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Abstract. We explain how abstract argumentation problems can
be encoded as Markov networks. From a computational perspective,
this allows reducing argumentation tasks like finding labellings or de-
ciding credulous and sceptical acceptance to probabilistic inference
tasks in Markov networks. From a semantical perspective, the result-
ing probabilistic argumentation models are interesting in their own
right. In particular, they satisfy several of the properties proposed
for epistemic probabilistic argumentation by Hunter and Thimm. We
also consider an extension to frameworks with deductive support and
show that it maintains many of the interesting guarantees of both ap-
proaches.

1 Introduction

Abstract argumentation [13] studies the acceptability of arguments
based on their relationships and abstracted from their content. While
abstract argumentation frameworks initially considered only attack
relationships between arguments, bipolar argumentation allows an
additional support relation [4, 29, 8, 11]. It is also often useful to go
beyond the classical two-valued view that arguments can only be ac-
cepted or rejected. More fine-grained semantics are considered, for
example, in ranking frameworks that can be based on fixed point
equations [7, 27, 5, 12] or the graph structure [10, 2] and gradual
argumentation frameworks [33, 3, 31]. Probabilistic argumentation
captures more fine-grained degrees of belief by building up on prob-
ability theory [14, 21, 35, 36, 40, 30, 32].

Computational argumentation deals with the question how and
how efficient argumentation problems can be solved algorithmically
[15]. The development of algorithms has been driven forward by the
biannual International Competition on Computational Models of Ar-
gumentation [41, 19]. Many of the most successful competitors ap-
ply SAT-, ASP- or CSP-solvers. These solvers are well suited for the
structure of many argumentation problems and are hard to beat due to
decades of research in these areas. However, when it comes to count-
ing solutions with a particular structure, algorithms developed in the
area of probabilistic reasoning may be an interesting alternative. In
particular, the probabilistic graphical models community provides a
variety of exact and approximate algorithms that offer a tradeoff be-
tween solution quality and computational performance [25]. These
algorithms may be helpful in combinatorial tasks like counting la-
bellings or performing sceptical inference.

In this paper, we study Markov networks as a tool for abstract
argumentation. We explain how argumentation problems can be en-
coded as Markov networks and how inference tasks in argumentation
frameworks can be reduced to inference tasks in Markov networks.
As it turns out, the resulting Markov networks are interesting prob-
abilistic argumentation models in their own right and the probabili-
ties of arguments can sometimes be directly connected to the relative
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frequency of labellings that accept them. In particular, they satisfy
several of the properties proposed by Hunter and Thimm for prob-
abilistic argumentation [21]. We also study an extension to bipolar
argumentation frameworks that respects supported and mediated at-
tacks [11] and some properties by Hunter and Thimm that can be
transferred to the bipolar setting naturally.

2 Markov Networks Basics

Intuitively, Markov networks give a graphical representation of the
independency assumptions in a probabilistic model P . Theoretically,
the graphical representation is negligible because all information is
implicitly contained in P . The crucial assumption is that P can be
decomposed into a product of factors such that each factor depends
only on a small subset of the random variables. This special structure
results in independencies between the random variables in P that can
be exploited in order to compute probabilities more efficiently [25].

As usual in this area, we denote random variables by capital let-
ters X,Y, Z and values of these random variables by small letters
x, y, z. Bold capital letters X,Y,Z denote ordered sequences of ran-
dom variables and bold small letters x,y, z denote assignments to
these random variables. For example, if X = (X1, X2, X3) and
x = (x1, x2, x3), then X = x denotes the assignment (X1 =
x1, X2 = x2, X3 = x3). We write Y ⊆ X if the random vari-
ables in Y form a subset of the random variables in X. If Y ⊆ X,
we denote by X|Y and x|Y the restriction of X and x to the ran-
dom variables in Y. For example, if Y = (X1, X3), we have
X|Y = (X1, X3) and x|Y = (x1, x3) in our example above.

A factor with scope X is a function φ(X) that maps every assign-
ment x to X to a non-negative real number. As a simple example,
consider the factor φ(X1, X2) = X1 ·X2. If X1 and X2 are boolean
random variables, the factor yields 1 · 1 = 1 if X1 = X2 = 1 and
0 otherwise. It can therefore be interpreted as an encoding of logical
conjunction. The intuition of factors is that they can increase or de-
crease the probabilities of states. Our example factor will move the
probability of a state (variable assignment) where X1 ∧ X2 is not
satisfied to 0 and leave the probability unchanged if it is satisfied.

Given a set of factors Φ = {φ1(X1), . . . , φk(Xk)}, Xi ⊆ X, we
define the plausibility of a state of X via

PlΦ(X) =
k∏

i=1

φi(X|Xi).

By normalizing the plausibility, we obtain a probability distribution
that is called the Gibbs distribution over X and is defined by

PΦ(X) =
1

Z
PlΦ(X),

where Z =
∑

x PlΦ(x) is a normalization constant that guaran-
tees that the probabilities sum up to 1. In the literature, Z is usually

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200177

865



called the partition function. The Markov network structure corre-
sponding to PΦ is the undirected graph obtained by introducing a
node for every random variable and connecting each two nodes that
occur together in a factor [25]. A Markov network is a Gibbs distribu-
tion PΦ(X) along with the corresponding Markov network structure.
However, in this work, the Gibbs distribution PΦ is most important
and we will not discuss the the graphical structure much.

