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Abstract. Real-world databases are often inconsistent. Although
there has been an extensive body of work on handling inconsistency,
little work has been done on measuring inconsistency in databases.
In this paper, building on work done on measuring inconsistency in
propositional knowledge bases, we explore inconsistency measures
(IMs) for databases with denial constraints. We first introduce new
database IMs that are inspired by well-established methods to quan-
tify inconsistency in propositional knowledge bases, but are tailored
to the relational database context where data are generally the reason
for inconsistency, not the integrity constraints. Then, we analyze the
compliance of the database IMs with rationality postulates, and in-
vestigate the complexity of the inconsistency measurement problem
as well as of the problems of deciding whether the inconsistency is
lower than, greater than, or equal to a given threshold.

1 Introduction

There is a growing number of applications where inconsistent in-
formation arises, often because data are obtained from multiple
sources [32]. This has led to an extensive body of work on han-
dling inconsistent data, and in particular inconsistent databases. Ap-
proaches for dealing with inconsistent databases include consistent
query answering frameworks [1, 7], inconsistency management poli-
cies [35, 36], interactive data repairing and cleaning systems [17, 18,
28, 29], as well as interactive data exploration tools [6, 20]. However,
little work has been done on measuring inconsistency in databases,
a problem which in contrast has been extensively investigated for
propositional knowledge bases [22, 23, 24, 30, 31].

Measuring the amount of inconsistency in a database can help in
understanding the primary sources of such conflicts as well as devis-
ing ways to deal with them. In fact, inconsistency measurement has
recently been explored in [16] to quantify and understand inconsis-
tency in bank holding company data with respect to four consistency
rules (i.e. integrity constraints) specifically asserted for the consid-
ered domain. In general, quantifying and monitoring the amount of
inconsistency helps to get information on the health status of data,
whose quality is more and more important nowadays—the global
market of data quality tools is expected to grow from USD 610.2
Million in 2017 to USD 1,376.7 Million by 2022 [34]. Furthermore,
measuring inconsistency makes it possible to compare the amount of
inconsistency between various chunks of information. Indeed, incon-
sistency measures (IMs for short) are important for inconsistency-
tolerant integrity checking [14], where one wants to accept an update
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only if the measure of inconsistency of the old state does not increase
in the new state.

Although the idea of measuring inconsistency was introduced
more than 40 years ago, in [21], at that time it did not seem to be an
important issue. The problem became more noticeable in the 1990s
when it became possible to store large amounts of information. It was
only in the early 2000s when several AI researchers started to inves-
tigate this issue systematically [31]. The bulk of this work since then
has been for propositional knowledge bases, that is, where the infor-
mation is presented as a set of formulas in propositional logic. In the
last couple of years the work has been extended to other frameworks.
[24] surveys what has been done so far and gives some extensions.

There are few works addressing the problem of measuring in-
consistency in relational databases [27]. [37] first developed single-
dependency axioms for dirtiness functions quantifying inconsis-
tency w.r.t. one functional dependency—a simple type of denial
constraint—considered in isolation, and proposed an IM that satisfies
these axioms. Then a single axiom for dirtiness functions that han-
dle multiple functional dependencies was proposed, although such
functions are supposed to be built on top of a dirtiness function for
single dependencies. The approach in [11, 15, 12] deals with rela-
tional databases from the point of view of first-order logic, as in
logic programming. Its purpose is to show how database IMs can
be applied to integrity checking [13, 14], relaxing repairs, and repair
checking, which are applications that perfectly fit within our frame-
work. However, the degrees of inconsistency defined in [12] form
a partially ordered set; hence it is not always possible to compare
the inconsistency of different databases. Finally, [3] proposes an IM
based on an abstract repair semantics, where the degree of inconsis-
tency depends on the distance between the database instance and the
set of possible repairs under a given repair semantics, and an instan-
tiation for cardinality-repairs that can be computed via answer-set
programs [4]. Thus, previous work has not investigated the problem
of tailoring propositional IMs to relational data, as well as analysing
postulates compliance and the complexity of the resulting IMs, which
is the focus of our work.

Contribution. In this paper, we introduce new IMs for relational
databases with denial constraints. These measures are inspired by
IMs for propositional logic. However, we do not apply well-known
methods for propositional logic directly; rather, we use these meth-
ods as inspiration to define (by analogy) new IMs that are applicable
to databases. In particular, we make the following contributions.

• We first introduce the database counterpart, namely Ix with x ∈
{B,M,#,P,A,H,C,η} of several propositional IMs Ix (Section 3).
Every database IM Ix measures the inconsistency by blaming
database tuples only. This is different from measuring the incon-
sistency of a set of formulas, all of which have the same status, as

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200176

857



Table 1. Postulates satisfaction for database inconsistency measures.

Database Inconsistency Measures

IB IM I# IP IA IH IC Iη

Free-Tuple Independence � � � � � � �© �

Penalty � � � � � � � �

Super-Additivity � � � � �© � �© �

MI-Separability � � � � � � � �

MI-Normalization � � � � � � �© �

Equal Conflict � � � � � � �© �

�: satisfied for database measures (and satisfied for the corresponding propositional measure in the knowledge base setting).
�©: satisfied for database measures but not for the corresponding propositional measure in the knowledge base setting.

�: not satisfied for database measures (and not satisfied for propositional measures).

Table 2. Complexity of Lower Value (LV), Upper Value (UV), Exact Value (EV), and Inconsistency Measurement (IM) problems.

