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Abstract. Link prediction is the main task of knowledge graph
completion, predicting missing relations between entities based the
existing links among the entities. The problem of knowledge graph
completion can be framed as a third-order binary tensor comple-
tion problem. In this case, tensor decomposition seems like a nat-
ural solution. And many previous studies have shown that tensor de-
composition methods are superior to Trans-based methods in link
prediction experiments. Typical tensor decomposition methods are
Canonical Polyadic (CP) decomposition and Tucker decomposition.
In this paper, we propose Block term decomposition Embedding
model (BTDE) for link prediction based on Block term decompo-
sition (which can be seen as a combination of CP decomposition and
Tucker decomposition) of the binary tensor representation of knowl-
edge graph triples. The embeddings learned through BTDE is inter-
pretable. In addition, we prove BTDE is fully expressive and derive
the bound on its entity and relation embedding dimensionality for
full expressivity which is the same as TuckER and smaller than the
bound of previous start-of-the-art models ComplEx and SimplE. We
show empirically that BTDE outperforms most previous state-of-the-
art models across five standard link prediction datasets.

1 INTRODUCTION

Knowledge graph is a semantic network that contains numerous enti-
ties and relations in a structured way. It is a graph of nodes and edges
in essence, in which nodes are entities and edges are relations. It usu-
ally use a triple (subject, relation, object) to describe a fact in the
real world. There are many well-established and successfully applied
knowledge graphs, such as FreeBase [2], WordNet [20], DBpedia
[16], YAGO [26], NELL [4], etc. These knowledge graphs are used
in several fields, including search, question answering, natural lan-
guage processing, recommendation systems, etc. Even a knowledge
graph with billions of triples is still incomplete. In the completion
of knowledge graph, learners must predict potential triples based on
existing ones. This problem has received a huge amount of attention
and researches.

Link prediction is the main task of knowledge graph comple-
tion, predicting missing links in knowledge graph, including search
(subject, relation, ?) or (?, relation, object). Therefore, a large
number of link prediction methods have been proposed, such as
Trans-based TransE [3] and its extensions, including TransH [30],
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TransR [17], TransD [11], STransE [21], etc., and tensor decompo-
sition based, such as RESCAL [23], DisMult [33], ComplEx [28],
SimplE [12], TuckER [1] and so on. Recently, some scholars have
proposed nonlinear convolution models to achieve state-of-the-art re-
sults, for example ConvE [6]. Although some deep learning methods
have achieved good performance than before, they have the funda-
mental problem non-transparent and poorly understood.

In this paper, we introduce Block term decomposition embed-
ding (BTDE), a more general tensor decomposition method for
knowledge graph completion. Block term decomposition factorizes
a tensor into the sum of R parts, and each term is a core tensor
multiplied by a matrix along each mode. In our case, the knowl-
edge graph third-order binary tensor will be decomposed the sum
of two terms, forward term and reverse term. The forward term
is the decomposition of the (subject, relation, object) triple set-
s, and the reverse term is the decomposition of the corresponding
(object, relation−1, subject) triple sets. The rows of three ma-
trices contain subject entity, relation, and object entity embedding
vectors, while the core tensor represents the interaction between the
three. Further, the subject embedding of an entity is learned indepen-
dently of its object embedding.

As relations in knowledge graph can be symmetrical, asymmet-
rical and transitive, link prediction models will have to accurate-
ly represent all of these relation types. In this paper, we show that
BTDE is fully expressive, and the embedded boundaries of entities
and relations can be limited to lower dimensions. We evaluate our
model with the task of link prediction on public benchmark datasets:
WN18RR, FB15k-237, YAGO3-10, WN18 and FB15k. Experimen-
tal results show that our approach outperforms most state-of-the-art
models.

In summary, our contributions are as follows:

• We propose a novel model, BTDE, which outperforms most
state-of-the-art link prediction models.

• We prove that BTDE is fully expressive and limits the em-
bedding of entity and relation for full expressiveness to a
lower dimension than ComplEx and SimplE.

The rest of the paper is organised as follows: Section “RELAT-
ED WORK” introduces the existing embedding approaches for link
prediction. Section “BACKGROUND” introduces the link prediction
and Block term decomposition in math. Section “BLOCK TERM
DECOMPOSITION EMBEDDING” describes the proposed BTDE
mode in detail. Section “EXPERIMENTS AND RESULTS” com-
pares BTDE with several state-of-the-art embedding models. Sec-
tion “ANALYSIS” explores the ablation study and the influence of
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embedding dimensionality and then a conclusion in Section “CON-
CLUSION”.