One of the main reasoning problems in Markov networks is com-
puting marginal probabilities. That is, given an assignment Y = y to
a subset Y ⊂ X of the random variables, compute PΦ(y). Note that
this also allows computing conditional probabilities because condi-
tional probabilities can be defined based on marginal probabilities
via PΦ(Y | Z) = PΦ(Y,Z)

PΦ(Z)
= PlΦ(Y,Z)

PlΦ(Z)
. In general, comput-

ing marginal probabilities is intractable under the usual complexity-
theoretical assumptions. However, the probabilistic graphical mod-
els community offers a considerable amount of work about tractable
special cases and approximation algorithms [25]. The main family of
exact algorithms is based on the idea of building up a clique tree from
the Markov network and performing a message passing algorithm on
the clique tree. Roughly speaking, probabilities can be computed in
polynomial time if the size of cliques in the tree (not just in the orig-
inal graph) can be bounded by a constant. In general, finding a small
tree can be impossible or computationally intractable, but for some
special cases, this can be done efficiently. Two other well investigated
computational problems are computing the partition function Z and
MAP queries, that is, finding an assignment to (a subset of) the ran-
dom variables with maximum probability. Again, both problems are
intractable in general, but can be solved exactly in special cases or
can be approximated by a variety of algorithms [25].

3 Markov Networks for Abstract Argumentation

A Dung-style (finite) abstract argumentation framework (AAF) is a
tuple (A,Att), where A is a finite set of arguments and Att ⊆ A×A
is the attack relation [13]. If (A,B) ∈ Att, we say that A at-
tacks B. With a slight abuse of notation, we let Att(A) = {B |
(B,A) ∈ Att} denote the set of attackers of A. Semantics of ar-
gumentation frameworks can be defined in terms of extensions or
labellings in an equivalent way [9]. We will use labellings since
they are more convenient for our purpose. A labelling is a function
L : A → {in, out, und} that assigns to each argument a label. With
a slight abuse of notation, we let, for each label l ∈ {in, out, und},
l(L) = {A | L(A) = l} denote the set of arguments labelled with
l by L. Intuitively, L interprets the arguments in in(L), out(L) and
und(L) as accepted, rejected and undecided, respectively. Following
[9], we call a labelling

Complete: if L satisfies

1. L(A) = in if and only if L(B) = out for all B ∈ Att(A).

2. L(A) = out if and only if L(B) = in for some B ∈ Att(A).

Furthermore, we say that a complete labelling is

Grounded: if in(L) is minimal with respect to set inclusion.
Preferred: if in(L) is maximal with respect to set inclusion.
Semi-stable: if und(L) is minimal with respect to set inclusion.
Stable: if und(L) = ∅.

For S ∈ {Complete,Grounded,Prefered, Semi-stable, Stable}, we
denote by LS the set of S-Labellings. In the following, we abbreviate
these semantics by c, g, p, ss, s . For A ∈ A, we say that A is

credulously S-accepted if L(A) = in for some L ∈ LS ,
sceptically S-accepted if L(A) = in for all L ∈ LS .

Classical computational problems are deciding whether an S-
Labelling exists, finding one or enumerating all S-Labellings and
deciding if arguments are credulously or sceptically S-accepted. We
will now show how some of these problems can be connected to
probabilistic reasoning problems in Markov networks.

Given a set of arguments A = {A1, . . . , An}, we introduce a
corresponding set of ternary random variables X = {X1, . . . , Xn}
each of which can take values from {in, out, und}. For every la-
beling L, the corresponding variable assignment is denoted by xL

and, conversely, the labelling corresponding to a complete variable
assignment x is denoted by Lx. For each of the semantics that we
reviewed, we will introduce a set of factors Φ such that labellings
correspond to variable assignments with certain probabilities under
PΦ. We start with complete semantics.

Definition 1 (Complete Factors). The set of complete factors Φc =
{φc

1(S1), . . . , φ
c
n(Sn)} contains for every argument Ai exactly one

factor φc
i (Si) with scope Si = {Xi} ∪ Att(Xi) that is defined by

the following case differentiation:

if Xj = in for any Xj ∈ Att(Xi) then

if Xi = out then return 1 else return 0

else if Xj = out for all Xj ∈ Att(Xi) then

if Xi = in then return 1 else return 0

else

if Xi = und then return 1 else return 0

Intuitively, the factor goes through the three relevant cases of pos-
sible states of Xi’s parents and returns 1 if Xi’s state is valid under
complete semantics and 0 otherwise. Let us also note that complete
labellings always exist, so that the partition function Z is non-zero
and the Gibbs distribution is well-defined. The following proposition
summarizes some interesting relationships.

Proposition 1. Let PΦc be the Gibbs distribution over the set of
complete factors. Then

1. PlΦc(x) > 0 iff Lx is a complete labelling.
2. Lc = {Lx | PlΦc(x) > 0} is the set of complete labellings.
3. For all L ∈ Lc, PlΦc(xL) = 1 and PΦc(xL) =

1
|Lc| .

4. For all arguments Ai ∈ A,

(a) PΦc(Xi = in) = ci
|Lc| is the number ci of complete labellings

that accept Ai divided by the number of all complete labellings.

(b) Ai is credulously accepted under complete semantics iff
PΦc(Xi = in) > 0,

(c) Ai is sceptically accepted under complete semantics iff
PΦc(Xi = in) = 1.

