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Abstract. Reasoning about actual causes of an observed effect is
fundamental to many applications. Batusov and Soutchanski (2018)
recently presented a first-order logic approach to compute actual
causes. Built on a formal theory of action and change, namely the sit-
uation calculus, their approach is quite expressive, as it can be used to
determine the causes of quantified effects. However, their approach
does not find causes from a counterfactual perspective, nor does it
link with the regularity approach to causation. This paper proposes a
new analysis of actual achievement causes in the situation calculus.
We study the natural properties that are necessary for actual causes
and conditions that are sufficient for the achievement of an observed
(possibly quantified) effect. We identify a property that is both neces-
sary and sufficient for actual achievement causes. This is one of our
main contributions. Our discussion leads to a new definition of actual
achievement causes that includes the root cause together with a chain
of relevant events. We show when our definition is closely related to
the recent one proposed by Batusov and Soutchanski (2018).

1 Introduction

Research on actual causality involves finding in a given trace (a log,
a record) actions that caused an effect. Pearl [33, 34] was a pio-
neer to lead a computational enquiry into actual causality. The re-
search was later continued by Halpern and Pearl [14, 18] and others
[7, 20, 22, 15, 16]. This “HP approach” is based on the concept of
structural equations [36]. HP follows the Humean counterfactual def-
inition of causation, which states that saying that “an outcome B is
caused by an event A” is the same as saying that “had A never oc-
curred, B never had existed”. This definition suffers from the prob-
lem of preemption2: it could be the case that in the absence of event
A, B would still have occurred due to another event, which in the
original trace was preempted by A. HP address this by performing
counterfactual analysis only under carefully selected contingencies,
which suspend some subset of the model’s mechanisms. The ap-
proach based on Structural Equations Models (SEM) has been criti-
cized for its limited expressiveness [20, 22, 10], and researchers have
attempted to expand SEM with additional features, e.g. [25].

A different approach was recently proposed by Batusov and
Soutchanski [1], who developed a foundational definition of actual
achievement cause within situation calculus basic action theories
[35]. While they focused on linear traces only, an advantage of their
approach is that it is based on an expressive formal theory of ac-
tion and change. Also, it allows one to reason about actual causes

1 Ryerson University, Canada, email: {shakilmkhan,mes}@scs.ryerson.ca
2 Preemption happens when two competing events try to achieve the same

effect, and the latter of these fails to do so, as the earlier one has already
achieved the effect.

of quantified effects. However, they neither define an actual cause in
counterfactual terms, nor do they relate their definition to the reg-
ularity account of causation. As a consequence, it is not clear how
their definition can be related to these two common, but different ap-
proaches to actual causes. There is strong experimental evidence that
humans understand causes using counterfactual reasoning [9, 8]. In
contrast, others [6, 2] identified limitations of counterfactual-based
reasoning and argued for regularity definitions.

In this paper, we explore a set of necessary properties for actual
achievement causes, and discuss sufficient conditions for the achieve-
ment of observed effects within the situation calculus. This is one of
our contributions. We then identify a property that is both necessary
and sufficient for actual achievement causes. This is our main con-
tribution. Using this, we give a new definition of actual achievement
causes (Definition 12) that has a counterfactual flavour. We make two
simplifying assumptions. First, we deal with achievement causes ex-
clusively. Second, we consider only the sequential case, when the
actions are completely ordered. We prove that the identified condi-
tions have some intuitively desirable properties, and investigate the
formal relation between our new definition and that of [1]. This is our
final contribution. Interestingly, our new definition of actual cause
helps illustrate Mackie’s [27] well-known INUS condition interpre-
tation of Hume’s regularity definition. We elaborate it by performing
a temporal check while choosing the appropriate INUS condition,
eliminating the problems with cases of preemption.

We start with a motivating example in §2. In §3, we formalize the
necessary properties and the sufficient conditions. In §4, we identify
the necessary and sufficient property for causes and propose our new
definition. We investigate the formal relation between our definition
and [1] in §5. In §6 and 7, we discuss related work and conclude.