2 RELATED WORK

A large number of knowledge graph embedding models for link pre-
diction have been proposed. There are three main types: Translational
model, Multiplicative model and Deep learning model.

For ease of reference, the symbols used in the paper are briefly
listed here. E and R represent assemblies of entities and relation-
s respectively. The knowledge graph triplet set is represented as
G = {(s, r, o)}, where s ∈ E represents the subject entity, r ∈ R the
relation, and o ∈ E the object entity. The es can be regarded as the
embedding vector of subject entity, rr the embedding vector of rela-
tions, eo the embedding vector of object entity, and scoring function
the ϕ(s, r, o).

2.1 Translational models

In 2013, Bordes et al. proposed TransE, the earliest translating em-
bedding model, serving as the basis of a series of subsequent translat-
ing embedding models. Its basic idea is that when the triplet (s, r, o)
is true, there will be es + rr ≈ eo. TransE is relatively simple, lead-
ing to a faster training speed which in turn results in the defects
while dealing with the 1-N, N-1, and N-N relations. For example,
two triples (s, r, o1) and (s, r, o2) have the same subject entity and
relation, but different object entities. In this case, the embedding of
o1 and o1 given by TransE may be very close, but in fact different.

To solve this problem, Wang et al. propose an improved model,
TransH, which introduced relation-specific hyperplanes and project-
ed entities s and o onto the hyperplanes for their relation r. It is be-
cause of the projection operation that the same entity may have com-
pletely different embedding on the hyperplane of different relations.
Similar to TransH, TransR introduced spaces for relations, project-
ing entities s and o into the space for their relation r. Although Tran-
sR shows better performance than TransE and TransH, it introduced
relational space for each relation, resulting in more parameters and
training time. Drawing on TransR, Ji et al. have brought up Trans-
D. In TransD, product of vectors is replacement of projection matrix
used in TransR, greatly reducing the number of parameters required
by the model. TransH, TransR, and TransD all project entities into
the hyperplanes or spaces for specific relations to improve defects of
TransE by enabling entities to have different embeddings in different
relations.

In addition, some improvements of TransE are through relaxing
conditions of es + rr ≈ eo. For example, Xiao, Huang, and Zhu
have introduced ManifoldE [31], which relaxes es + rr ≈ eo into
‖es + rr ≈ eo‖22 ≈ θ2r . o is no longer a certain point, but located at
the hypersphere with s+r as the center and a radius of θr . The same
relaxation is also completed in TransF [8].

2.2 Multiplicative models

Multiplicative knowledge graph embedding models generally use a
variety of multiplications to capture the latent interactions between
entities.

2.2.1 RESCAL

In 2011, Nickel, Tresp, and Kriegel proposed RESCAL, in which
each entity was represented as a vector, tensor product is used to

capture similarities between entities, and each relation was repre-
sented as a matrix to capture interactions of entities. Since matrix
in RESCAL represents relation, the number of parameters in it is
tremendous.

2.2.2 DistMult

In 2015, based on the idea of the RESCAL, Yang et al. proposed Dist-
Mult, which simplified RESCAL by replacing the matrix represent-
ing relation with the diagonal matrix. This simplification has greatly
reduced the number of parameters in DistMult. Although DistMult
does not distinguish between subject and object entity, this model can
only be used to deal with symmetrical relations. There is no doubt
that there are certain limitations.

2.2.3 HolE

Nickel et al. propose Hole [22], which used circular correlations to
capture the latent interactions between entities. Because of the asym-
metry of circular correlation, HoLE can be used to handle asymmet-
rical relations.

2.2.4 ComplEx

In 2016, Trouillon et al. proposed ComplEx, which extended the em-
beddings of entities and relations from a real space to a complex
space. Due to asymmetries of complex multiplication, ComplEx can
achieve great performance in dealing with asymmetrical relations.

2.2.5 SimplE

Inspired by the idea of CP decomposition, so as to address indepen-
dency of the subject and object vector of the same entity in CP de-
composition, Seyed et al. proposed SimplE. They believe that when
an entity embedding learns as subject should also be used in learning
as object, and vice versa. So each entity is represented as two vectors,
and each relation is represented as two vectors accordingly.