Inconsistency Measure(s) LVI (D,v) UVI (D,v) EVI (D,v) IMI (D)

IB,IM ,I#,IP P P P FP
IA CP CP CP #P-complete∗

IH , IC coNP-complete NP-complete Dp-complete FPNP[log n]-complete
Iη coNP-complete NP-complete Dp FPNP

∗: #P-hardness follows from a result in [33], which also implies that IM, as well as LV, UV, and EV, are polynomial for chain FD schemas.

is the case for propositional knowledge bases. This leads to some
substantial differences between the two cases: for instance, some
measures that are distinct for propositional knowledge bases be-
come identical in our setting (namely IC and IH ).

• We also introduce the database counterparts of several rationality
postulates defined for propositional knowledge bases and check
for compliance by the database IMs. It turns out that some pos-
tulates violated in the propositional case become satisfied in the
database case (Section 4). Table 1 summarizes the results ob-
tained, and allows us to compare the IMs in terms of the satisfied
postulates. Intuitively, the behaviour of IMs that satisfy the same
set of postulates can be considered as equivalent in those practical
situations that are regulated by the selected postulates.

• Finally, we investigate the data complexity of the problems of
deciding whether a given value is lower than (LV), greater than
(UV), or equal to (EV) the inconsistency measured using a given
database inconsistency measure Ix (Section 5). A summary of the
results obtained for these problems, as well as for the problem of
computing the actual value of an inconsistency measure (IM prob-
lem), is reported in Table 2. Interestingly, while the measures IB,
IM , I#, IP become tractable in the database setting and the com-
plexity of IA decreases, the measures IH and Iη remain hard as
in the propositional case [44] even under data complexity.

Notably, IM can computed in polynomial time and satisfies all the
postulates in Table 1. One step down, we find I# which is also
tractable and satisfies all the postulates but one. Next, IP is still
tractable and satisfies all the postulates but two. Finally, IH (which
as said above coincides with IC in our setting) also satisfies all the
postulates but two, though it turns out to be computationally hard.

2 Preliminaries

This section starts with our notation for relational databases and de-
nial constraints and reviews some basic notions about complexity.

2.1 Relational Databases

We assume the existence of two finite (disjoint) sets: Rel, the set of
relation names, and Att, the set of attribute names. We also assume a
countably infinite database domain Dom, consisting of uninterpreted
constants; elements of the domain with different names are different
elements. Given a relation name R ∈ Rel, a relation scheme for it is a
sorted list (A1, . . . ,An) of attributes A1, . . . ,An ∈ Att, where n is said
to be the arity of R and each attribute Ai (with i ∈ [1..n]) has asso-
ciated a domain DOM(Ai) ⊆ Dom. We use R(A1, . . . ,An) to denote
a relation scheme. A database scheme DS is a nonempty finite set
of relation schemes. A tuple over R(A1, . . . ,An) is a mapping assign-
ing to each attribute Ai of R a value vi ∈ DOM(Ai). Given a tuple
�t = 〈v1, . . . ,vn〉, we use�t[Ai] to denote the value vi of attribute Ai of
�t. For an ordered list of attributes 〈Ai1 , . . . ,Ai j 〉, we use�t[Ai1 , . . . ,Ai j ]
to denote 〈�t[Ai1 ], . . . ,�t[Aij ]〉. A relation instance (or simply relation)
is a finite set of tuples over a given relation scheme, and a database
instance (database) is a set of relations over a given database scheme.
A database instance can be viewed as a finite Herbrand interpreta-
tion for a (function-free) first-order language using constant symbols
in Dom and predicate symbols in Rel. Hence, we write R(v1, . . . ,vn)
or R(�t) for denoting the (ground) atom corresponding to the tuple
�t = 〈v1, . . . ,vn〉 over R.

Integrity constraints are first-order sentences expressing properties
that are supposed to be satisfied by the database instance. To define
constraints, we extend the alphabet of the above-mentioned language
to allow variables from a set Var of variables names (disjoint from
Rel and Att). A term is either a constant in Dom or a variable in Var.
An atom over a database scheme DS is an expression of the form
R(τ1, . . . ,τn) where R is a relation scheme in DS having arity n and
τ1, . . . ,τn are terms.

A denial constraint over DS is a first-order sentence of the form:
∀�x1, . . . ,�xk [¬R1(�x1)∨ ·· ·∨¬Rk(�xk)∨ϕ(�x1, . . . ,�xk)] where: (i) ∀ i ∈
[1..k], �xi are tuples of variables and Ri(�xi) are atoms over DS ; and
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(ii) ϕ is a disjunction of built-in predicates of the form τi ◦ τ j where
τi and τ j are variables in�x1, . . . ,�xk or constants, and ◦ ∈ {=, 
=,>,<
,≥,≤}. In the following, for the sake of readability, we will omit the
prefix of universal quantifiers and write [¬R1(�x1)∨ ·· · ∨¬Rk(�xk)∨
ϕ(�x1, . . . ,�xk)] for a denial constraint. k is said to be the arity of the
constraint. Denial constraints of arity 2 (resp. 3) are called binary
(resp. ternary) constraints.

A ground constraint for [¬R1(�x1)∨ ·· · ∨¬Rk(�xk)∨ϕ(�x1, . . . ,�xk)]
is a formula (¬R1(�t1))∨·· ·∨¬(Rk(�tk)) such that ϕ(�t1, . . . ,�tk) is true.