2 A Motivating Example

The Situation Calculus. The situation calculus (SC) [29] is a
popular formalism for modeling and reasoning about dynamic
systems. We use a many-sorted version that defines a basic action
theory (BAT) D [35]. We will explain the main ingredients of
a BAT using the following motivational example. We will use
the complex situation term do([α1, · · · , αn], S0) to represent the
situation obtained by consecutively performing α1, · · · , αn starting
from S0. Also, the notation s � s′ means that situation s′ can be
reached from situation s by executing a sequence of actions. s � s′

is an abbreviation of s � s′ ∨ s = s′. s < s′ is an abbreviation
of s � s′ ∧ executable(s′), where executable(s) is defined as
∀a′, s′. do(a′, s′) � s → Poss(a′, s′). We will also utilize a
single-step regression operator ρ[φ, α]. Given a query “does φ hold
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in the situation obtained by performing the ground3 action α in some
situation σ, i.e. in do(α, σ)?”, ρ transforms it into an equivalent
query “does ψ hold in situation σ?”, eliminating action α by compil-
ing its effects into ψ, that provides the weakest preconditions of φ in
σ. In the sequel, we use lowercase Greek letters and uppercase Latin
letters for ground terms, and lowercase Latin letters for variables. All
free variables in a sentence are assumed to be implicitly ∀-quantified.

Example. We use a simple connected car as an example. There is
a car C (this is a constant). A driver can drive any car c from inter-
section i to j by executing the drive(c, i, j) action. The geometry
of the roads is captured using the non-fluent relation conn(i, j),
which states that there is a street from intersection i to j. To respond
to cyber-threats and newly discovered vulnerabilities, each car has
the ability to wirelessly download security patches. Unfortunately,
due to poor design choices, the cars are still susceptible to cyber-
attacks.4 In particular, there are two hackers in the domain, H1 and
H2. Hacker H1, who is located at intersection I2, is equipped with
the capabilities of intercepting a car’s key-fob signal, infiltrating
its software, and remotely controlling the car, if the car is within
H1’s range (i.e. both are at the same intersection). This can be done
using the keyHack(h, c) action. Once hacked, the hackers can
also erase all security patches by executing the eraseP (c) action,
which makes the car vulnerable to over-the-air attacks. On the other
hand, hacker H2, who is driving around, can exploit a bug in (the
original version of) a car’s on-board software system to intercept
its telematics connection and take over the car’s Engine Control
Modules, provided the software is not up-to-date. Such attacks can
be attempted using the teleHack(h, c) action. A hacked car may
be reclaimed using the recover(c) action and the latest security
patches can be installed using the installP (c) action. Initially, all
the cars are vulnerable, but are not hacked.

There are three fluents, at(c, i, s), vulnerable(c, s), and
hacked(c, s), which mean that the car c is at location i in situation
s, c’s on-board software is not up-to-date and as such it is vulnerable
to hacks in s, and c is hacked in s, respectively.

We provide axioms for a BAT for this example. First, the action
precondition axioms for the aforementioned actions are as follows.

(1) Poss(drive(c, i, j), s) ↔ at(c, i, s) ∧ i �= j ∧ conn(i, j),

(2) Poss(keyHack(h, c), s) ↔ h = H1 ∧ ∃i(at(h, i, s) ∧ at(c, i, s)),

(3) Poss(teleHack(h, c), s) ↔ h = H2 ∧ vulnerable(c, s),

(4) Poss(eraseP (c), s) ↔ hacked(c, s),

(5) Poss(installP (c), s) ↔ ¬hacked(c, s),
(6) Poss(recover(c), s) ↔ hacked(c, s).

These are self-explanatory; e.g., (1) states that c can be driven from
i to j in situation s if and only if c is at i in s, i and j refer to different
intersections, and there is a street connecting i and j.

Moreover, the following successor-state axioms (SSA) specify
when exactly the fluents at, vulnerable, and hacked change value
when an action a is executed in some situation s.

(7) at(c, i, do(a, s)) ↔ (∃j(a = drive(c, j, i))

∨ (at(c, i, s) ∧ ¬∃j(a = drive(c, i, j)))),

(8) vulnerable(c, do(a, s)) ↔ (a = eraseP (c)

∨ (vulnerable(c, s) ∧ a �= installP (c))),

(9) hacked(c, do(a, s)) ↔ (∃h(a = keyHack(h, c) ∨
a = teleHack(h, c)) ∨ (hacked(c, s) ∧ a �= recover(c))).