2.2.6 TuckER

Enlightened by Tucker’s thoughts, Balažević et al. propose TuckER,
a simple linear model for link predictions in 2019. TuckER decom-
poses knowledge graph third-order binary tensor into a core tensor
multiplied by a matrix along each mode. The rows in three matri-
ces represent vectors of subject entities, relations and object entities
respectively. And it assumed that embedding vectors of subject and
object entities are equivalent. They do not distinguish between the
embedding of an entity, whether it appears as subject or as object in
the triple.

2.3 Deep learning models

Neural networks of deep learning are adopted for interactions be-
tween subject entities and object entities in triples. Sereval convolu-
tional models have been proposed in natural language processing for
solving a variety of tasks. In 2018, Dettmers et al. have applied con-
volutional neural network in link predictions as knowledge embed-
ding approaches for the first time–ConvE. In ConvE, subject entities
and relation vectors are transformed into a matrix, then spliced and
sent to neural network for 2D convolution operation. The obtained
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Table 1. Scoring functions of state-of-the-art link prediction models. In this chart, ei, hj , tk ∈ Rde , de, dr are regarded as embedding dimensions of entities
and relations respectively. And ne, nr are represented as numbers of entities and relations. eo ∈ Cde denote the complex conjugate of eo, es and rr denote a

2D reshaping of es and rr , 〈v, w, x〉 = (v � w) · x where � reprents element-wise (Hadamard) multiplication and · represents dot product, ∗ denotes the
convolution operator, f denotes a non-linear function, W ∈ Rde×dr×de and ×n denotes the tensor product along the n-th mode.

Model Scoring Function Relation Parameters Space Complexity

TransE (Bordes et al. 2013) ‖es + rr − eo‖p rr ∈ R
de O (nede + nrde)

RESCAL (Nickel et al. 2011) eTs Wreo Wr ∈ R
de

2 O (
nede + nrd

2
r

)
DistMult (Yang et al. 2015) 〈es, rr, eo〉 rr ∈ R

de O (nede + nrde)

ComplEx (Trouillon et al. 2016) Re (〈es, rr, eo〉) rr ∈ C
de O (nede + nrde)

SimplE (Kazemi et al. 2018) 1
2
(〈hs, rr, to〉+ 〈ho, rr−1 , ts〉) rr ∈ R

de O (nede + nrde)

ConvE (Dettmers et al. 2018) f (vec (f ([es; rr] ∗ w))W) eo rr ∈ R
dr O (nede + nrdr)

TuckER (Balažević et al. 2019) W ×1 es ×2 rr ×3 eo rr ∈ R
dr O (nede + nrdr)

BTDE (ours) G1 ×1 hs ×2 rr ×3 to + G2 ×1 ho ×2 rr−1 ×3 ts rr ∈ R
dr O (nede + nrdr)

features then will be transformed into vectors. After being connect-
ed with fully connected layers, these vectors will be matched with
object entities vector via an inner product. The performance of the
model is significantly better than other models.

Table 1 shows scoring functions of some models described above.

3 BACKGROUND

3.1 Link prediction

Link prediction plays an essential part in evaluating performance of
knowledge embedding models. It can predict the missing subject or
object entity when given some other subject or object entity and re-
lation in a triple. In link prediction, we use a subset of all true triples
to learn the embedding vectors of entities and relations. And then s-
core function ϕ(s, r, o) are applied to determine whether the triplet
(s, r, o) is true or false. It is the normal case that in some deep learn-
ing models or multiplicative models, score of triplet is positive so
that the triplet is predicted to be true. And a negative score means
that the triplet is false. For recent models, an activation function such
as sigmod is applied for scoring function for probabilistic predictions
to tell whether the triple is true or false.

3.2 Block term decomposition

In 2008, Lathauwer and Lieven have proposed Block term decom-
position (BTD) [15], which is also called Block component de-
composition (BCD) in other papers. In BTD, an N-order tensor is
decomposed into R tensors. In a three-mode case, given a tensor
X ∈ R

I×J×K , it will be decomposed into R tensors just as shown
in Figure 1. In mathematical expressions, it can be represented as:

X ≈
R∑

r=1

Gr ×1 Ar ×2 Br ×3 Cr (1)

in which Gr ∈ R
L×M×N are full rank-(L, M, N) and in which Ar ∈

R
I×L (with I ≥ L), Br ∈ R

J×M (with J ≥ M ), and Cr ∈ R
K×N

(with K ≥ N ) are full column rank, 1 ≤ r ≤ R, ×n indicating the
tensor product along the n-th mode.

