the training of GANs, the classifier is optimized and updated based
on the prediction losses of the sensitive attributes (Ethnicity, Gender,
etc.). The main disadvantage of this approach is that it does not care
about the overall accuracy of the classifier during the bias mitigation
process. It only cares about reducing the biased results in the classifier.
In other words, the mitigation in this approach is achieved on the
account of the overall accuracy. In contrast, our framework can reduce
biases while at the same time enhancing the overall system’s accuracy.

Xu et al. [55] also adopt the GANs with the aim of generating new
synthetic fair data, which are then used to train the classifier on how
to produce unbiased decisions. For this purpose, another discriminator
was used to check if the fairness has been achieved or not. Similar
approaches have been proposed in [14], [21] [32] and [38]. These data-
driven mitigation approaches suffer from three essential shortcomings.
First, they propose to generate new data for each particular population
group, thus leading to unnecessary data and unnecessary overhead.
Second, these approaches require frequently verifying the machine
learning model to check whether the generated data lead to a fair
model or not. Third, these approaches are not complemented by any
framework for analyzing and understanding data biases. This makes
the designers of the machine learning systems unable to efficiently
estimate and understand the amount and type of data that need to be
synthetically sampled and labeled.

In contrast, our proposed mitigation approach is coupled with a
framework for analyzing data biases. This is important to understand
the amount of data that needs to be synthetically sampled for each
particular population group. Moreover, the proposed framework gives
the designers of machine learning systems the flexility to decide on
the amount of data that should be synthetically sampled, taking into
account both the domain knowledge and prediction accuracy with
respect to the original data. As a result, the proposed model enables

us to achieve fair machine learning systems while at the same time
enhancing the accuracy of the prediction with minimum training
overhead.

Celis et al. [17] formulate the adversarial problem as a multi-
objective optimization model and try to find the fair model using
a gradient descent-ascent algorithm with a modified gradient update
step [17]. In fact, their approach is inspired by the work proposed
by [57], while adding more robust theoretical foundations. Similarly,
Agarwal et al. [11] propose a minimax optimization problem, which is
solved using the saddle point methods [37] in order to derive the fair
model. Other model-based mitigation approaches also are proposed
in [22] [46] [54] [29]. These approaches propose algorithms to find
suitable thresholds for trained classifiers so as to ensure equalized and
fair odds. In particular, they try to fix the decision boundary in such a
way to ensure that the final classifier is fair.

Most of the above-mentioned model-based mitigation approaches
do not consider the training data as a potential reason for biased
results. Instead, they focus only on modifying the training algorithms
to produce fair results. Two main disadvantages can be distinguished
in such an approach. First, the mitigation is achieved on the account
of the accuracy. Second, the time needed to obtain the fair model is
higher than that in traditional training algorithms, especially when
the data used for training are largely biased [10] [8]. This is because
these models are not only trained to minimize the loss function, but
also to minimize the chances of producing unfair results.

3 REAL-WORLD EXAMPLES ON
UNFAIRNESS IN MACHINE LEARNING
SYSTEMS

Machine learning plays an important role in the economic develop-
ment of the Information Technology society. This is the case for end
users (employees, citizens, clients), service providers (government,
corporations of all sectors) and infrastructure providers (Information
Technology sector) who all benefit from automated and intelligent
systems. Unfortunately, empirical studies reported an inequitable
or biased behavior in many recent machine learning-based applica-
tions [18]. One should note that bias and discrimination can take on
different meanings in different contexts (e.g. politics, psychology,
economy). However, in this paper, we define bias as a prejudice in
favor or against a person or population group [16].

One concrete example of bias in machine learning comes from
Northpointe’s tool [2][13], called COMPAS (i.e., Correctional Of-
fender Management Profiling for Alternative Sanctions) [2], which is
used to predict whom criminals are most likely to recommit crimes
[50]. It has been shown that the COMPAS tool produces biased results.
In particular, recent research conducted by ProPublica [3] found that
the tool is more likely (i.e., two times more) to incorrectly predict that
defendants from persons of color will recommit crimes. Along with
the same line, the research also found that the tool is more likely to
incorrectly predict that caucasian defendants are less likely to reoffend
[3].

Another example is that of the Google Photos application [5], which
is used to categorize images through detecting objects contained in
them. Recent empirical analysis on this application have shown some
racial bias [6]. Also, Amazon’s Rekognition [4], which is a cloud-
based popular application for facial analysis, was found to produce
racial and gender-biased outputs [6].