3 A ground term is one whose constituents are ground sub-terms and con-
stants, i.e. a term that contains no variables.

4 Most of the following scenarios are realistic; indeed remote car hacking
remains a very real threat today [11].

That is, (7) states that c is at location i in the situation resulting from
executing some action a in situation s (i.e. in do(a, s)) if and only if
a refers to c’s action of driving from location j to i, or it was already
at i in s and a is not the action of driving c to another location j. The
axioms for vulnerable in (8) and hacked in (9) are similar.

Furthermore, the initial situation is specified using the follow-
ing initial state axioms. (10) at(C, I1, S0), (11) at(H1, I2, S0),
(12) ∀c(vulnerable(c, S0)), (13) ∀c(¬hacked(c, S0)). Thus, e.g.
initially the car C is at intersection I1, etc.

We assume that the intersections I1 and I2 are connected.
(14) ∀i, j. conn(i, j) ↔ ((i = I1∧j = I2) ∨ (i = I2∧j = I1)).
Also, for simplicity and illustration, we assume the domain closure
axiom for the intersections, stating that there are only two intersec-
tions I1 and I2 in this domain. (15) ∀i(i = I1 ∨ i = I2). However,
we do not require a domain closure axiom for cars and hackers, as
their number can be unknown. We need unique names axioms stating
that I1 and I2 refer to two different intersections, and similarly for
hackers: (16) I1 �= I2 ∧H1 �= H2. Finally, we need unique-names
axioms (UNA) stating that drive, keyHack, teleHack, installP ,
eraseP , and recover refer to different actions, and that two actions
with the same function symbol refer to the same action if their argu-
ments are the same. We omit these for brevity. Henceforth, we use
Dcc to refer to the above axiomatization of the car domain.

For an example of single-step regression, let us compute
ρ[ ∃c(hacked(c,do(keyHack(H1, C), S∗)), keyHack(H1, C)]
for some situation S∗. We substitute action variable a by
keyHack(H1, C) in the right hand side of the successor-state
axiom (9), and replace the situation variable s by S∗. This yields
∃h(keyHack(H1, C) = keyHack(h, c) ∨ keyHack(H1, C) =
teleHack(h, c)) ∨ [hacked(c, S∗) ∧ keyHack(H1, C) �=
recover(c)]. Using the unique names axioms for actions, this is
equivalent to ∃h(H1 = h ∧ C = c) ∨ hacked(c, S∗). So, the query
is equivalent to ∃c∃h(H1 = h ∧ C = c ∨ hacked(c, S∗)), and this
can be simplified to true.

3 Necessary Properties, Sufficient Conditions

Given a trace σ, actual achievement causes are actions that are be-
hind achieving some effect. In this section, we propose a set of nec-
essary properties of actual achievement causes and a sufficient con-
dition for actual achievement causality within the SC. An effect in
this framework is a SC formula φ(s) that is uniform in s (meaning
that it has no occurrences of Poss, �, other situation terms besides
s, and quantifiers over situations). Recall D denotes a BAT.

Definition 1 (Causal Setting) A causal setting is a tuple 〈D, σ, φ(s)〉,
where D is a theory, σ is a ground situation term of the form
do([α1, · · · , αn], S0) with ground action functions α1, · · · , αn such
that D |= executable(σ), and φ(s) is a SC formula uniform in s
such that D |= φ(σ).

As the theory D is fixed, we will often suppress D. Also, here we
require φ to hold by the end of the trace σ.

Since all changes in the SC result from actions, we identify the
potential causes with a set of ground action terms occurring in σ.
However, since σ might include multiple occurrences of the same
action, we also need to identify the situations where these actions
were executed. Thus, a cause with respect to a causal setting is a
non-empty set of (action, situation) pairs derived from the trace σ.
We call each pair in a cause, a part of the cause.