In CP, the tensor X ∈ R
I×J×K will be decomposed as follow

(Kolda and Bader 2009)[13]:

X ≈
R∑

r=1

ar ⊗ br ⊗ cr (2)

where R is a positive integer and ar ∈ R
I , br ∈ R

J and cr ∈ R
K ,

1 ≤ r ≤ R, ⊗ denotes the vector inner product.
In Tucker, the tensor X ∈ R

I×J×K will be decomposed as follow
(Kolda and Bader 2009)[13]:

X ≈ G ×1 A×2 B ×3 C

=

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ⊗ bq ⊗ cr
(3)

in which G ∈ R
P×Q×R, A ∈ R

I×P , B ∈ R
J×Q, and C ∈ R

K×R.
Obviously, Block term decomposition can be seen as a combina-

tion of Tucker decomposition [29] and CP decomposition [10]. When
R = 1, it is obvious that there is only one tensor involved, and this
is a Tucker decomposition of rank-(L, M, N). When each tensor is a
rank-1 decomposition, this will degenerate into a CP decomposition
(CP decomposition is the decomposition of a tensor into R tensor
with rank-1). This also reveals strong generalization ability of BTD.

4 BLOCK TERM DECOMPOSITION
EMBEDDING IN KNOWLEDGE GRAPH

In this section, the knowledge embedded model BTDE based on
Block term decomposition is displayed in detail. As the knowledge
graph is essentially a set of triples, it can be transformed as a third-
order binary tensor in math. The tensor coordinates correspond to the
ids of entities and relations in triples. When triples are true, the cor-
responding coordinate value of third-order binary tensor will be 1,
otherwise it will be 0. In this paper, knowledge graph is decomposed
into the sum of two terms by BTDE. Meanwhile, H ∈ R

ne×de and
T ∈ R

ne×de are subject and object entity embedded matrixes re-
spectively where ne denotes the number of entities and de denotes
the dimensions of embedded vectors of each entity. An entity can be
a subject entity or an object entity, and different roles mean differen-
t functions. But it does not mean that two embedded vectors of the
same entity are completely independent. Just on the contrary, they
are learned interactively during the training process. Each relation is
represented by vectors of rr and rr−1 .

The scoring function of BTDE in this paper is as follows:

ϕ(s, r, o) = G1 ×1 hs ×2 rr ×3 to

+ G2 ×1 ho ×2 rr−1 ×3 ts
(4)

hs, to ∈ R
de are row vectors of matrix H and T, and rr, rr−1 ∈ R

dr

row vectors of relation matrixes. G1 ∈ R
de×dr×de and G2 ∈
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Figure 1. Visualization of the block term decomposition.

R
de×d

r−1×de are core tensors of forward and reverse term respec-
tively, and ×n is the tensor product along the n-th mode. Logistic
sigmoid function σ(·) is applied to each score ϕ(s, r, o) to obtain the
predicted probability p of a triple being true.

4.1 Learning

Numerical methods are employed to fit subject entity matrix, relation
matrix and object entity matrix in BTDE. We followed the training
process of Dettmers et al. in this paper, training each triplet with 1-N.
That is, for triples (s, r, ·) and (·, r, o), the object or subject entities
are replaced by all entities respectively. And if new generated triples
in the training set, they will be marked as positive samples, otherwise
negative samples. Inspired by Lacroix et al.[14], we designed the full
binary cross-entropy loss, as shown in Equation 5. We use the Adam
optimizer to train our model to minimize the loss:

L(p, y) = L(p, y)(s,r,o) + L(p, y)(o,r−1,s) (5)

L(p, y)(s,r,o) =− 1

ne

ne∑
i=1

[
y(i) log

(
p
(i)

(s,r,o)

)

+
(
1− y(i)

)
log

(
1− p

(i)

(s,r,o)

)] (6)

L(p, y)(o,r−1,s) =− 1

ne

ne∑
i=1

[
y(i) log

(
p
(i)

(o,r−1,s)

)

+
(
1− y(i)

)
log

(
1− p

(i)

(o,r−1,s)

)] (7)

p(s,r,o) = σ (G1 ×1 hs ×2 rr ×3 to) (8)

p(o,r−1,s) = σ (G2 ×1 ho ×2 rr−1 ×3 ts) (9)

where p is the vector of probabilities predicted by the model and y is
the label vector of ones for true and zeros for false triples.