Proof. 1. First suppose that Lx is a complete labelling. Consider an
arbitrary argument Ai. If Lx(Ai) = in, then Lx(B) = out for all
attackers B of Ai. Hence, we are in the second branch of the if-
condition and the factor returns 1. If Lx(Ai) = out, then Lx(B) =
in for some attacker B of Ai. Then we are in the first branch and the
factor returns again 1. If Lx(Ai) = und, the first two conditions are
not met and we are in the third branch and the factor returns again 1.
Hence, PlΦc(x) = 1 > 0.
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Figure 1. AAF: attack relations are denoted by directed edges.

Conversely, suppose that PlΦc(x) = 0. Then there must be some
i ∈ {1, . . . , n} such that φc

i (x|Si) = 0. If 0 was returned in the first
branch, we have Lx(Ai) 	= out even though an attacker of Ai is in,
hence Lx is not complete. If 0 was returned in the second branch, we
have Lx(Ai) 	= in even though all attackers of Ai are out and again
Lx is not complete. Finally, if 0 was returned in the third branch, no
attacker of Ai is in (otherwise we were in the first branch), not all
attackers of Ai are out (otherwise we were in the second branch)
and Ai must be in or out. But none of these labellings is justified
and so again Lx is not complete.

2. Follows immediately from 1.
3. Follows from 1 because we showed that all labellings have plau-

sibility 1 and all other labellings have plausibility 0. Hence, Z is just
the number of complete labellings.

4. For a), note that we have PΦc(Xi = in) =
1
Z

∑
L∈Lc,L(Ai)=in PlΦc(xL) = ci

|Lc| . b) and c) follow from a) by
noting that credulous acceptance means that ci > 0 and sceptical
acceptance means ci = |Lc|.

To illustrate the general idea of the reductions, let us first inter-
pret the proposition from a computational perspective. Item 1 says
that finding a complete labelling can be reduced to finding an as-
signment with positive probability. Therefore, it can, in particular,
be reduced to a MAP query. Item 2 says that enumerating all com-
plete labellings can be reduced to computing the support (the states
with non-zero probability) of a Gibbs distribution. Item 3 says that all
complete labellings are equally probable. This implies, in particular,
that finding the number of complete labellings can be reduced to a
MAP query because every preferred labelling L has maximum prob-
ability and the number of labellings is |Lc| = 1

PΦc (xL)
. Item 4 shows

that deciding credulous and sceptical acceptance can be reduced to
computing marginal probabilities in Markov networks.

To illustrate the meaning of the Gibbs distribution, consider the
AAF shown in Figure 1. The corresponding complete labellings are
shown in the following table:

A B C D E F G H I J
L1 out in out in out in out in out in
L2 und und out und out in und und out in
L3 und und und und und und und und out in
L4 in out out out out in in out out in
L5 in out und out und und in out out in
L6 in out in out in out in out out in

The second column in Table 1 shows the marginal in and out prob-
abilities for the arguments. Note that the probabilities for the labels
have to sum up to 1 and therefore P (X = und) = 1 − P (X =
in)−P (X = out) for all random variables (arguments) X . We can

A c g p ss s

P (A = in) 3
6

0.22 0.6 0.67 2
3

P (A = out) 1
6

0.03 0.34 0.32 1
3

P (B = in) 1
6

0.03 0.34 0.32 1
3

P (B = out) 3
6

0.22 0.6 0.67 2
3

P (C = in) 1
6

0.03 0.34 0.32 1
3

P (C = out) 3
6

0.34 0.55 0.64 2
3

P (D = in) 1
6

0.03 0.34 0.32 1
3

P (D = out) 3
6

0.22 0.6 0.67 2
3

P (E = in) 1
6

0.03 0.34 0.32 1
3

P (E = out) 3
6

0.34 0.55 0.64 2
3

P (F = in) 3
6

0.34 0.55 0.64 2
3

P (F = out) 1
6

0.03 0.34 0.32 1
3

P (G = in) 3
6

0.22 0.6 0.67 2
3

P (G = out) 1
6

0.03 0.34 0.32 1
3

P (H = in) 1
6

0.03 0.34 0.32 1
3

P (H = out) 3
6

0.22 0.6 0.67 2
3

P (I = in) 0 0 0 0 0

P (I = out) 1 1 1 1 1

P (J = in) 1 1 1 1 1

P (J = out) 0 0 0 0 0

Table 1. Marginal probabilities (rounded) under different semantics for
Figure 1. Note that P (X = und) = 1− P (X = in)− P (X = out).

see that, under complete semantics, all arguments but I are credu-
lously accepted and that only J is sceptically accepted. Furthermore,
the partition function is Z = 6, so that the number of states with
non-zero probability is 6. These states correspond to the complete
labellings and their probabilities are shown in Table 2. We can, in

c g p ss s

L1
1
6

0.03 0.34 0.32 1
3

L2
1
6

0.25 0.04 0.01 0

L3
1
6

0.5 0.02 0.00 0

L4
1
6

0.06 0.17 0.32 1
3

L5
1
6

0.13 0.09 0.03 0

L6
1
6

0.03 0.34 0.32 1
3

Table 2. Probabilities of complete labellings under different semantics.

particular, see that the probability of each argument is just the rela-
tive frequency of complete labellings that accept it as explained in
item 4 of Proposition 1.