For example, consider the trace σcc = do([teleHack(H2,C),
recover(C), installP (C), drive(C, I1, I2), keyHack(H1, C),
eraseP (C), teleHack(H2, C)], S0). We are interested in comput-
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ing the actual causes of the effect φcc = ∃c(hacked(c, s)). Thus,
the causal setting is C1 = 〈Dcc, σcc, φcc〉. It is easy to see that the
cause of φcc is {(drive(C, I1, I2), S3), (keyHack(H1, C), S4)},
where S3=do([teleHack(H2,C),recover(C), installP (C)], S0)
and S4 = do(drive(C, I1, I2), S3). Note that the first teleHack
action is not a cause, as its effect on φcc did not persist till the end
of the trace. The second teleHack is also not a cause since it was
preempted by the keyHack action. Finally, the drive action is part
of the cause since it is required for the keyHack to work: H1 could
not have hacked the car if the car were not at intersection I2.

Necessary Properties. We start by informally analyzing a set of
properties that an actual achievement cause must necessarily have.
Intuition suggests that there are three such necessary properties that
a (part of a) cause must have. (N1) Each (part of a) cause must
contribute to the achievement of the effect φ. (N2) A cause must
not be preempted w.r.t the effect given trace σ. (N3) The effect φ
brought about by a cause must be enduring, i.e. it cannot be the case
that a subsequent action on the trace σ makes φ false.

We now gradually formalize the necessary properties for actual
achievement causes. First, we give a trace-independent definition of
contributing causes, both direct and indirect.

Definition 2 (Direct Possible Contributor). Given theory D and ef-
fect φ(s), an action α is called a direct possible contributor to φ(s)
if and only if there is a situation σ such that

D |= executable(σ) ∧ Poss(α, σ) ∧ ¬φ(σ) ∧ φ(do(α, σ)).

The situation σ is called a witness for the contribution of action α
relative to theory D and effect φ(s).

For example, given domain Dcc, it can be shown that two
direct possible contributors to φcc = ∃c(hacked(c, s)) are
keyHack(H1, C) and teleHack(H2, C), since by Axiom (9), these
actions directly contribute to the achievement of the fluent hacked.
For the former, the situation do(drive(C, I1, I2), S3) is a witness,
while for the latter, the situation S0 is a witness.

Definition 3 (Possible Contributor and Contributing Cause). Given
theory D and effect φ(s), an action α1 is called a possible contribu-
tor to φ(s) if and only if there are non-empty finite sequences of ac-
tions α1, · · · , αn, situations σ1, · · · , σn, and formulae φ1, · · · , φn

such that (A) α1 is a direct possible contributor to φ1 with witness
σ1, · · · , αn is a direct possible contributor to φn with witness σn,
and (B) D |= σ1 < do(α1, σ1) ≤ σ2 < do(α2, σ2) ≤ · · · ≤ σn,
and (C) D |= ∀s. φn(s) ↔ φ(s), D |= ∀s. φn−1(s) ↔
Poss(αn, σn)∧ρ[φn, αn], · · · ,D |= ∀s. φ1(s) ↔ Poss(α2, σ2)∧
ρ[φ2, α2], and (D) D |= ∀s. (do(α1, σ1) ≤ s ≤ σ2 → φ1(s)), · · · ,
D |= ∀s. (do(αn−1, σn−1) ≤ s ≤ σn → φn−1(s)). We call the
sequence of situations {σ1, · · · , σn, do(αn, σn)} a witness for α1’s
contribution.

Moreover, if α1, · · · , αn is maximal in the sense that there does
not exist an action α∗, situation σ∗, and formula φ∗ such that α∗

is a direct contributor to φ∗ with witness σ∗, where D |= σ∗ <
do(α∗, σ∗) ≤ σ1 and D |= ∀s. φ∗(s) ↔ Poss(α1, σ1)∧ ρ[φ1, α1]
and D |= ∀s. do(α∗, σ∗) ≤ s ≤ σ1 → φ∗(s), then in addition we
call the ordered set {(α1, σ1), · · · , (αn, σn)} a possible contribut-
ing cause of φ(s).