4.2 Full expressiveness

A tensor decomposition model can be said to be fully expressive if for
any ground truth over all entities and relations, there exist entity and
relation embeddings that correctly distinguish the true triple from the
false ones. Trouillon et al. have demonstrated that ComplEx is fully
expressive, while indicating that embedding dimensions of entities
and relations are limited to ne ∗ nr . Kazemi et al. have proved that

SimplE is also fully expressive, and indicated that embedding dimen-
sions of entities and relations are limited to min (ne ∗ nr, γ + 1), in
which the number of all true triples is represented by γ. Balažević et
al. have proved that TuckER is also fully expressive, while indicating
that embedding dimensions of entities and relations are limited to ne

and nr respectively. We show that BTDE is also fully expressive in
following parts.

Theorem 1 For any ground truth over entities E and relations R,
there exists a BTDE model with entity embedding vectors of size de =
ne and relation embedding vectors of size dr = nr , where ne is the
number of entities and nr is the number relations, that represents the
ground truth.

Proof 1 In this paper, each entity ei is represented by one-hot bina-
ry vector of ne dimension, let the i-th element of hei = 1, tei = 1
and other elsements 0. As for each relation r, one-hot binary vector
of nr dimension, let the j-th element of vrj = 1, v

r−1
j

= 1 and other

elements 0. If the triplet (es, r, eo) is true, let the value of core tensor
G1 ∈ R

de×dr×de , coordinated by (es, r, eo), be 1 and other coordi-
nations −1. And let the value of core tensor G2 ∈ R

de×d
r−1×de co-

ordinated by (eo, r
−1, es) be 1 and other coordinations −1. There-

fore, if the triplet is true during application of scoring function in
this paper, the final score will be positive. Otherwise the final score
will be negative. That is to say, BTDE can correctly represent ground
truth.

In the following part, symmetrical and asymmetrical relations will
be employed to show that BTDE can correctly distinguish them.

1. If (es, r, eo) and (eo, r, es) are both true, then G1(es, r, eo) = 1,
G2(eo, r

−1, es) = 1, G1(eo, r, es) = 1, G2(es, r
−1, eo) = 1,

ϕ (es, r, eo) = G1×1hes×2rr×3teo+G2×1heo×2rr−1×3tes =
2 > 0,
ϕ (eo, r, es) = G1×1heo×2rr×3tes+G2×1hes×2rr−1×3teo =
2 > 0.

2. If (es, r, eo) is true while (eo, r, es) is false, then G1(es, r, eo) =
1, G2(eo, r

−1, es) = 1, G1(eo, r, es) = −1, G2(es, r
−1, eo) =

−1,
ϕ (es, r, eo) = G1×1hes×2rr×3teo+G2×1heo×2rr−1×3tes =
2 > 0,
ϕ (eo, r, es) = G1×1heo×2rr×3tes+G2×1hes×2rr−1×3teo =
−2 < 0.

3. If (es, r, eo) is false while (eo, r, es) is true, then G1(es, r, eo) =
−1, G2(eo, r

−1, es) = −1, G1(eo, r, es) = 1, G2(es, r
−1, eo) =

T. Luo et al. / BTDE: Block Term Decomposition Embedding for Link Prediction in Knowledge Graph820



1,
ϕ (es, r, eo) = G1×1hes×2rr×3teo+G2×1heo×2rr−1×3tes =
−2 < 0,
ϕ (eo, r, es) = G1×1heo×2rr×3tes+G2×1hes×2rr−1×3teo =
2 > 0.

4. If (es, r, eo) and (eo, r, es) are both false, then
G1(es, r, eo) = −1, G2(eo, r

−1, es) = −1, G1(eo, r, es) = −1,
G2(es, r

−1, eo) = −1,
ϕ (es, r, eo) = G1×1hes×2rr×3teo+G2×1heo×2rr−1×3tes =
−2 < 0,
ϕ (eo, r, es) = G1×1heo×2rr×3tes+G2×1hes×2rr−1×3teo =
−2 < 0.

5 EXPERIMENTS AND RESULTS

5.1 Datasets

Our experiments are conducted on four public knowledge graph
datasets retrieved from WordNet and Freebase corpus.

FB15k[3] is the subset of Freebase. Most part of its facts are about
movies, actors, awards, sports and sports teams.