A functional dependency (FD) is a denial constraint of the form:
[¬R(�x,y,�z)∨¬R(�x,u,�w)∨ (y = u)] where �x,�z,�w are tuples of vari-
ables. It is usually written as R : X → Y (or simply X → Y if R is
understood from the context), where X is the set of attributes of R
corresponding to�x and Y is the attribute corresponding to y (and u).

For a database scheme DS and a set C of integrity constraints
over DS , an instance D of DS is said to be consistent w.r.t. C iff
D |= C in the standard model-theoretic sense.

2.2 Complexity

We briefly review some complexity classes used to characterize the
complexity of decision and function problems (we refer the reader
to [38] for further details). P (resp. NP) is the class of the de-
cision problems that can be solved by a deterministic (resp. non-
deterministic) Turing machine in polynomial time w.r.t. the size of
the input of the problem. coNP is the class of the decision prob-
lems whose complement is in NP. Under the standard complexity-
theoretic assumptions, it is conjectured that P ⊂ NP, P ⊂ coNP, and
NP 
= coNP. A decision problem is in Dp iff it is the conjunction of
a decision problem in NP and a decision problem in coNP.

We will also use the class CP [41], whose canonical complete
problem is deciding whether a SAT expression has at least k many
satisfying assignments. More formally, a problem is in CP if it is de-
ciding whether |{y : P(x,y) is true}| ≥ k, where P(x,y) is a predi-
cate (with free variables x and y) such that (i) the size of y is poly-
nomially bounded by the size of x, (ii) checking whether P(x,y)
is true is in P, and (iii) the number k of solutions is a polynomial-
time computable bound. The class CP coincides with the class PP
of the decision problems that can be solved in polynomial time by a
probabilistic Turing machine [41, 47]. The relationships between the
classes are as follows: NP ⊆ CP and coNP ⊆ CP. Differently from
NP, the class CP is closed under complement, and, like NP, CP is
closed under union and intersection.

Finally, we recall some complexity classes for function problems.
FP is the class of the function problems that can be solved by a
deterministic Turing machine in polynomial time (w.r.t. the size of
the input of the problem). #P is the complexity class of the func-
tions f such that f counts the number of accepting paths of a nonde-
terministic polynomial-time Turing machine [45]. For a complexity
class C , FPC is the class of functions computable by a determinis-
tic polynomial-time Turing machine using a C -oracle. Thus, FPNP

is the class of problems that can be solved by a polynomial-time Tur-
ing machine that can ask a polynomial number of queries to an NP
oracle. If a logarithmic number of queries is asked by the machine,
then we have the class FPNP[logn].

3 Database Inconsistency Measures

The idea of an inconsistency measure (IM) is to assign a nonnegative
number to a knowledge base that measures its inconsistency [43].

Actually, there are two main types of IMs: an absolute measure mea-
sures the total amount of inconsistency; a relative measure is a ratio
of the amount of inconsistency with respect to the size of the knowl-
edge base. In the literature there is sometimes confusion between
these two types; we will not deal with relative measures as these have
not been studied in detail (as recently discussed in [5]).

In this section, we develop IMs for relational databases in analogy
with IMs for propositional knowledge bases. In the following, we
use D to denote the set of all database instances over a fixed but
arbitrary database scheme DS . We say that a database instance D
is consistent, meaning that D is consistent w.r.t. a fixed but arbitrary
set C of integrity constraints. In general, we will omit the database
scheme and the set of integrity constraints in the terminology.

Now we are ready to define the inconsistency measure concept.

Definition 1 (Inconsistency Measure) A function I : D → R≥0
∞ is

an inconsistency measure if the following two conditions hold for
all D,D′ ∈ D:

Consistency I (D) = 0 iff D is consistent.
Monotony If D ⊆ D′, then I (D)≤ I (D′).

Consistency and Monotony are called (rationality) postulates. Pos-
tulates are desirable properties for IMs and we will present additional
ones later. However, we require that a function on databases must at
least satisfy these two postulates in order to be called an IM. Con-
sistency means that all and only consistent databases get measure 0.
Monotony means that the enlargement of a database cannot decrease
its measure. Monotony is not appropriate for relative measures where
the ratio of inconsistency may decrease with the addition of consis-
tent information; however, it is appropriate for absolute measures.

We now give some basic definitions needed to define IMs and their
properties in this context.

A minimal inconsistent subset of D is a set of tuples X ⊆ D such
that X is inconsistent (with respect to C ) and no proper subset of X
is inconsistent. We denote by MI(D) the set of minimal inconsistent
subsets of D. Similarly, a maximal consistent subset is a set of tu-
ples Y that is consistent and no proper superset of Y is consistent. We
write MC(D) for the set of maximal consistent subsets (of D).

Any tuple that occurs in a minimal inconsistent subset is prob-

lematic; otherwise it is free. We use Problematic(D) and Free(D) to
denote the sets of problematic and free tuples of D. A tuple t is con-

tradictory if {t} is inconsistent w.r.t. C . We write Contradictory(D)
for the set of contradictory tuples.

Example 1 (Running example) Consider the database scheme
DS ex consisting of the relation scheme MealTicket(Number, Value,
Holder, Date) whose instance contains the number, the value, the
holder, and the issue date of meal tickets (one for each tuple) pro-
vided by a company to the employees. The set Cex of integrity con-
straints consists of the following denial constraints:

• c1 = [¬MealTicket(x1,x2,x3,x4)∨ x2 > 0], stating that the value
(i.e., the amount of the ticket) of every tuple of MealTicket must be
a positive number.