Definition 3 formalizes a chain of direct possible contributors
(condition (A)), where the effect of the final element of the chain

is φ (the first item in above condition (C)) and the first direct con-
tributor is the action α1 executed in situation σ1. Thus α1 indirectly
possibly contributes to the effect φ. Condition (B) specifies how the
witnessing situations in this chain are related. Condition (C) on the
other hand specifies the intermediate effects; these include appropri-
ately regressed effects and preconditions of actions in the chain. Note
that, in addition to the contributing actions α1, · · · , αn, the trace de-
fined by (σ1, . . . , do(αn, σn)) may include other actions that are ir-
relevant to the contribution to φ. Thus, we need to ensure that the
intermediate effects are not perturbed by these. This is formalized
in condition (D) above, which requires that an intermediate effect
brought about by an action in the chain persists until the situation
where the next relevant action in the chain is executed.

In our example, but without regard to σcc, a possible indi-
rect contributor to φcc is the action drive(C, I1, I2). A wit-
ness to this can be {S0, S

∗, do(keyHack(H1, C), S∗)}, where
S∗ = do([drive(C, I1, I2), installP (C)], S0).5 Note the ir-
relevant action installP (C) here. This is the case since
the conditions in Definition 3 are satisfied by the finite se-
quence of actions drive(C, I1, I2), keyHack(H1, C). In particular,
keyHack(H1, C) is indeed a direct contributor to φcc with wit-
ness S∗. To see this, note that the initial situation S0 is an exe-
cutable situation (this is a property of the SC). Moreover, by Ax-
ioms (1), (10), (16), and (14), the drive(C, I1, I2) action is pos-
sible in S0, and therefore do(drive(C, I1, I2), S0) is also an exe-
cutable situation. Since initially C is at location I1 (Axiom (10)),
by Axiom (7) and the unique-names axioms, C will be at loca-
tion I2 in do(drive(C, I1, I2), S0). Similarly, it can be shown that
installP (C) is executable in do(drive(C, I1, I2), S0) and after its
execution, C will still be at location I2. Also, using Axiom (11) and
a similar analysis, it can be shown that hacker H1 will also be at I2
in S∗. Finally, by these and Axiom (2), the keyHack(H1, C) action
is executable in S∗, and by Axiom (9), it brings about φcc.

Similarly, it can be shown drive(C, I1, I2) is a direct contributor
toPoss(keyHack(H1,C), S∗) ∧ ρ[φcc, keyHack(H1,C)], which
can be simplified to ∃i(at(H1,i,S

∗)∧ at(C,i,S∗)) with witness S0.
Moreover, it can be shown that all other conditions in

Definition 3 are also fulfilled. Thus, drive(C, I1, I2) with
witness {S0, S

∗, do(keyHack(H1, C), S∗)} is indeed a
possible contributor to φcc. Note that the trace defined by
(S0, . . . , do(keyHack(H1, C), S∗)) cannot be extended
in the past, since there is no situations before S0. Thus,
{(drive(C, I1, I2), S0), (keyHack(H1, C), S∗)} is a possible
contributing cause of φcc.

We next give definitions of direct and indirect contributing causes
that take the given narrative into account.

Definition 4 (Direct Actual Contributor). Given a causal setting C =
〈D, σ, φ(s)〉, an action α∗ is called a direct actual contributor to
φ(s) if and only if α∗ is a direct possible contributor to φ(s) given
D, σ∗ is a witness to this, and the following holds.

D |= S0 ≤ σ∗ < do(α∗, σ∗) ≤ σ.

The situation σ∗ is called a witness for action α∗’s direct actual
contribution w.r.t C.

Note that the condition in the above definition means that α∗ actually
occurs in the trace σ.

5 This example is not related to the trace σcc since here we are talking about
possible contributors, but not about actual contributors.
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For example, it can be shown that there are only two
direct actual contributors to φcc in the trace σcc, namely
teleHack(H2, C) with witness S0 and keyHack(H1, C) with wit-
ness S4. More importantly, teleHack(H2, C) executed in S6 =
do([keyHack(H1, C), eraseP (C)], S4) is not a direct actual con-
tributor. To see this notice that a direct actual contributor is also a di-
rect possible contributor, and therefore it must trigger the truth value
of the effect from false to true. Using arguments as before, it can
be shown that φcc was true in S6. Hence, the teleHack action exe-
cuted in S6 cannot be a direct actual contributor.