FB15k-237[27] is the subset of FB15k, and reverse relations are
removed from it. A host of testing triples will be acquired through
reverse trainings from FB15k. In order to create a data set without
such attributes, Toutanova et al. have proposed FB15k-237.

WN18[3] is the subset of WordNet. Entities in WordNet are syn-
onymous with different concepts, and relations indicate lexical rela-
tionships between synonyms.

WN18RR[6] is the subset of WN18. Dettmers et al. have discov-
ered the same deficiency of FB15k in WN18, and constructed the
dataset from removing inverse relations between validation and test
sets from WN18.

YAGO3-10[19] is a subset of YAGO3, which consists of entities
with at least 10 relations per entity. Most of the triples involve human
description attributes such as citizenship, gender, and occupation.

The statistics of the four datasets are listed in Table 2.

Table 2. Dataset statistics

Datatset #Entities #Relations #Trains #Valids #Tests

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

YAGO3-10 123,182 37 1,079,040 5,000 5,000

5.2 Experiments

In order to evaluate different models, for each test triple (ei, r, ej),
we replace its source entity ei with every entity e′i ∈ E , calculate the
scores of test triple (ei, r, ej) and every corrupted triple (e′i, r, ej),
and compute the rank of test triple among these corrupted triples.
Because of the existence of one-to-many, many-to-one and many-to-
many structures in knowledge graph, there may be a phenomenon
that other correct fake triples rank ahead of the ground truth. So,
we follow Bordes et al. to report the filtered results. During ranking,
we remove the corrupted triples that already exist in either the train,
valid and test sets. Similarly, the object entity ej of the test triple will
be replaces as well. For measuring the performances of the models,
we use four main evaluation protocols: MRR, Hits@1, Hits@3 and

Hits@10. MRR is Mean Reciprocal Rank, which means the average
of reciprocal ranks. Compared with MR(Mean Rank), MRR is more
stable and less susceptible to a single bad rank. And Hits@K repre-
sents the percentage of the top K in all ranks. Higer MRR and higer
Hits@K mean better performance.

We implemented BTDE in PyTorch and did the experiments by
using a single GPU (NVIDIA Titan Xp). We tuned our hyper-
parameters over the validation set. For FB15k and FB15k-237, we
set entity and relation dimensions to 150. For WN18 and WN18RR,
as the number of relations in these two datasets is obviously less than
the amount in FB15k and FB15k-237, we set the entity dimension to
200 and the relation dimension to 30. Since the entity and relation ra-
tios in YAGO3-10 are roughly the same as WN18RR, we follow the
embedding setting 200 and 30 in WN18RR. We use batch normaliza-
tion, dropout and label smoothing to lessen overfitting. In particular,
we use dropout on the embeddings and on the hidden units after the
head embedding and relation embedding interact with the core ten-
sor, respectively. We set the batch size to 1024. We select the learning
rate λ among {0.0003, 0.003, 0.005, 0.01}, the learning decay γ a-
mong {0.99, 0.995, 1.0}, embedding dropout {0.0, 0.1, 0.2}, hidden
dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} and label smoothing {0.0, 0.1,
0.2, 0.3}.

We found that the optimal configurations of BTDE are as follows:
λ = 0.0005, γ = 1.0 on WN18, λ = 0.005, γ = 0.995 on FB15k,
λ = 0.01, γ = 1.0 on WN18RR, λ = 0.003, γ = 1.0 on FB15k-
237 and λ = 0.01, γ = 1.0 on YAGO3-10. For all datasets, we
set the embedding dropout 0.2 and label smoothing 0.1 except label
smoothing 0.0 on FB15k. Lower hidden dropout values work well on
WN18(0.1, 0.2), WN18RR(0.2, 0.3) and YAGO3-10(0.2, 0.3). For
FB15k-237, the higher hidden dropout values (0.4, 0.5) are needed
to control overfitting.

5.3 Link prediction results

Link prediction results for all four datasets are listed in Tables 3 and
4. It can be seen that BTDE has achieved the most desired results
compared to other existing baselines on the four datasets (excluding
Hits@10 on WN18). In the series of tensor decomposition approach-
es, it is as plain as daylight that BTDE is optimal compared with
DistMult, HolE, ComplEx, SimplE and TuckER. Especially when
compared with WN18RR, BTDE increased by 1.5% on MRR and
2.5% on Hits@10 than TuckER, and 4.5% on MRR and 4.1% on
Hits@10 than ComplEx. Compared to deep learning based methods
such as ConvE, BTDE also shows better performance. These results
have also verified that tensor decomposition based model can bet-
ter represent complexities in knowledge representation and achieve
state-of-the-art results.