• c2 = [¬MealTicket(x1,x2,x3,x4) ∨ ¬MealTicket(x1,x5,x6,x7) ∨
x2 = x5], i.e., the FD Number→Value, stating that there cannot
be two distinct tickets with the same number and different values.

• c3 = [¬MealTicket(x1,x2,x3,x4) ∨ ¬MealTicket(x1,x5,x6,x7) ∨
x3 = x6], i.e., Number→Holder.

• c4 = [¬MealTicket(x1,x2,x3,x4)∨¬MealTicket(x5,x6,x3,x4)∨
¬MealTicket(x7,x8,x3,x4)∨ x1 = x5 ∨ x1 = x7 ∨ x5 = x7], stating
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the numerical dependency (see [25, 26]) Holder, Date →2Number
whose meaning is that for every holder and date there can be at
most 2 meal ticket numbers.

An instance Dex of DS ex consisting of 7 tuples�t1, . . . ,�t7 is shown
in Table 3. Going through the integrity constraints we find that
1)�t5 is inconsistent with c1: it is a contradictory tuple;
2) no pair of tuples violates c2;
3) the two pairs of tuples,�t1,�t3, and�t2,�t3, are inconsistent with c3;
4) the three tuples�t5,�t6, and�t7 together are inconsistent with c4.
Hence, MI(Dex) = {{�t5},{�t1,�t3},{�t2,�t3}}. Note that {�t5,�t6,�t7}
is not included because it contains {�t5}. Thus there are 4
problematic tuples in Dex, and 3 free-tuples. Also, MC(D) =
{{�t1,�t2,�t4,�t6,�t7},{�t3,�t4,�t6,�t7}}.

Table 3. Database Dex, which consists of the instance of MealTicket.

Number Value Holder Date Tuple

1001 15 Matthew 2018-12-13 �t1
1001 15 Matthew 2018-12-18 �t2
1001 15 Sophia 2018-12-17 �t3
1004 20 Sophia 2018-12-17 �t4
1005 0 Alex 2018-12-18 �t5
1006 10 Alex 2018-12-18 �t6
1007 20 Alex 2018-12-18 �t7

3.1 Measures using Minimal Inconsistent Subsets

We start with the measures that rely on minimal inconsistent subsets
and the related concepts defined above. We give the rationale for each
measure below. The next definition is obtained by substituting the
database D for the knowledge base K in each corresponding propo-
sitional IM using the concepts of minimal inconsistent and maximal
consistent subsets as well as the sets of problematic and contradic-
tory tuples defined earlier for our setting. In particular, the concept
of contradictory tuples used to define the measure IA has the same
role as that of self-contradictions used to define the corresponding
measure IA for knowledge bases.

Definition 2 (Database Inconsistency Measures) For a database
D, the IMs IB, IM, I#, IP, IA, and IH are such that

• IB(D) = 1 if D is inconsistent and IB(D) = 0 if D is consistent.
• IM(D) = |MI(D)|.

• I#(D) =

⎧
⎨

⎩

0 if D is consistent,
∑

X∈MI(D)

1
|X | otherwise.

• IP(D) = |Problematic(D)|.
• IA(D) = (|MC(D)|+ |Contradictory(D)|)−1.
• IH(D) = min{|X | s.t. X ⊆ D and ∀M ∈MI(D), X ∩M 
= /0}.

We explain the measures as follows. IB is also called the dras-
tic measure [30]: 0 means consistent; 1 means inconsistent. So
this measure simply distinguishes between consistent and inconsis-
tent databases. IM counts the number of minimal inconsistent sub-
sets [30]. The rationale is that a minimal inconsistent subset repre-
sents a minimal inconsistency for a set of database tuples; hence this
measure counts the number of such inconsistencies. I# also counts
the number of minimal inconsistent subsets, but it gives larger sets

a smaller weight. The reason for I# in the propositional logic setting
is that when a minimal inconsistent set contains more formulas than
another minimal inconsistent set, the former is intuitively less incon-
sistent than the latter [30]. For instance, we can say that intuitively
{a,¬a} is more inconsistent than {a,a → b,b → c,c → d,¬d}. In
the database setting, this measure gives a higher value to the viola-
tions of constraints having smaller arity, that is, to violations due to a
smaller sets of tuples. It is a way to differentiate between constraints.
For instance, in Example 1 this measure gives a violation of c1 the
highest value, a violation of c4 the lowest value, and a violation of c2
or c3 a middle value. For databases, IP counts the number of tuples
that are in one or more minimal inconsistencies [22]. IA uses the car-
dinality of the set of maximal consistent subsets [22], i.e. of the set
of database repairs [1]. Intuitively, the larger this set, the larger is the
space of different ways to get consistency, the higher the degree of in-
consistency. Contradictory tuples are added as they do not appear in
any way in a maximal consistent set; then 1 must be subtracted to ob-
tain IA(D) = 0 for a consistent D because every consistent database
has a maximal consistent subset, namely D itself. IH counts the
minimal number of tuples whose deletion makes the database con-
sistent [23]. Hence IH can be written as IH = min{|X | s.t. D\X is
consistent }. In fact, both IA and IH link the inconsistency measure-
ment to the ways of restoring consistency, an idea recently explored
in [3, 4] where the degree of inconsistency depends on the distance
between the database instance and the set of possible repairs under a
given repair semantics.

Example 2 Now we calculate the values of the inconsistency mea-
sures for the database of our running example.