A final example is that of the Google Word2Vec Model [33], which
is used to learn the vector representation of words and is widely used
in both research and Nature language processing (NLP) applications
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[48]. It has been shown that word2vec word embeddings learnt from
huge amounts of text frequently show gender bias. The reason is
that the (Euclidean) distance function used to measure the distance
between words largely related words like nurse, homemaker with the
she pronoun and words like doctor, manager with the he pronoun. As
a result, any application built on top of a Word2Vec Model is very
likely to be affected by this bias [34].

4 THE PROPOSED FRAMEWORK FOR
MITIGATING MACHINE LEARNING BIASES

In this section, we provide the details of our framework proposed for
mitigating biases in machine learning systems. We first give some
explanations on Generative Adversarial Networks and conditional
Generative Adversarial Networks and then present the proposed miti-
gation model in detail, followed by our framework for analyzing data
biases.

4.1 Generative Adversarial Nets and the
Conditional Version

Generative adversarial networks (or GANs) is a new generative model
that has been proposed by [25]. A generative model can be seen as
a way of learning any kind of data distribution using unsupervised
learning techniques [12] [30]. Although several generative models
have been proposed in the literature such as Deep Belief Network
(DBN) [30] and Variational Autoencoder (VAE) [20], GANs have re-
ceived more attention thanks to their unprecedented ability to generate
new synthetic high-quality data compared to the traditional genera-
tive models. In fact, GANs consist of two models: a discriminative
(Des) and a generative (Gen) models. Gen is trained to capture the
data distribution through trying to maximize the probability of Dis
committing a mistake. On the other hand, Dis is trained to maximize
the probability that a data sample came from a targeted population
group rather than the Gen. The training of both the discriminative and
generative models is repeated over many iterations until the discrimi-
native model becomes unable to distinguish whether the underlying
data is a sample from the data or generated from the generater. This
framework is also known as a minimax two-player game [45] [28]
[27] and is described formally as follows:

minGen maxDisV (Gen,Dis) =
Ex∼pdata(x)log[Dis(x)]+Ez∼pz(z)log[1−Dis(Gen(z))]

(1)

Formula (1) shows that both the Discriminator and the Generator
are trained simultaneously. In particular, the Discriminator is trained
to maximize the probability that a data sample came from the training
data rather than the Generator. On the other hand, the Generator is
trained to capture the data distribution through trying to maximize the
probability of the Discriminator committing a mistake [25].

Conditional Generative Adversarial Networks (or cGANs) [43] are
a special case of GANs which have shown great success in generating
high-quality new synthetic data with selective properties. Although
Goodfellow et. al [25] have already indicated in their original work the
possibility of training cGANs, their work did not provide theoretical
and experimental results to support this claim. cGANs can be achieved
through adding a condition c as an input in both Gen and Dis. The
formal description of cGANs is described as follows:

minGeb maxDisV (Gen,Dis) =
Ex∼pdata(x)log[Dis(x|c)]+Ez∼pz(z)log[1−Dis(Gen(z|c))] (2)

Formula (2) looks similar to Formula (1). However, the only differ-
ence is that the condition c is considered during the training of both
the Generator and the Discriminator. In fact, c could be any type of
data or information, for example, class labels or type of data [43].

4.2 The Proposed Model

The proposed mitigation model is based on cGANs. As can be shown
in Figure 1, we train Gen to synthetically produce new synthetic data
based on the Targeted Population Groups (T PG). T PGs represent
those population groups against whom the machine learning models
produce biased results. The new data generated using the proposed
framework are then used to augment the training data (incomplete
and biased data). The new data (original data and generated data) will
then be used to train the machine learning algorithms.

In the next section, we present a new framework used for analyzing
data biases and exploring the T PGs. This framework is designed
to be integrated into the proposed mitigation approach in order to
allow the designers of the machine learning systems to understand the
amount and type of data that should be synthetically sampled for each
population group. To this end, the objective function of a two-player
minimax game is defined as follows:

minGen maxDisV (Gen,Dis) =
Ex∼pdata(x)log[Dis(x|T PG)]+Ez∼pz(z)log[1−Dis(Gen(z|T PG))]

(3)
In Formula (3), both the Discriminator and the Generator are trained

simultaneously. Also, the condition T PG is considered during the
training.
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Figure 1: The architecture of our proposed model

Since the standard training of GANs cannot easily converge (i.e.,
non-convergence problem) [23] and to avoid mode collapse [23], we
adopt a Primal-Dual Sub-gradient method to solve this problem. This
method is proposed by [19] and can be seen as a Lagrangian perspec-
tive of GANs [19]. To this end, we construct a convex optimization
problem as follows:

maximize
n

∑
i=1

pdata(xi|T PG)log(Dis(xi|T PG))