In 2015, Toutanova and Chen[27] first indicated that WN18 and
FB15k suffered test leaks through an inverse relations. That is, one
only need to invert the triples in the training set can get a large num-
ber of test triples. Just like the case, a triple in test set such as (s, r, o)
while the training set contains its inverse (o, r, s). Such cases occur
frequently in these two datasets. Therefore, the experimental results
on the two datasets FB15k and WN18 are not very convincing. To
further validate the superiority of our model, we performed experi-
ments on the dataset YAGO3-10 recommended by Dettmeter et al.
The experimental results are shown in Table 5. Obviously our mod-
el is better than the others. Compared to ConvE, BTDE increased
by 2.7% on MRR and 3.6% on Hits@10. In contrast with D4-STE,
BTDE increased by 7.5% on MRR and 5.3% on Hits@10. Our pro-
posed model, BTDE, achieves the state-of-the-art performance for
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Table 3. Results on WN18 and FB15k. The best results are in bold, while second best results are underlined.

WN18 FB15k

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al. 2013) - .892 - - .380 .471 - -
DistMult (Yang et al. 2015) .822 .936 .914 .728 .654 .824 .733 .546
HolE (Nickel et al. 2016) .938 .949 .945 .930 .524 .739 .613 .402
ComplEx (Trouillon et al. 2016) .941 .947 .936 .936 .692 .840 .756 .599
Neural LP (Yang et al. 2017)[34] .940 .945 - - .760 .837 - -
ANALOGY (Liu et al. 2017)[18] .942 .947 .944 .939 .725 .854 .785 .646
RUGE (Guo et al. 2018)[9] - - - - .768 .865 .815 .703
R-GCN (Schlichtkrull et al. 2018)[24] .819 .964 .929 .697 .696 .842 .760 .601
TorusE (Ebisu and Ichise 2018)[7] .947 .954 .950 .943 .733 .832 .771 .674
ConvE (Dettmers et al. 2018) .943 .956 .946 .935 .657 .931 .723 .558
SimplE (Kazemi et al. 2018) .942 .947 .944 .939 .727 .838 .773 .660
CrossE (Zhang et al. 2019)[35] .830 .950 .931 .741 .728 .875 .802 .634
D4-STE (Xu et al. 2019)[32] .946 .952 .948 .942 .733 .877 .803 .641
TuckER (Balažević et al. 2019) .953 .958 .955 .949 .795 .892 .833 .741

BTDE (ours) .954 .961 .956 .950 .800 .897 .840 .742

Table 4. Results on WN18RR and FB15k-237. The best results are in bold, while second best results are underlined.

WN18RR FB15k-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DisMult (Yang et al. 2015) .430 .490 .440 .390 .241 .419 .263 .155
ComplEx (Trouillon et al. 2016) .440 .510 .460 .410 .247 .428 .275 .158
Neural LP (Yang et al. 2017) - - - - .250 .408 - -
ANALOGY (Liu et al. 2017) - - - - .219 .405 .240 .131
R-GCN (Schlichtkrull et al. 2018) - - - - .248 .417 .262 .151
MINERVA (Das et al. 2018)[5] - - - - - .456 - -
ConvE (Dettmers et al. 2018) .430 .520 .440 .400 .325 .501 .356 .237
M-Walk (Shen et al. 2018)[25] .437 - .445 .414 - - - -
CrossE (Zhang et al. 2019) - - - - .299 .474 .331 .211
D4-STE (Xu et al. 2019) .480 .536 .491 .452 .320 .502 .353 .230
TuckER (Balažević et al. 2019) .470 .526 .482 .443 .358 .544 .394 .266

BTDE (ours) .485 .551 .501 .452 .367 .553 .402 .274

Table 5. Results on YAGO3-10. The best results are in bold, while second best results are underlined.