• IB(Dex) = 1 as the database is inconsistent.
• IM(Dex) = 3 as there are 3 minimal inconsistent subsets as given

above.
• I#(Dex) = 1 + 1

2 + 1
2 = 2 as there is one minimal inconsistent

subsets of size 1 and two minimal inconsistent subsets of size 2.
• IP(Dex) = 4 as there are 4 distinct tuples in MI(Dex).
• IA(Dex) = 2 because there are 2 maximal consistent subsets.
• IH(Dex) = 2 as the set {�t3,�t5} intersects with each minimal in-

consistent subset.

3.2 A Measure using Three-valued Logic

The next IM we consider is the Contension measure IC [22], which
uses a three-valued (3VL) logic. In our setting, a 3VL-interpretation
is a function i that assigns to each atom R(�t) in D one of the three
truth values: T (true), F (false), or B (both). A interpretation i that
assigns only the values in {T,F} is said to be classical. The logical
connectives are extended to 3VL interpretations as shown in Table 4,
using Priest’s three-valued logic. In classical two-valued logic, an
interpretation is a model for a set of formulas if no formula gets the
value F. The same condition is used for 3VL, but now, in addition
to T the value B is also allowed. Given a database D with a set C
of integrity constraints, a 3VL interpretation is a 3VL model iff all
the constraints are satisfied and no atom R(�t) ∈ D is assigned F. We
use Models(D) to denote the set of 3VL models for a database D
(with the integrity constraints in the background). Also, for a 3VL
interpretation i we define Conflictbase(i) = {R(�t) | i(R(�t)) = B}, the
tuples that have truth value B.

Definition 3 (Contension measure IC) For a database D, IC is
such that IC(D) =min{|Conflictbase(i)| | i ∈Models(D)}.
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Table 4. Truth table for three valued logic (3VL). This semantics extends
the classical semantics with a third truth value, B, denoting “inconsistency”.
Truth values on columns 1, 3, 7, and 9, give the classical semantics, and the

other columns give the extended semantics.

Formula Truth value
φ T T T B B B F F F
ψ T B F T B F T B F

φ ∨ψ T T T T B B T B F
φ ∧ψ T B F B B F F F F
¬φ F F F B B B T T T

In the database setting IC counts the minimal number of tuples
that if we could consider them both true and false would resolve all
inconsistencies. For the database of our running example, we have
that IC(Dex) = 2 as the minimal number of B values for an inter-
pretation occur when i(�t1) = i(�t2) = i(�t4) = i(�t6) = i(�t7) = T and
i(�t3) = i(�t5) = B.

3.3 A Probabilistic Measure

Finally, we define the database counterpart of the probabilistic
measure Iη that uses the PSAT (probabilistic satisfiability) con-
cept [31]. A PSAT instance is a set, Γ = {P(φi) ≥ pi | 1 ≤ i ≤ m},
that assigns probability lower bounds to a set {φ1, . . . ,φm} of formu-
las; therefore 0 ≤ pi ≤ 1 for 1 ≤ i ≤ m. A probability function over a
set X is a function π : X → [0,1] such that ∑x∈X π(x) = 1. Let Int be
the set of all classical interpretations (of the set of formulas) and π a
probability function over Int. The probability of a formula φ accord-
ing to π is the sum of the probabilities assigned to the interpretations
assigning T to φ , that is, Pπ (φ) = ∑i∈Int,i(φ)=T π(i) for every for-
mula φ ∈ K. A PSAT instance is satisfiable if there is a probability
function π over Int such that Pπ (φi)≥ pi for all 1 ≤ i ≤ m.

Iη finds the maximum probability lower bound η that one can con-
sistently assign to all formulas in a knowledge base; if η is equal to
1 then the knowledge base is consistent. In our setting, it means in-
terpreting a database as a PSAT instance, where every atom R(�t) in
the database is assigned probability η , and every (ground) integrity
constraint is assigned a probability 1. Thus, given a database D, a
set of integrity constraints C , and a probability threshold η ∈ [0,1],
we define the PSAT instance ΓC ,η (D) = {P(R(�t)) ≥ η | R(�t) ∈
D}∪ {P(g(c)) = 1 | g(c) is a ground constraint for c ∈ C }, which
enables the following definition.

Definition 4 (Probabilistic measure Iη ) Given a database D and
a set of integrity constraints C , the inconsistency measure Iη is such
that Iη (D) = 1−max

{
η ∈ [0,1] | ΓC ,η (D) is satisfiable

}
.

Thus, Iη (D) is one minus the maximum probability lower bound
one can consistently assign to all tuples in D. For the database of our
running example we have that Iη (Dex) = 1 because the maximum
probability that can be assigned to (the contradictory) tuple�t5 is zero.

In the propositional case, of the measures considered no 2 mea-
sures give the same result for all knowledge bases. But because of
the special structure of databases, for database IMs there is an equal-
ity that does hold: IC(D) = IH(D). In fact, IC(D) counts the min-
imum number of tuples that need to be assigned B in order to get
a 3VL model in Models(D). This is the same as the cardinality of
the set X ⊆ D having a non-empty intersection with every minimal
inconsistent subset of D.

Proposition 1 For any database D, IC(D) = IH(D).

As will be noted after Theorem 1, no other pair of measures con-
sidered in this section is identical.