Roughly speaking, grounded, preferred and semi-stable semantics
minimize or maximize the number of occurences of one particular
label. In order to encode this intuition in Markov networks, we can
add one unary factor for every variable that rewards or penalizes par-
ticular labels.

Definition 2 (l-w-Factor). The set of l-w-factors Φ(l,w) =
{φ(l,w)

1 (X1), . . . , φ
(l,w)
n (Xn)} contains one unary factor

φ
(l,w)
i (Xi) =

{
w, if Xi = l

1, else
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for every argument Ai.

If the labelling L assigns the label l to k arguments, then the cor-
responding plausibility distribution PlΦ(l,w) yields PlΦ(l,w)(xL) =
wk. In particular, when we combine the l-w-factors with the com-
plete factors, we get PlΦc∪Φ(l,w)(xL) = PlΦc(xL) · wk. If w > 1,
this allows increasing the plausibility (and thus the probability) of a
complete labelling with a particular label. Symmetrically, w < 1,
allows decreasing the plausibility of complete labelling with a par-
ticular label. We consider the following l-w-factors.

Grounded Factors: Φg = Φ(in,0.5).
Preferred Factors: Φp = Φ(in,2).
Semi-stable Factors: Φss = Φ(und,0.5).
Stable Factors: Φs = Φ(und,0).

For grounded, preferred and semi-stable semantics, we do not get as
much information as before from the Gibbs distribution. However,
labellings now correspond to states with maximum probability and
can therefore be computed via MAP queries.

Proposition 2. 1. Lx is the grounded labelling if and only if
PlΦc∪Φg (x) > PlΦc∪Φg (y) for all other assignments y.

2. Lx is a preferred labelling if and only if PlΦc∪Φp(x) ≥
PlΦc∪Φp(y) for all other assignments y.

3. Lx is a semi-stable labelling if and only if PlΦc∪Φss(x) ≥
PlΦc∪Φss(y) for all other assignments y.

Proof. 1. The grounded labelling is unique and minimizes the num-
ber of arguments that are in. Therefore, its plausibility is minimally
decreased and it has maximum probability under PlΦc∪Φg (x).

2 and 3 follow analogously. The only difference is now that several
labellings can exist. However, by construction, they all have maxi-
mum probability.

The result is not particularly interesting for grounded semantics
because a grounded labelling can be computed in polynomial time
[15]. However, we include it for completeness and in order to com-
pare the resulting probabilities. The third, fourth and fifth columns in
Tables 1 and 2 show the marginal probabilities of arguments and the
probabilities of labellings. For example, L3 in Table 2 has maximum
probability under grounded factors and is therefore the grounded
labelling. The remaining complete labellings also have a non-zero
probability, but the probability decreases with the number of argu-
ments that are labelled in. Similarly, the preferred and semi-stable la-
bellings have maximum probability under preferred and semi-stable
factors, respectively. The resulting marginal probabilities do not have
an easy interpretation, but seem to be plausible degrees of belief.

We get again stronger guarantees for stable labellings because we
can now just set the plausibility of a labelling to 0 if it contains an
und-label. However, stable labellings do not necessarily exist, so that
PΦc∪Φs may actually not be a well-defined probabilistic model (in
this case, all plausibilities are 0 and therefore cannot be normalized
to sum up to 1 as required for a probability model). Note that this is
the case if and only if the partition function Z is 0. If Z 	= 0, there are
again several interesting relationships that follow immediately from
the definition of the factors. The proof is analogous to the proof of
Proposition 1 and is therefore left out.

Proposition 3. Let PΦc∪Φs be the Gibbs distribution over the set of
complete and stable factors.

1. The partition function Z is non-zero if and only if a stable la-
belling exists.

2. If Z 	= 0, then PlΦc∪Φs(x) > 0 if and only if Lx is a stable
labelling.

3. If Z 	= 0, then Ls = {Lx | PlΦc∪Φs(x) > 0} is the set of stable
labellings.

4. If Z 	= 0, then for all stable labellings L, PlΦc∪Φs(xL) = 1 and
PΦc∪Φs(xL) =

1
|Ls| .

5. If Z 	= 0, then for all arguments Ai ∈ A,

(a) PΦc∪Φs(Xi = in) = si
|Ls| is the number si of stable labellings

that accept Ai divided by the number of all stable labellings.

(b) Ai is credulously accepted under stable semantics if and only
if PΦc∪Φs(Xi = in) > 0,

(c) Ai is sceptically accepted under stable semantics if and only if
PΦc∪Φs(Xi = in) = 1.

For our running example in Figure 1, the partition function Z is
3, which tells us that there are three stable labellings. Similar as for
semi-stable factors, L1, L4 and L6 in Table 2 have maximum proba-
bility under stable factors and are therefore the stable labellings. The
remaining complete labellings have probability zero now. The result-
ing marginal probabilities can be seen in the Stbl-column of Table
1. As under complete semantics, all arguments but I are credulously
accepted and only J is sceptically accepted. The probabilities of ar-
guments correspond again to the relative frequency of labellings that
accept them. Note that, since stable labellings never label arguments
as undecided, the probabilities of in and out always sum up to 1 now.