Sub ject to : (1− log(Dis(xi|T PG))≥ log(1/2), i = 1, ...,n
Dis ∈S ,

(4)
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Algorithm 1: Algorithm for training a generator
Input: Targeted Population Group (TPG)
repeat

Sample n1 data samples xi, i= 1, ..., n1 (minibatch
sampling)

Sample n2 noise samples zi, i= 1, ..., n2 (minibatch
sampling)

for K steps do
Update the Dis through ascending the stochastic

gradient:

∇θdata [
1
n1

n1

∑
1

log(Dis(xi|T PG))+

1
n2

n2

∑
1

log(1−Dis(Gen(zi|T PG)))]

(5)

end
Update the Gen distribution as follows:

p̃gen(xi|T PG) = pgen(xi|T PG)−
β log(2(1−Dis(xi|T PG))), i = 1, ...n1

(6)

where β represents some step size and

pgen(xi|T PG) =
1

n2

n2

∑
j=1

kσ (Gen(z j|T PG)− xi). (7)

Update the Gen through descending the stochastic gradient:

∇θgen [
1
n2

1
n2

log(1−Dis(Gen(z j|T PG)))+

1
n1

n1

∑
1
(p̃gen(xi|T PG)− pgen(xi|T PG))2]

(8)

until ε elapses;

where S is some convex set and the variables are
Dis=(Dis(x1|T PG),...Dis(xn|T PG)). Let pgen|T PG = (pgen(x1|T PG),
... , pgen(xn|T PG)), where pgen(xi|T PG) is the Lagrangian dual
associated with the i-th constraint. Formula (4) shows the Lagrangian
version of GANs, which is proposed by [19] to avoid mode collapse
problem [23]. The formula adopts a Primal-Dual Sub-gradient
method to address this problem.

The proposed training algorithm (Algorithm 1), which is inspired
by [19], is based on (4). In Algorithm 1, the targeted population group
(T PG) is taken as an input and the goal is to train Gen to produce
data that cope with the T PG. In the proposed algorithm, the process
of updating of Dis is similar to the standard cGAN training; however,
the process of updating Gen is different. For the Gen, when the data
distribution and generated distribution have disjoint supports [26]
[19], the Gen may not be updated using standard cGAN training (7)
(8) (9). This is useful to prevent the main source of mode collapse
[19]. Note that after a certain fixed period denoted by ε , the whole
steps are repeated in order to enable both the Gen and Dis to learn
how to produce new high-quality synthetic data, based on the targeted
population group.

4.3 How To Analyze Data Biases?

In the previous section, we proposed a new algorithm (Algorithm 1)
for learning how to train the generator on how to create new synthetic

data based on a given targeted population group. The algorithm takes
as an input a targeted population group in order to learn how to
produce new data with respect to that particular group. In this section,
we present a new framework that can be used to explore the set of
targeted population groups to be used as inputs for Algorithm 1. Note
that this framework is inspired by the analysis presented in [51] for
detecting biases in machine learning models, while adapting it to our
case where we are interested in detecting biases in the data itself rather
than in the machine learning model.

The following steps are used for the analysis of data biases. First,
select a set of population groups to study if the classifier produces
biased results against any of them. Second, train the classifier on the
training data. Third, test the classifier by producing results and visual-
izing the prediction accuracy with respect to each population group.
The visualization can be achieved either by showing the probability
distribution or by displaying the accuracy obtained for each popu-
lation group. Finally, analyze these results to see which population
group(s) is/are victim(s) of biases.

We use the following example to illustrate how does the above-
described framework practically work. Consider the adult UCI dataset
[56], which is used to predict the salary of a person (below 50K$ or
above 50k$). The dataset contains two Sensitive Attributes (SA), i.e.,
Ethnicity and Gender. This leads us to the following four population
groups: African American, Caucasian, Female and Male. Although
we could have combinations of these population groups (e.g., African
American females), we restrict, for the sake of simplicity and without
loss of generality, our example to only the above mentioned four
population groups.

To determine if the training data are biased or not, we need to
test whether a machine learning classifier, that is trained on these
data, produces biased results or not. To this end, we trained a neural
network classifier on this dataset and analyzed the prediction accuracy,
taking into account above mentioned population groups. The results
of our testing are given in Figure 2.