4 Rationality Postulate Satisfaction

In addition to devising many ways of measuring inconsistency, re-
searchers have also investigated properties that a good IM should
possess. These are called (rationality) postulates and we already gave
two of them: Consistency and Monotony, that all (absolute) IMs
should satisfy. [43] lists 16 additional postulates but some of them
are oriented toward relative measures or deal with logically equiva-
lent formulas and so are not relevant for relational databases. 3 As we
did with the database IMs in Definition 2, we now give the database
counterparts to a list of propositional rationality postulates. These
postulates were originally introduced based on some intuition about
how an IM should behave, but there is no consensus about which are
essential or even which are really desirable. However, we think that
in general an IM behaves more in line with our intuition if it satisfies
more postulates.

Definition 5 (Postulates for Database Inconsistency Measures)

Let D,D′ be databases, R(�t) a tuple of D, and I an IM. The
postulates for database IMs are as follows:

Free-Tuple Independence If R(�t) ∈ Free(D), then I (D) = I (D\
{R(�t)}).

Penalty If R(�t) ∈ Problematic(D), then I (D)> I (D\{R(�t)}).
Super-Additivity If D∩D′ =∅, then I (D∪D′)≥I (D)+I (D′).
MI-Separability If MI(D ∪ D′) = MI(D) ∪MI(D′) and MI(D) ∩

MI(D′) =∅, then I (D∪D′) = I (D)+I (D′).
MI-Normalization If M ∈MI(D), then I (M) = 1.
Equal Conflict If M,M′ ∈ MI(D) and |M| = |M′|, then I (M) =

I (M′).

Independence means that free tuples do not change the inconsis-
tency measure. Penalty states that deleting a problematic tuple de-
creases the measure. Thus, measures satisfying these postulates al-
low us to check if deleting a given tuple makes a database less in-
consistent or not, in the sense that the inconsistency value decreases
iff the deleted tuple occurs is a minimal inconsistent subset. So for
an IM that satisfies both Independence and Penalty, e.g. IM , we can
tell from the change or no change of the IM after a deletion if the
formula was free or problematic. But for an IM that violates Penalty,
e.g. IH , that is not the case. For the database Dex of our running
example, the fact that �t1 is problematic is signaled by IM since
IM(Dex \ {�t1}) = 2 < IM(Dex) = 3, but not by IH which gives
IH(Dex \{�t1}) = IH(Dex) = 2. This would negatively affect appli-
cations of IMs where, for instance, the inconsistency value is used to
detect if updates involve inconsistent tuples.

Super-Additivity and MI-Separability give information about the
union of two databases under certain conditions. Super-Additivity
deals with the case where the databases are disjoint in which case
the measure of the union is at least as great as the sum of the mea-
sures of the two databases. MI-Separability requires that the minimal

3Propositional postulates that are not relevant or applicable to databases
are for instance Dominance and Exchange. Indeed, the database version of
Dominance would be: if R(�t) is not contradictory and R(�t) implies R′(�t ′) then
I (D∪{R(�t)}) ≥ I (D∪{R′(�t ′)}). But a database tuple cannot imply any
other database tuple, and thus the postulate would be trivially satisfied. Anal-
ogously, the database version of Exchange would be: if D1 is consistent and
D1 is logically equivalent to D2 then I (D∪{D1}) = I (D∪{D2}). This is
also useless as two different databases cannot be logically equivalent.
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inconsistent sets of the two databases partition the minimal incon-
sistent sets of the union, in which case the measure of the union
is the sum of the measures of the two databases. Hence, a mea-
sure satisfying Super-Additivity is able to separately take into ac-
count the inconsistency arising from databases containing different
information when they are merged. A violation to Super-Additivity
means that the act of merging loses some portion of the IM. The
satisfaction of MI-Separability guarantees that inconsistencies orig-
inating from different minimal sets of tuples are counted individu-
ally, even if the databases have a non-empty intersection. A violation
of MI-Separability means that even though the two databases have
completely different minimal inconsistent subsets, the merger causes
(usually) additional inconsistencies.

MI-Normalization and Equal Conflict deal specifically with min-
imal inconsistent sets. MI-Normalization requires every minimal in-
consistent set to have measure 1: it is the essence of IM . Equal
Conflict requires minimal inconsistent sets of the same size to have
the same measure. This means that violations originated from the
same constraint, and thus having the same size, should be counted
the same. Clearly, MI-Normalization implies Equal Conflict but the
converse does not hold.

It turns out that the satisfaction of the postulates for database IMs
is very similar to but not identical to the satisfaction of the corre-
sponding postulates for the propositional IMs.

Theorem 1 The satisfaction of postulates for database inconsis-
tency measures is as given in Table 1.

As shown in Table 1 there are 5 cases where the satisfaction re-
sults are positive for database IMs but negative for the propositional
case. For each case we give a propositional example where the pos-
tulate is violated while it is satisfied for databases. We first recall the
propositional versions, namely IA and IC, of the two database IMs IA
and IC. Given a propositional knowledge base K, IA(K) gives the
number of maximal consistent subsets of K plus the number of self-
contradictions of K minus 1. Measure IC counts the minimal number
of atoms in K that must be assigned the truth-value B in the three-
valued logic by an interpretation that satisfies every formula in K.
The following examples show that the violation of postulates is due
to the power of propositional logic; for databases only a simpler class
of formulas is allowed.

• Free-Tuple Independence for IC. Let K0 = {a∧¬a∧b,¬b} where
¬b is free because it does not belong to the unique minimal incon-
sistent subset of K0, consisting of the self-contradictory formula
a∧¬a∧b. It is violated since IC(K0)= 2, while IC(K0\{¬b})= 1.