Definition 5 (Actual Contributor and Actual Contributing Cause).
Given a causal setting C = 〈D, σ, φ(s)〉, an action α1 is called an
actual contributor to φ(s) if and only if α1 is a possible contributor
to φ(s) given D, {σ1, · · · , σn, do(αn, σn)} is the witness to this,
and the following holds:

D |= S0 ≤ σ1 ≤ · · · ≤ σn ≤ do(αn, σn) ≤ σ.

We call the sequence {σ1, · · · , σn} a witness for α1’s contribution.
Moreover, similar to Definition 3, we also call the action-situation

pairs {(α1, σ1), · · · , (αn, σn)} an actual contributing cause when
the sequence α1, · · · , αn is maximal.

This notion of actual contributing cause captures necessary prop-
erties N1 and N2 discussed above. By definition, each part of an
actual contributing cause contributes to the effect φ. Moreover, an
actual contributing cause cannot be preempted, since it must include
an action –the final one in the chain – that directly actually (and thus
possibly) contributes to φ, i.e. changes the truth value of φ from false
to true (see Definition 2). Consequently, if φ was previously achieved
in σ by another contributor, its contribution was not enduring.

For example, in the trace σcc, {(teleHack(H2, C), S0)} and
{(drive(C, I1, I2), S3), (keyHack(H1, C), S4)} are the only two
actual contributing causes. Once again, the second teleHack action
executed in S6 cannot be included as a part of an actual contributing
cause, as the effect φcc was already true in S6.

We refine this notion to include the necessary property N3.

Definition 6 (Direct Enduring Producer). Given a causal setting C =
〈D, σ, φ(s)〉, an action α∗ is called a direct enduring producer of
φ(s) if and only if α∗ is a direct actual contributor to φ(s) given C,
σ∗ is the witness to this, and

D |= ∀s. σ∗ < s ≤ σ → φ(s).

The situation σ∗ is called a witness for action α∗’s direct enduring
production w.r.t C.

We can show that while keyHack(H1, C) executed in S4 is a
direct enduring producer, teleHack(H2, C) executed in S0 is not.
This is because the effect φcc brought about by the first teleHack
action is reversed by the action recover(C) executed in S1 =
do(teleHack(H2, C), S0), and as such its effects are not enduring.

Definition 7 (Enduring Producer). Given a causal setting
C = 〈D, σ, φ(s)〉, an ordered set of action-situation pairs
{(α1, σ1), · · · , (αn, σn)} is called an enduring producer of φ(s) if
and only if {(α1, σ1), · · · , (αn, σn)} is an actual contributing cause
of φ(s) given C, {σ1, · · · , σn} is the witness to this, and the follow-
ing holds.

D |= ∀s. σn < s ≤ σ → φ(s).

We call the situation sequence {σ1, · · · , σn} a witness for
{(α1, σ1), · · · , (αn, σn)}’s enduring production.

We can show that the only enduring producer in our example is
{(drive(C, I1, I2), S3), (keyHack(H1, C), S4)}.

We now formally show that all necessary properties of ac-
tual achievement causes suggested above hold for enduring
producers. We start with necessary property N1. If K =
{(α1, σ1), · · · , (αn, σn)} is an ordered set of action-situation pairs,
let �αK refer to the sequence of actions (α1, · · · , αn). Let �αsub{K}
denote any proper subsequence of �αK that does not alter the order of
the actions in �αK.

Proposition 1 (Contribution of Enduring Producers). Let C =
〈D, σ, φ(s)〉 be a causal setting, and K = {(α1, σ1), · · · , (αn, σn)}
be an enduring producer of C. Then

D |= (
executable(do(�αK, S0)) ∧ φ(do(�αK, S0))

) ∧
¬( executable(do(�αsub{K}, S0)) ∧ φ(do(�αsub{K}, S0))

)
.

Thus, every action in an enduring producer K directly or indirectly
contributes to φ in that no proper subsequence of �αK is sufficient to
bring about φ. Next, let us consider necessary property N2.

Proposition 2 (Uniqueness of Enduring Producers). Let C =
〈D, σ, φ(s)〉 be a causal setting, and K1 and K2 be two enduring
producers of C. Then K1 = K2.