Figure 2a shows the distributions of the predicted P(income >
50K$ ) given the SA SEthnicity = {African American, Caucasian}. The
Figure shows that for the ethnicity attribute, the prediction distribu-
tion of an “African American” has a large value at the low interval
of [0.1−0.2] compared to a “Caucasian”. These results suggest that
when a person is an “African American”, the probability that the
classifier will predict his/her income below 50K$ is much higher
compared to a “Caucasian”. Similarly, Figure 2b shows the distri-
butions of the predicted P(income > 50K$) given the SA SGender =
{female,male}. The Figure shows that for the gender attribute, the
prediction distribution of a “female” has a large value at the low
interval of [0.1 -0.2] compared to a “male”. These results suggest
that when a person is “female”, the probability that the classifier will
predict her income below 50 K$ is much higher compared to a “male”.
The results shown in Figure 2 give us a clear indication that the data
used for training is incomplete (i.e., the number of Caucasians and
males in the dataset is greater than that of African Americans and
females). Therefore, we conclude that the targeted population groups
that should be used as inputs to Algorithm 1 based on to the above
results are: SEthnicity = {African American} and SGender = {female}.
Simply put, the generator will be trained to generate new African
Americans and females.

5 Experimental Evaluation

This section first describes the setup used to evaluate the proposed
framework. Then, the performance of the proposed bias mitigation
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Figure 2: (Left) Prediction distribution of the original training data with respect to the ethnicity attribute. (Right) Prediction distribution of the
original training data with respect to the gender attribute.
framework is examined. We compared the proposed model with a
recent work proposed in [40]. This work is called as a “Pivot-based
mitigation approach” and it uses GANs not to generate new synthetic
data (like we do) but to create a new classifier that guarantees fair-
ness in predictions. The method makes a modification on the GANs
through changing the role of the generator from learning how to gener-
ate new synthetic data to a classifier that is used to produce fair results.
During the training process of GANs, the classifier is optimized and
updated based on the prediction losses of the sensitive attributes (e.g.,
Ethnicity, Gender, etc.). Although we did not compare our model with
[55] and other data-driven mitigation approaches, we mentioned the
main shortcomings of these approaches in the related work section.

5.1 Experimental Setup

We implemented the proposed framework using Multilayer Percep-
trons (MLPs) with 3 hidden layers. We used the ReLU activation
function for both the generators and discriminators. The two follow-
ing datasets were tested: the adult UCI dataset [56] and the Adience
dataset [1], which widely used for age and gender prediction. The
adult UCI dataset consists of 48842 instances, with 14 attributes [56].
The Adience dataset consists of 26,580 photos distributed in 8 age
categories (0 to 2, 4 to 6, 8 to 13, 15 to 20, 25 to 32, 38 to 43, 48 to
53, 60 and above) with the corresponding gender label [1] [47]. Since
the adult UCI dataset contains categorial data, we placed in parallel
a dense-layer per categorical variable, followed by Gumbel-Softmax
activation and a concatenation to get the final output [15] [31] [41].
Prediction performance on the validation dataset is adopted for finding
the best hyper-parameter configuration. The results are reported based
on a 95% confidence interval. We train a classifier on our dataset
using the 10-fold cross-validation model.

5.1.1 Results on the adult UCI dataset

Figure 3 shows the results obtained when applying the proposed
framework on the adult UCI dataset. In particular, Figure 3a shows
the progress achieved in the prediction distribution compared to Fig-
ure 2a. This progress was achieved when we augmented the original
data (female) by 85% new data obtained synthetically from the gen-
erator. Figures 3b also shows the progress achieved in the prediction
distribution, compared to Figure 2b, when we augmented the original
data (African American) by 85% new data obtained synthetically

from the generator. Note that the proposed framework is flexible in
the sense that it enables machine learning designers to control the
amount of data (e.g, 85%) that needs to be synthetically added for each
population group. This allows the designers to consider the “Domain
knowledge” during the data augmentation process.

Table 1 shows a comparison between the proposed approach and
a recent work proposed in [40]. Table 1 shows the overall accuracy
obtained by the proposed model when training the MLP on the new
training data (original data + generated data) with different numbers of
Hidden Units (HUs). These results are better than the results obtained
using the ‘Pivot-based mitigation approach”. Our model also yields
a better accuracy compared to the baseline. The baseline means that
the classifier was trained on the original data without adding new
synthetic data. This can be justified by the fact that the data used
for training was incomplete (unbalance) and led to biased results, in
the sense of having a lower measure of accuracy [16]. The proposed
framework overcame this problem through augmenting the training
data to mitigate biases and enhancing the prediction accuracy. It
is worth mentioned here that the prediction accuracy in Table 1 is
obtained with respect to some held-out test dataset (of only real data
with no synthetic data).