4 Semantical Evaluation

Our constructed Markov networks allow us to draw conclusions
about classical abstract argumentation problems from the generated
probabilities. However, we could also ask, are the resulting proba-
bilities meaningful on their own from a probabilistic reasoning per-
spective? Hunter and Thimm proposed several properties that can
be interesting to compare different probabilistic argumentation ap-
proaches [21]. They considered binary arguments (accept/reject),
whereas we consider ternary arguments here (in, out, und) since we
build up on labellings. In order to transfer the ideas from [21] to
our setting, we identify accepted arguments with in-labelled argu-
ments as usual [9]. We focus on the atomic properties here and do not
talk about combined properties that are satisfied when several atomic
properties are satisfied. Consider the following properties from [21]:

COH: P is called coherent iff P (B = in) ≤ 1 − P (A = in)
whenever (A,B) ∈ Att.

RAT: P is called rational iff P (A = in) > 0.5 implies P (B =
in) ≤ 0.5 whenever (A,B) ∈ Att.

INV: P is called involutary iff P (A = in) = 1 − P (B = in)
whenever (A,B) ∈ Att.

OPT: P is called optimistic iff P (A = in) ≥ 1 −∑
B∈Att(A) P (B = in).

FOU: P is called founded iff Att(A) = ∅ implies P (A = in) = 1.

Let us give a rough intuitive interpretation of these properties. COH
says that the belief in an attacked argument should decrease as the
belief in an attacker increases. RAT is more cautious: if the belief
in an attacker is greater than 0.5 (we tend to accept the attacker),
the belief in the attacked argument should not be larger than 0.5 (we
do not tend to accept the attacked). INV is stronger than COH and
demands that the bound is satisfied with equality. OPT gives a lower
bound for the belief in arguments that decreases with the belief in
the attackers. In particular, for unattacked arguments, it just demands
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that the belief in this argument must be 1. The latter is also what FOU
demands.

Proposition 4. PΦc , PΦc∪Φg , PΦc∪Φp , PΦc∪Φss , PΦc∪Φs satisfy
COH, RAT and FOU. PΦc∪Φs also satisfies OPT.

Proof. Let P ∈ {PΦc∪Φc , PΦc∪Φg , PΦc∪Φp , PΦc∪Φss , PΦc∪Φs},
(A,B) ∈ Att and let Lc

A = {L | L(A) = in} denote those com-
plete labellings that label A in and let Lc

B denote those complete la-
bellings that label B in. Since complete labellings cannot accept both
A and B, we have Lc

A∩Lc
B = ∅ and therefore P (A = in)+P (B =

in) ≤ ∑
L∈Lc

A
P (L) +

∑
L∈Lc

B
P (L) ≤ ∑

L∈Lc P (L) = 1. This
implies COH.

RAT follows from COH because, if P (A = in) > 0.5, then COH
implies P (B = in) ≤ 1− P (A = in) < 0.5.

If Att(A) = ∅, all complete labellings label A in. Since the
complete factors assign zero probability to all other labellings and
the probabilities of all labellings have to sum up to 1, we have
P (A = in) = 1. Thus, FOU is satisfied as well.

Finally, for OPT, let Ls
A denote those stable labellings that label

A in. Since stable labellings do not use the und label, Ls \ Ls
A

is the set of stable labellings that label A out. But whenever A
is labelled out, at least one attacker of A must be labelled in.
Thus,

∑
B∈Att(A) PΦc∪Φs(B = in) ≥ ∑

L∈Ls\Ls
A
PΦc∪Φs(L)

and therefore PΦc∪Φs(A = in) = 1 − ∑
L∈Ls\Ls

A
PΦc∪Φs(L) ≥

1−∑
B∈Att(A) PΦc∪Φs(B = in).

To see that PΦc , PΦc∪Φg , PΦc∪Φp , PΦc∪Φss can violate OPT and
INV, consider again the graph in Figure 1. We can see from Table 1
that they all satisfy P (A = in) < 1 − P (B = in). However, OPT
demands that P (A = in) ≥ 1 − P (B = in) and INV demands
P (A = in) = 1− P (B = in).

PΦc∪Φs can violate INV as well. In Figure 1, INV demands that
P (I) = 1 − P (J) and P (I) = 1 − P (H) and thus P (H) =
P (J), which is violated by PΦc∪Φs . Indeed, INV implies, in general,
that all arguments that attack the same argument must have the same
probability. This may be a too strong requirement. For example, one
could argue that, in Figure 1, H should have a smaller probability
than J because H is attacked by G, whereas J does not have any
attackers. A case where INV is less controversial is when there is
only one attacker. It is interesting to note that, in this case, PΦc∪Φs

does indeed satisfy the condition of INV.

Proposition 5. If Att(A) = {B}, then PΦc∪Φs(A = in) = 1 −
PΦc∪Φs(B = in).

Proof. Let again Ls
A denote those stable labellings that label A

in. As before, Ls \ Ls
A is the set of stable labellings that label

A out and since B is the only attacker of A, B must be labelled
in. Thus, 1 =

∑
L∈Ls

A
PΦc∪Φs(L) +

∑
L∈Ls\Ls

A
PΦc∪Φs(L) =

PΦc∪Φs(A = in)+PΦc∪Φs(B = in), which implies the claim.

5 Extension to Bipolar Argumentation

In many applications it is useful to consider not only attack rela-
tions, but also support relations. A bipolar argumentation framework
(BAF) is a tuple (A,Att, Sup), where A is a finite set of arguments,
Att ⊆ A × A is the attack relation as before and Sup is the sup-
port relation. We also assume that Att ∩ Sup = ∅. We let again
Sup(A) = {B | (B,A) ∈ Sup} denote the set of supporters of A.