Thus, since an enduring producer cannot be preceded by another en-
during producer, any actual contributing cause that may come before
an enduring producer must be non-persistent. So, an enduring pro-
ducer cannot be preempted.

Finally, observe that necessary property N3 trivially follows from
the definition of enduring producers.

Proposition 3 (Persistence of Enduring Producer Effects). Let C =
〈D, σ, φ(s)〉 be a causal setting, and K = {(α1, σ1), · · · , (αn, σn)}
be an enduring producer of C. Then D |= ∀s. σn < s ≤ σ → φ(s).

Sufficient Conditions. Let us now turn our attention to conditions
that are sufficient for actual achievement causation. A reasonable
condition for an ordered set of (action, situation) pairs to cause an ef-
fect φ is that given trace σ, the execution of these actions must bring
about φ, and the achieved effect φ disappears if any of the actions on
which φ depends are withdrawn.

In the following, we formalize these conditions. If σ =
do([α0, α1, · · · , αn], S0) is a ground situation, then let 〈σ〉 be
the ordered set {(α0, S0), (α1, S1), · · · , (αn, Sn)}, where S1 =
do(α0, S0), etc. Also, let 〈σ(α∗,σ∗)〉 = 〈σ〉 \ {(α∗, σ∗)}, where
(α∗, σ∗) ∈ 〈σ〉, and σ(α∗,σ∗) be the associated situation. Infor-
mally, we use the horizontal bar over a subscript of an ordered
set to denote the set-theoretic difference when the subscript is re-
moved from the set. Thus, σ(α∗,σ∗) is the situation that can be ob-
tained by “executing” all the actions in σ except for α∗ in situa-
tion σ∗ in the order they appear in σ, starting in S0. For instance, if
σ = do([α, β, γ, δ, β, ε], S0), then σ(β,S1)

= do([α, γ, δ, β, ε], S0),

where S1 = do(α, S0). We start with a tentative naı̈ve version.

Definition 8 (Counterfactual Dependence (Naı̈ve Version)). Given
setting 〈D, σ, φ(s)〉, action α∗, and situation σ∗, such that

D |= executable(σ) ∧ φ(σ) ∧ S0 < do(α∗, σ∗) ≤ σ,
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φ is counterfactually dependent on α∗ executed in σ∗ if and only if

D |= ¬executable(σ(α∗,σ∗)) ∨ ¬φ(σ(α∗,σ∗)).

Note that this definition requires us to take into account the ex-
ecutability of actions. The above tentative definition is not good
enough, since the non-executability of σ(α∗,σ∗) does not necessar-
ily imply counterfactual dependence. For instance, it can be the case
that α∗ executed in σ∗ is totally irrelevant w.r.t the achievement of
φ, but it makes the precondition of another irrelevant action β false.
Thus, we need to ensure that such cases are accounted for.

Let 〈σCl(α∗,σ∗)〉 denote the ordered set 〈σ〉 \ 〈Cl(α∗, σ∗, σ)〉,
where 〈Cl(α∗, σ∗, σ)〉 is the least set P such that (α∗, σ∗) is in P ,
and if (α′, σ′) is in P and there exists an action α′′ and a situa-
tion σ′′ such that D |= S0 � σ′′ � do(α′′, σ′′) � σ(α′,σ′) ∧
¬Poss(α′′, σ′′), then (α′′, σ′′) is also in P .6 Let σCl(α∗,σ∗) be the
associated situation. Thus, σCl(α∗,σ∗) is the situation obtained by ex-
ecuting all the actions in σ starting in S0 in the order they appear in
σ, except for action α∗ executed in situation σ∗, and except for all
subsequent actions whose preconditions are broken by the removal of
α∗ in σ∗ from σ. For example, if σ = do([α, β, γ, δ, β, ε], S0) and
the removal of β executed in S1 = do(α, S0) from σ only makes the
preconditions of δ false, then σCl(β,S1)

= do([α, γ, β, ε], S0).
In the following, we propose an improved definition.