5.1.2 Results on the Adience dataset

Table 2 studies the accuracy of the MLP classifier with respect to
a given population group. The results suggest the existence of bias
against the women of color. Table 3 shows the progress achieved
in the prediction accuracy compared to Table 2 when the training
data was augmented with more data on women of color, which were
synthetically obtained from the generator (the proposed framework).

Table 4 shows the overall prediction accuracy of the MLP classifier
trained on the new training data. These results outperform both the
pivot-based classifier and the baseline.

6 LIMITATION

Although the proposed framework has the advantage of mitigating
bias in machine learning systems against targeted groups, we cannot
claim that our solution fully solves the problem. In fact, bias is a
broad and undefined problem, which does not always target members
of minority groups (e.g., female). For example, Google conducted
a recent study to determine whether the company is underpaying
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Figure 3: (Left) Prediction distribution when 85% of new synthetic data (female) were added to the original dataset. (Right) Prediction distribution
when 85% of new synthetic data (African American) were added to the original dataset.

Table 1: Comparison of the prediction accuracy of different approaches (Adult UCI dataset)

Acc. (300 HUs) Acc. (500 HUs) Acc. (700 HUs) Acc. (900 HUs)

The Proposed Approach 84.9± 1.14 85.1± 1.09 85.3± 1.92 85.5± 1.15
Pivot-based Approach 76.1 ± 1.11 76.4 ± 1.84 77.1± 1.23 77.3± 1.78

Baseline 82.0± 1.16 82.3± 1.06 82.6 ± 1.90 82.9 ± 0.88

Table 2: Classification performance with respect to a population group

Acc. (300 HUs) Acc. (500 HUs) Acc. (700 HUs) Acc. (900 HUs)

Men of color 86.5 ± 0.34 87.68 ± 0.33 87.15 ± 0.22 87.5 ± 0.26
Women of color 67.8± 0.14 67.9± 0.29 68.3± 0.36 68.4 ± 2.40
Caucasian men 98.6 ± 0.24 98.7 ± 0.35 98.8 ± 0.19 98.0 ± 0.21

Caucasian women 90.4 ± 0.45 91.3 ± 0.38 91.8 ± 2.02 91.7 ± 0.44

Table 3: Classification performance after the augmentation with the data on women of color (300%)

Acc. (300 HUs) Acc. (500 HUs) Acc. (700 HUs) Acc. (900 HUs)

Men of color 87.9 ± 0.38 88.1 ± 0.45 88.1 ± 0.84 88.3 ± 0.66
Women of color 88.1 ± 0.27 88.2 ± 0.30 88.5 ± 0.34 88.6 ± 0.22
Caucasian men 99.2± 0.31 99.3 ± 0.42 99.5 ± 0.28 99.7 ± 0.37

Caucasian women 91.9 ± 0.66 92.0 ± 0.41 92.3 ± 2.07 92.5 ± 0.23

Table 4: Comparison of overall prediction accuracy (Adience dataset)

Acc. (300 HUs) Acc. (500 HUs) Acc. (700 HUs) Acc. (900 HUs)

The Proposed Approach 91.77± 0.29 91.9± 0.36 92.10± 0.41 92.27± 0.25
Pivot-based Approach 81.71± 0.29 80.43± 0.38 81.01± 0.31 81.37± 0.29

Baseline 85.82± 0.33 86.39± 0.24 86.51± 0.31 86.40± 0.37

women or not. Surprisingly, they found that men were less paid than
women even for the same job position [53]. Therefore, we argue that
more efforts need to be done to generalize the proposed framework
for unpredictable bias cases.

7 CONCLUSION AND FUTURE WORK

This paper presents a new framework for the mitigation of biases
in machine learning systems. The proposed framework is based on
conditional generative adversarial networks, which allows us to gener-
ate new high-quality synthetic data related to the targeted population
groups. The proposed framework is integrated into the proposed ana-
lytical framework used for understanding of data biases. This allows
us to understand the type and amount of data that should be synthet-

ically sampled to augment the training data and overcome the bias
problem. The training process then takes place on the new data (orig-
inal data + generated data). Our model also enables the mitigation
to be applied while taking into consideration the knowledge domain.
Experimental results show that the proposed framework mitigates
the biases against targeted population groups while at the same time
enhancing the prediction accuracy of the machine learning classifiers.

As future work, we plan to design an automated mitigation process.
In particular, after defining the bias, the system should automatically
generate new data and perform unbiased training. The challenge here
is to make the system automatically determine the exact amount
of data that should be sampled, taking into account the knowledge
domain.
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