The meaning of the support relation can be defined in different
ways. The intuitve idea of deductive support [8, 11] is that if an ar-
gument is accepted, the argument that it supports must be accepted

as well. In this way, arguments can also indirectly support arguments
via chains of support relations. The dual idea (if an argument is ac-
cepted, all its supporters must be accepted as well) is referred to as
necessary support [11]. However, deductive support relations can be
tranlsated to necessary support relations by just reversing their di-
rection, so we will focus on deductive support here. A deeper dis-
cussion of both and other notions of support can be found in [11].
One way to give formal meaning to deductive support relations is
to translate the bipolar argumentation framework to an abstract ar-
gumentation framework with additional attacks [11]. These new at-
tacks correspond to indirect attacks that are created by the interplay
between attack and support relations. The following indirect attacks
have been considered for this purpose in [11]:

Supported Attack from A to B: there is a sequence of arguments
A1, . . . , An such that A1 = A, An = B, (Ai, Ai+1) ∈ Sup for
1 ≤ i ≤ n− 2 and (An−1, An) ∈ Att.

Mediated Attack from A to B: there is a sequence of arguments
A1, . . . , An such that A1 = B, An = A, (Ai, Ai+1) ∈ Sup for
1 ≤ i ≤ n− 2 and (An, An−1) ∈ Att.

Intuitively, there is a supported attack from A to B iff A directly or
indirectly supports an attacker of B. There is a mediated attack from
A to B iff A attacks an argument that is directly or indirectly sup-
ported by B. The Dung framework associated with (A,Att, Sup)
is then defined as the Dung framework (A,Att ∪ Atts ∪ Attm),
where Atts and Attm contain edges that correspond to supported
and mediated attacks in (A,Att, Sup) [11]. This is an elegant way to
extend established semantics to bipolar argumentation frameworks.
However, this solution does not treat attack and support equally. For
example, if we have three arguments A,B,C such that A attacks
C and B supports C, it seems that C could as well be accepted as
rejected. However, the translation takes only account of the medi-
ated attack from A to B and ignores the fact that C has a supporter.
Hence, the only complete labelling of the associated Dung frame-
work labels A in and B and C out. The disparity between attack and
support becomes more prevalent when we keep our attacker A, but
add n supporters Bi of C. Then A will be accepted and C and all
of its supporters Bi will be rejected even when C is supported by
thousands of arguments.

In order to obtain equal treatment of attack and support, we adapt
the definition of complete labellings. We will show that the result-
ing definition still respects supported attacks and mediated attacks.
Completeness makes sufficient and necessary conditions for accep-
tance and rejection of arguments. In order to treat attack and support
symmetrically, we weaken the conditions for attacks and add dual
conditions for supports. We call a labelling

Deductive: if L satisfies

1. If L(A) = in, then L(B) = out for all B ∈ Att(A).

2. If L(A) = out, then L(B) = out for all B ∈ Sup(A).

3. If L(B) = in for some B ∈ Att(A), then L(A) = out.

4. If L(B) = in for some B ∈ Sup(A), then L(A) = in.

Conditions 1 and 2 correspond to necessary conditions for accep-
tance and rejection. We can accept (reject) only when all attackers
(supporters) are out. Conditions 3 and 4 correspond to sufficient con-
ditions. If one attacker (supporter) is in, the argument must be out
(in). Condition 1 and 3 make sure that deductive labellings respect
classical attacks. Conditions 2 and 4 make sure that they interpret
support in a dual manner. The following proposition shows that de-
ductive labellings also respect supported and mediated attacks.
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Proposition 6. Let L be a deductive labelling.

1. If L(A) = in and there is a supported attack from A to B, then
L(B) = out.

2. If L(A) = in and there is a mediated attack from A to B, then
L(B) = out.

Proof. 1. Consider the sequence of arguments A1, . . . , An given by
the definition of supported attack. Condition 4 of a dual labelling
implies that L(Ai) = in for 1 ≤ i ≤ n − 1. Then condition 3
implies that L(An) = L(B) = out.

2. Consider the sequence of arguments A1, . . . , An given by the
definition of mediated attack. Condition 3 of a dual labelling implies
that L(An−1) = out. Condition 2 then implies that L(Ai) = out
for 1 ≤ i ≤ n− 2 and hence L(B) = out.

We introduce again a set of factors for deductive labellings. It is
interesting to note that our deductive semantics can be encoded by
pairwise factors only, which can be computationally beneficial.

Definition 3 (Deductive Factors). The set of deductive factors Φd =
{φd

1(S1), . . . , φ
d
m(Sm)} contains for every edge (Aj , Ak) ∈ Att ∪

Sup exactly one factor φd
i (Si) with scope Si = {Xj , Xk} that is

defined by

φd
i (Xj , Xk) =

⎧⎪⎨
⎪⎩
0 if Xj = in ∧ Xk 	= out

or Xj 	= out ∧ Xk = in

1 otherwise

if (Aj , Ak) ∈ Att and by

φd
i (Xj , Xk) =

⎧⎪⎨
⎪⎩
0 if Xj = in ∧ Xk 	= in

or Xj 	= out ∧Xk = out

1 otherwise

if (Aj , Ak) ∈ Sup.