• Super-Additivity for IA. Let K1 = {a,¬a}, K2 = {a∧a,¬a∧¬a}.
Since both K1 and K2, as well their union, contain 2 maximal con-
sistent subsets and no self-contradictions, then IA(K1) = IA(K2) =
IA(K1 ∪K2) = 1, which violates the postulate.

• Super-Additivity for IC. Using again K1 and K2, we have that
IC(K1) = IC(K2) = IC(K1 ∪K2) = 1, as assigning B to atom a suf-
fices to get a 3VL interpretation that satisfies every formula.

• MI-Normalization for IC. Let K3 = {a ∧ ¬a ∧ b ∧ ¬b}. Then
IC(K3) = 2, as both atoms should be assigned the truth-value B.

• Equal Conflict for IC. Let K4 = {a∧¬a}. Although K3 and K4 are
two minimal inconsistent subsets of formulas of the same cardi-
nality 1, IC(K3) = 2 is different from IC(K4) = 1.

As a consequence of Theorem 1, we have that, except for IC and
IH , no other pair of measures in Table 1 are identical since they do
not satisfy exactly the same set of postulates.

5 Complexity of Database Inconsistency Measures

We investigate the data-complexity [8, 46] of the following three de-
cision problems, which intuitively ask if a given rational value v is,
respectively, lower than, greater than, or equal to the value returned
by a given IM when applied to a given database. Observe that every
IM returns a rational number, including Iη (as shown in [31]).

Definition 6 (Lower (LV), Upper (UV), and Exact Value (EV) )

Let I be an IM. Given a database D over a fixed database scheme
with a fixed set of constraints, and a positive value v ∈Q>0,

• LVI (D,v) is the problem of deciding whether I (D)≥ v.

Given D and a non-negative value v′ ∈Q≥0,

• UVI (D,v′) is the problem of deciding whether I (D)≤ v′, and
• EVI (D,v′) is the problem of deciding whether I (D) = v′.

We also consider the problem of determining the IM value.

Definition 7 (Inconsistency Measurement (IM) problem) Let I
be an inconsistency measure. Given a database D over a fixed
database scheme with a fixed set of constraints, IMI (D) is the prob-
lem of computing the value of I (D).

The following proposition states that the measure IM is tractable
in the presence of denial constraints. The result follows from the fact
that the number of minimal inconsistent subsets is polynomial (in
the number of tuples in the database instance). In fact, since under
data complexity the database schema and the set of constraints are
considered fixed, and only the database instance is considered as part
of the input, the arity of the constraints is considered to be a constant,
which in turn bounds the size of each minimal inconsistent subset.

Proposition 2 IMIM (D) is in FP.

The result of Proposition 2 implies that LVIM (D,v), UVIM (D,v),
and EVIM (D,v) are in P. Moreover, the following corollary states
that IB,IP and I# are tractable as well. In fact, IB(D) = 1 iff
IM(D)≥ 1, and since minimal inconsistent subsets can be enumer-
ated in polynomial time, the computation of the number of problem-
atic tuples (i.e., IP) and the weighted sum of the minimal inconsis-
tent subsets (i.e., I#) is feasible as well.

Corollary 1 For I ∈ {IB,IP,I#}, IMI (D) is in FP and
LVI (D,v), UVI (D,v), and EVI (D,v) are in P.

Complexity of the measure IA

We now consider the measure IA which counts the number of max-
imal consistent subsets. For denial constraints, the set of conflicts
among tuples can be naturally represented as a conflict hypergraph
H (D) whose nodes are the tuples of D and the set of hyperedges
is MI(D) [9, 10, 19]. Maximal consistent subsets one-to-one corre-
spond to maximal independent sets of H (D) (a maximal indepen-
dent set for H (D) is a maximal set of nodes that contains no hy-
peredge from MI(D)). Hence, computing IMIA(D) can be reduced
to computing the number of maximal independent sets of H (D).
Since counting the maximal independent sets of a graph is #P-
complete [40], it follows that IMIA(D) is in #P for binary denial
constraints (for which the conflict hypergraph is a graph). However,
the membership in #P of IMIA also holds for general denial con-
straints. In fact, computing IA(D) means counting the number of
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accepting paths of a nondeterministic polynomial-time Turing ma-
chine whose accepting paths are the elements in MC(D) (we can
check in polynomial time if a guessed set S ⊆ D of tuples belongs
to MC(D), as it suffices to verify that for each t ∈ D \ S, S∪{t} is
inconsistent).

If we focus on FDs only, a result stronger than that above follows
from the dichotomy result established in [33] where it is shown that
computing the number of subset repairs [1] (i.e., maximal consistent
subsets) is either #P-complete or tractable for FDs. The latter case
holds if, for a given set F of FDs, there is a minimal cover Fm of
F which is a chain, that is, for every pair of FDs R : X1 → Y1 and
R : X2 → Y2 in Fm, either X1 ⊆ X2 or X2 ⊆ X1—in such case we say
that F is (equivalent to) a chain FD schema.

Proposition 3 IMIA(D) is in #P. Moreover, if the set of constraints
consists of FDs only and is equivalent to a chain FD schema, then
IMIA(D) is in FP; otherwise it is #P-complete.

The following theorem states that the three decision problems for
IA are in the class CP, which coincides with PP [41, 47]. It is worth
noting that these problems are unlikely to belong to classes contained
in CP (under the standard complexity assumption P 
= NP). Specifi-
cally, UVIA(D,v) (resp., LVIA(D,v), EVIA(D,v)) is unlikely to be
in NP (resp., coNP, DP) as checking whether a given set of sets is a
set of maximal consistent subsets cannot be accomplished in polyno-
mial time due to the exponential size of |MC(D)| w.r.t. D.