YAGO3-10

MRR Hits@10 Hits@3 Hits@1

DisMult (Yang et al. 2015) .340 .540 .380 .240
ComplEx (Trouillon et al. 2016) .360 .550 .400 .260
Neural LP (Yang et al. 2017) - - - -
ANALOGY (Liu et al. 2017) - - - -
R-GCN (Schlichtkrull et al. 2018) - - - -
MINERVA (Das et al. 2018) - - - -
ConvE (Dettmers et al. 2018) .520 .660 .560 .450
M-Walk (Shen et al. 2018) - - - -
CrossE (Zhang et al. 2019) - - - -
D4-STE (Xu et al. 2019) .472 .643 .523 .381
TuckER (Balažević et al. 2019) - - - -

BTDE (ours) .547 .696 .596 .465
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all metrics on YAGO3-10.

6 ANALYSIS

6.1 Ablation study

Table 6 shows the results of our ablation study, in which we evaluat-
ed different parameter initializations (n = 3) to calculate confidence
intervals. We see that hidden dropout 2 is by far the most important
component, which is not surprising, as it is our main regularization
technique. Embedding dropout , hidden dropout 1 and label smooth-
ing improve performance but seem to be negligible, and we can get
good results without these components.

Table 6. Ablation study for FB15k-237.

Ablation Hits@10

Full BTDE 0.553

Hidden dropout 2 −0.036± 0.000
Embedding dropout −0.004± 0.000
Hidden dropout 1 −0.003± 0.000
Label smoothing −0.001± 0.000

6.2 Influence of embedding dimensionality

The full expressiveness of BTDE is demonstrated in previous section
of this paper. At the same time, the embedding dimensions of entity
and relation of BTDE are the same as TuckER, which are much lower
than ComplEx and SimplE. In order to safely land on this conclusion,
contrast experiments on FB15k-237 are conducted and evaluation in-
dexes, MRR and Hits@10 are observed in different dimensions {50,
100, 150, 200}. As is shown in Figure 2 and Figure 3, MRR and
Hits@10 of BTDE excel other three models in both low and high
dimensions, further highlighting its superior performance.

Figure 2. MRR for ComplEx, SimplE, TuckER and BTDE for different
embedding sizes {50,100,150,200} on FB15k-237.

Figure 3. Hits@10 for ComplEx, SimplE, TuckER and BTDE for different
embedding sizes {50,100,150,200} on FB15k-237.

7 CONCLUSION

In this paper, we propose BTDE based on Block component decom-
position of third-order binary tensors for link predictions. Block ter-
m decomposition is a more generalized decomposition in terms of
mathematical tensor decomposition, and it can better decompose the
formed factors more accurately. Based on this, We can get more ac-
curate embedded vectors of entity and relation and our experimental
results also prove this. We also prove that BTDE is fully expressive
as ComplEx, SimplE and TuckER, while BTDE also obtains low-
er embedding dimensions of entity and relation. Besides, BTDE has
achieved excellent results on all five standard datasets.

In the future, we aim to explore whether the third-order binary
tensor can be decomposed the sum of more terms and not just the
forward and the reverse parts. We will also explore a good way to
add background knowledge into BTDE.
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Guillaume Bouchard, ‘Complex embeddings for simple link predic-
tion’, in Proceedings of the 33nd International Conference on Machine
Learning, ICML, pp. 2071–2080, (2016).

[29] L. R. Tucker, ‘The extension of factor analysis to three-dimensional
matrices’, Contributions to mathematical psychology, 110119, (1964).

[30] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen, ‘Knowl-
edge graph embedding by translating on hyperplanes’, in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.
1112–1119, (2014).

[31] Han Xiao, Minlie Huang, and Xiaoyan Zhu, ‘From one point to a man-
ifold: Knowledge graph embedding for precise link prediction’, in Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence, IJCAI, pp. 1315–1321, (2016).

[32] Canran Xu and Ruijiang Li, ‘Relation embedding with dihedral group
in knowledge graph’, in Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL, pp. 263–272, (2019).

[33] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng,
‘Embedding entities and relations for learning and inference in knowl-
edge bases’, in 3rd International Conference on Learning Representa-
tions, ICLR, (2015).

[34] Fan Yang, Zhilin Yang, and William W. Cohen, ‘Differentiable learning
of logical rules for knowledge base reasoning’, in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems, pp. 2319–2328, (2017).

[35] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Hua-
jun Chen, ‘Interaction embeddings for prediction and explanation in
knowledge graphs’, in Proceedings of the Twelfth ACM Internation-
al Conference on Web Search and Data Mining, WSDM, pp. 96–104,
(2019).

T. Luo et al. / BTDE: Block Term Decomposition Embedding for Link Prediction in Knowledge Graph824