The resulting Gibbs distribution assigns again uniform probability
to all deductive labellings and probability 0 to all others.

Proposition 7. Let (A,Att) be an AAF and let PΦd be the Gibbs
distribution over the set of deductive factors. Then PlΦd(x) > 0 iff
Lx is a deductive labelling.

Proof. First, let Lx be a deductive labelling and consider an arbi-
trary argument Ai. If Lx(Ai) = in, then all attackers of Ai are out
(condition 1 of deductive labelling) and all arguments attacked by Ai

are out (condition 3). This guarantees that any attack factor involv-
ing Xi returns 1. Furthermore, all arguments supported by Ai must
be in (condition 4). This guarantees that any support factor involving
Ai must return 1. If Lx(Ai) = out, every attack factor must return
1 and since every supporter of Ai must be out (condition 2), every
support factor must return 1 as well. If Lx(Ai) = und, no attacker
and supporter of Ai can be in (contrapositive of conditions 3 and 4),
and no argument attacked by Ai can be in (contrapositive of condi-
tion 1) and no argument supported by Ai can be out (contrapositive
of condition 2). Hence, the attack and support factors involving Xi

must return again 1. Hence, PlΦc(x) = 1 > 0.
Conversely, suppose that PlΦd(x) = 0. Then there must be some

i ∈ {1, . . . , n} such that φd
i (Xj , Xk) = 0. By going through the

four possible cases that could return a 0, we can see that Lx is not a
deductive labelling.

Figure 2. in-probabilities for arguments under deductive stable semantics
for different bipolar graphs. Attack relations are denoted by dashed edges,

support relations by dotted edges.

We could prove analogous properties to Proposition 1. However,
we omit the explicit statements to save space. Instead, let us note that
we can extend the deductive factors with grounded, preferred, semi-
stable factors and stable factors as before. We obtained the strongest
properties for the stable semantics and will therefore only look at
this case. By a deductive stable labelling, we mean a labelling that is
deductive and labels every argument as either in or out. There always
exists a deductive stable labelling because the labelling that rejects all
arguments is deductive. Hence, the partition function is guaranteed to
be non-zero.

Proposition 8. Let PΦd∪Φs be the Gibbs distribution over the de-
ductive and stable factors. Then

1. PlΦd∪Φs(x) > 0 if and only if Lx is a deductive stable labelling.
2. Lds = {Lx | PlΦd∪Φs(x) > 0}.
3. For all deductive stable labellings L, PlΦd∪Φs(xL) = 1 and

PΦd∪Φs(xL) =
1

|Lds| .

4. For all arguments Ai ∈ A, PΦd∪Φs(Xi = in) = di
|Ls| is the

number di of deductive stable labellings that accept Ai divided
by the number of all deductive stable labellings.

The proof is analogous to the previous ones and is therefore left
out. Figure 2 shows some acceptance probabilities. The probabilities
are again just the relative frequencies of deductive stable labellings
that accept the argument. The deductive semantics is more credulous
than the complete semantics because arguments cannot only be ac-
cepted, but can also be rejected without reason. An argument with
an equal number of equally strong attackers and supporters has prob-
ability 0.5. If the number of attackers (supporters) is larger than the
number of supporters (attackers), the belief in the argument decreases
(increases). Note, in particular, that this happens in a symmetric fash-
ion for attack and support. At first sight, it seems strange that, in the
attack-only graph (top row, second graph from the left), attacker and
attacked have equal probability. However, one may argue that since
both are unsupported, one may belief one as well as the other. As
we add ’support’ in form of a supported attack or a second attack,
the probabilities of the attacker increases and the probability of the
attacked decreases as the graphs on the right in Figure 2 illustrate.

Let us note that PΦd∪Φs still satisfies COH and RAT. In particular,
it satisfues dual properties for support.

Proposition 9. PΦd∪Φs satisfies COH, RAT and

1. D-COH: PΦd∪Φs(B = in) ≥ PΦds(A = in) whenever (A,B) ∈
Sup.

2. D-RAT: PΦd∪Φs(A = in) > 0.5 implies PΦd∪Φs(B = in) > 0.5
whenever (A,B) ∈ Sup.

Proof. The proofs for COH and RAT are analogous to the previ-
ous proofs and therefore left out. For D-COH, consider (A,B) ∈
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Sup and let Lds
A = {L | L(A) = in} denote those deduc-

tive stable labellings that label A in and let Lds
B denote those de-

ductive stable labellings that label B in. Since deductive labellings
must accept B whenever they accept A, we have Lds

A ⊆ Lds
B

and therefore PΦd∪Φs(A = in) =
∑

L∈Lds
A

PΦd∪Φs(L) ≤∑
L∈Lds

B
PΦd∪Φs(L) = PΦd∪Φs(A = in). This proves D-COH. D-

RAT follows from D-COH because, if PΦd∪Φs(A = in) > 0.5, then
D-COH implies PΦd∪Φs(B = in) ≥ PΦd∪Φs(A = in) > 0.5.

The remaining properties by Hunter and Thimm [21] need to be
refined for the bipolar setting. For example, FOU would cause a con-
flict in the graph in the lower left of Figure 2 because we would
have to accept both the attacker and the supporter. Since OPT implies
FOU, similar problems occur for OPT. INV is not readily compatible
with support edges either. A natural adaptation of FOU is to demand
that arguments must be accepted when not only the attackers are out,
but also no attacked arguments is in. This would lift the probability of
all isolated arguments to 1, while still maintaining consistency with
the meaning of support edges. We will discuss this and some other
alternatives in more detail in future work.