Theorem 2 LVIA(D,v), UVIA(D,v), and EVIA(D,v) are in CP.

Complexity of the measure IH

The following theorem characterizes the complexity of the Upper
Value problem for IH (and thus for IC, see Proposition 1), showing
that it is in NP and NP-hard in the presence of either (i) just one
ternary denial constraint, or (ii) two FDs such that the right-hand side
of the first one coincides with the left-hand side of the second one,
or (iii) two FDs without common attributes. The hardness for case
(i) can be proved by showing a reduction from the VERTEX COVER

problem, for which we can define a construction that can be exploited
in the proof of Theorems 4 and 5 for characterizing the complexity
of the Exact Value problem as well as that of computing the value of
IH . The hardness for cases (i) and (ii) can be proved, respectively,
by reduction from 3SAT and a problem investigated in [2] about the
size of subset repairs.

Theorem 3 UVIH (D,v) is NP-complete. Specifically, let C be the
set of integrity constraints. UVIH (D,v) is NP-hard if one of the fol-
lowing cases holds:

1. C consists of a single ternary denial constraint;
2. C consists of 2 FDs of the form R : A → B and R : B → E;
3. C consists of 2 FDs of the form R : A → B and R : C → D.

Since IH(D) ≥ v iff IH(D) � v− 1, i.e., LVIH (D,v) is true iff
UVIH (D,v − 1) is false, using the result of Theorem 3, we have
that LVIH (D,v) is coNP-complete. Moreover, since EVIH (D,v)
is the intersection of LVIH (D,v) and UVIH (D,v), it follows that
EVIH (D,v) is in Dp.

Corollary 2 LVIH (D,v) is coNP-complete. EVIH (D,v) is in Dp.

The characterization of the complexity of EVIH (D,v) is strength-
ened by Theorem 4 that can be proved by showing a reduction to our
problem from the DP-hard problem EXACT VERTEX COVER [39].
Therefore, it follows that EVIH (D,v) is complete for Dp.

Theorem 4 EVIH (D,v) is Dp-hard.

Finally, the following theorem provides a tight characterization of
the complexity of computing the value of IH .

Theorem 5 IMIH (D) is FPNP[log n]-complete.

The membership in FPNP[log n] follows from the fact that the value
of IH(D) can be computed by performing a binary search in the in-
terval [0, |D|], that is by asking a logarithmic number of queries to an
NP-oracle solving UVIH (D,v), where v is chosen as usual in binary
search. The hardness result can be proved by showing a reduction
from the FPNP[log n]-complete problem MIN-VERTEX COVER [38].

Complexity of the measure Iη

We now characterize the complexity of the probabilistic IM Iη . It
turns out that the Upper Value problem is NP-complete. The mem-
bership in NP follows from the fact that the problem belongs to NP
for general propositional knowledge bases [44]. On the other hand,
our NP-hardness result strengthens the hardness result previously
shown for general knowledge bases, as it is shown that the prob-
lem is hard even for restricted forms of knowledge bases encoding
relational databases with denial constraints.

Theorem 6 UVIη (D,v) is NP-complete. Specifically, let C be the
set of integrity constraints. UVIη (D,v) is NP-hard if one of the fol-
lowing cases holds:

1. C consists of 2 FDs of the form R : A → B and R : BC → A;
2. C consists of a single ternary denial constraint.

The result above can be proved by showing a reduction from
3-COLORABILITY to UVIη (D,v). From Theorem 6, the following
corollary follows.

Corollary 3 LVIη (D,v) is coNP-complete. EVIη (D,v) is in Dp.

Finally, since it can be shown that the number of distinct values
that Iη (D) can take is polynomial [42], it can be computed by a
polynomial number of queries to an NP oracle deciding UVIη .

Corollary 4 IMIη (D) is in FPNP.

6 Conclusions and Future Work

In this paper, we have introduced a formal framework for measuring
inconsistency in databases. We believe that the definition and inves-
tigation of IMs for databases benefit from our systematic approach to
the problem, which stems from what has been done in the past by the
AI community. The results summarized in Tables 1 and 2 give indica-
tions on the behavior and complexity of IMs for databases, helping
to figure out which measure is more appropriate for specific appli-
cations. Our analysis shows that IM satisfies all the postulates and
can be computed in polynomial time, suggesting that it can be used
in practice. In fact, it is easy to see that IM , as well as I# and IP,
can be evaluated by standard SQL, meaning that measuring inconsis-
tency using these measures scales as far as the database can answer
queries in reasonable time. Moreover, compared with their proposi-
tional versions, we found that the complexity of IA decreases while
that of IH and Iη remains the same. Also, additional postulates
become satisfied for IA and IC, and IC becomes identical to IH .
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Many interesting issues concerning IMs in databases remain un-
explored. We have dealt with denial constraints, a common type of
integrity constraint which can express for instance equality generat-
ing dependencies (e.g., functional dependencies). We plan to extend
our work to other types of integrity constraints, and in particular to
inclusion dependencies. Also, we plan to identify tractable cases for
the hard measures, possibly exploiting connections with work done
on inconsistent databases (as shown for IA), and devise efficient
algorithms for evaluating IMs. The IMs we have considered work
at the tuple-level, without distinguishing inconsistency arising from
different attributes, which is another issues we want to address in the
future. Finally, another interesting direction for future work is con-
sidering incomplete information (e.g., databases with null values).
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