6 Related Work

Markov networks are a very general and flexible tool and have been
applied to various problems in artificial intelligence. Some recent ap-
plications in collaborative filtering, fake news detection and classifi-
cation can be found in [39, 28, 38]. One of the most popular appli-
cations in the area of knowledge representation and reasoning are
probably Markov Logic Networks that combine logic and probabil-
ity theory [34]. The basic idea is not so different from the ideas here.
The probability of interpretations can increase or decrease based on
the probability of weighted formulas that they satisfy. One reason for
the success of Markov logic networks is perhaps that the weights can
naturally be learned from data, which makes them a natural tool for
explainable AI. Some recent applications in question answering, en-
tity resolution and activity recognition in smart homes can be found
in [22, 18, 20]. It is, indeed, a natural idea to regard the weights in
our factors as parameters that are not pre-defined, but can be learned
from data by maximizing the probability of particular labels for out-
put arguments when given the state of other arguments as input. Re-
lated ideas have been studied in [37] for the special case of Boltz-
mann machines. Some other related ideas for learning argumentation
frameworks from data can be found in [23, 24].

The state-of-the-art for reasoning algorithms for abstract argumen-
tation is perhaps best reflected by the International Competition on
Computational Models of Argumentation [41, 19]. While also direct
approaches compete, some of the most successful participants reduce
the argumentation problems to SAT, ASP or CSP problems. For ex-
ample, pyglaf [1], Cegartix [16] and LabSAT [6] use SAT-solvers,
ASPARTIX [17] uses an ASP-solver and CoQuiAAS [26] uses a CSP
solver.

We already discussed deductive and necessary support [8, 11] in
the previous section. Another interesting support interpretation is
evidential support [29]. Here, a sceptical stance is taken and noth-
ing should be accepted unless supported by evidence. To this end,
prima-facie arguments are introduced that must be accepted. Other
arguments can only be accepted if they are directly or indirectly
supported by these arguments. Let us note that we can incorporate
prima-facie arguments in our deductive Gibbs model by just adding
unary prima-facie factors that return 1 if the argument is in and 0
otherwise. Condition 4 of deductive labellings guarantees then that

arguments that are directly or indirectly supported by prima-facie ar-
guments are accepted as well. By this encoding, we do not capture the
necessary condition, that an accepted argument must be supported by
a prima-facie argument. However, the resulting semantics may be a
nice combination of deductive and evidential semantics that may be
worth studying in future work.

7 Discussion and Conclusions

We explained how argumentation problems can be encoded as
Markov networks and discussed relationships between their reason-
ing problems. From a computational perspective, Markov networks
seem most promising for combinatorial tasks like deciding sceptical
inference or counting the number of labellings. We conducted some
simple experiments with exact inference algorithms (Belief Propa-
gation) to compute the marginal probabilities of arguments for ran-
domly generated graphs under complete and stable semantics with
pgmpy2 (Python) and Mallet3 (Java). Recall that this allows deciding
sceptical inference. pgmpy is rather slow, but can deal with about 20
arguments in seconds on a regular desktop computer. Mallet is sig-
nificantly faster and can deal with 60 arguments in seconds. Since the
theoretical number of candidate labellings is 360, this is a decent run-
time. We could probably scale up further by using a C++ library like
OpenGM24. However, this alone may not be sufficient to compete
with state-of-the-art solvers. Some tracks in the International Compe-
tition of Computational Models of Argumentation5 contain sceptical
inference as a subtask. While there seem to be no explicit runtime re-
sults for sceptical inference available, it seems that the currently best
solvers can deal with hundreds of arguments in reasonable time [19].
Out of the box, our reduction is probably not competitive because
attack-only argumentation frameworks leave only little freedom in
interpreting the arguments, so that algorithms profit greatly from pre-
processing (e.g., accept all arguments without attackers, reject their
direct successors and repeat) and constraint propagation (e.g., reject
attackers and successors of in-labelled arguments). We are currently
experimenting with different ideas to combine exact and approxi-
mate inference algorithms for Markov networks with preprocessing
techniques and constraint solvers.

Our reductions may have a greater potential in bipolar settings. For
example, consider again the graph with edges (A,C) and (B,C). If
both edges are attacks, we would just accept A and B and reject C.
However, provided that we treat attack and support relations equally,
if (A,C) is an attack and (B,C) is a support, we could accept A
and reject B,C or reject A and accept B,C. By adding n copies
of this structure, we can see that there are graphs where replacing n
attacks with supports leads from an attack-only graph with a single
labelling to a bipolar graph with 2n labellings. Of course, the number
of labellings depends on the actual semantics, but in bipolar settings,
the number of labellings can be significantly larger. Then exploit-
ing symmetrical structure becomes more important and this is a well
studied problem for Markov networks.

Arguably, our reduction also makes a nice connection between
classical and probabilistic argumentation approaches. We will ex-
plore connections to other probabilistic reasoning approaches in
more detail in future work and will also look at the properties of
some alternative factorizations.

2 https://github.com/pgmpy/pgmpy
3 http://mallet.cs.umass.edu/
4 https://hci.iwr.uni-heidelberg.de/opengm2/
5 http://argumentationcompetition.org
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