Definition 9 (Counterfactual Dependence). Given causal setting
〈D, σ, φ(s)〉, action α∗, and situation σ∗, such that

D |= executable(σ) ∧ φ(σ) ∧ S0 < do(α∗, σ∗) ≤ σ,

φ is counterfactually dependent on α∗ executed in σ∗ if and only if

D |= ¬φ(σCl(α∗,σ∗)).

We call situation σ∗ the witness for φ’s dependence on α∗.

The above definition specifies that φ counterfactually depends on α∗

executed in σ∗ if and only if removing α∗ along with all other ac-
tions whose preconditions (directly or indirectly) depend on α∗ in
σ∗ yields a situation where φ does not hold. Thus, φ must have been
directly or indirectly dependent on α∗ in σ∗.

In our example, φcc counterfactually depends on the ac-
tion drive(C, I1, I2) in σcc. To see this, note that removing
drive(C, I1, I2) from the trace σcc along with other actions that
no longer will be executable, i.e., keyHack(H1, C), eraseP (C),
and the second teleHack(H2, C), yields the new executable trace
[teleHack(H2, C), recover(C), installP (C)]. It can be shown
that φcc is false after executing these actions from S0.

Clearly, this notion of counterfactual dependence is not good
enough for causation (this is not to say that the above definition
of counterfactual dependence is problematic). While counterfactual
dependence of an effect φ on an action α∗ executed in some sit-
uation σ∗ ensures that α∗ executed in σ∗ is a (part of a) cause
of φ, it does not entail that α∗ in σ∗ alone is guaranteed to pro-
vide for φ, as we may need additional actions besides α∗ to bring
about φ; e.g. drive(C, I1, I2) by itself is not sufficient for φcc as
keyHack(H1, C) is also needed for the effect.

Hence, we need to enhance the previous sufficiency condition.

Definition 10 (Counterfactual Dependence w.r.t Actual Contributing

6 Recall that unlike < and ≤, the precedence operators � and � do not
require executability. Also, here “Cl” means “closure”.

Cause). Given setting C = 〈D, σ, φ(s)〉 and an actual contributing
cause K = {(α1, σ1), · · · , (αn, σn)} of C, φ is counterfactually
dependent on K if and only if

D |= ¬φ(σCl(αn,σn)).

That is, φ counterfactually depends on an actual contributing cause
K if and only if removing the last action of K along with all other
actions whose preconditions depend on it yields a situation where φ
does not hold. Note that the final action in the chain K is indeed the
one that is ultimately responsible for achieving the effect φ.

Obviously, φcc counterfactually depends on the actual contribut-
ing cause {(drive(C, I1, I2), S3), (keyHack(H1, C), S4)} since
removing the final action, i.e. keyHack(H1, C), along with others
that depend on this action, from the original trace yields the new trace
[teleHack(H2, C), recover(C), installP (C), drive(C, I1, I2)],
whose execution starting from S0 does not bring about φcc. On
the other hand, φcc does not counterfactually depend on the actual
contributing cause {(teleHack(H2, C), S0)}, since removing this
action from the original trace gives us a trace whose execution still
brings about φcc; this new trace is simply all actions in σcc except
for the first two actions, teleHack and recover.

Note that, counterfactual dependence w.r.t actual contributing
cause is a sufficient but unnecessary condition for causation. It is
sufficient in the sense that the presence of such an actual contribut-
ing cause on the trace σ (on which φ is dependent) guarantees φ. It
is unnecessary since there are cases where an effect φ is not counter-
factually dependent on some actual contributing cause K, but K is a
cause of φ nonetheless, e.g. when there is another independent and
competing action, whose effect on φ is preempted by K in σ, and
therefore it may be the case that D |= φ(σCl(αn,σn)).

For example, consider the new trace σcc2 =
do([teleHack(H2,C), recover(C), drive(C,I1,I2), keyHack(H1,
C), teleHack(H2, C)], S0). Although intuition suggests that
{(drive(C, I1, I2), S′

2), (keyHack(H1, C), S′
3)} (where S′

2 =
do([teleHack(H2, C), recover(C)], S0) and S′

3 = do(drive(C,
I1, I2), S

′
2)) is an actual achievement cause for the effect φcc, the ef-

fect φcc is not counterfactually dependent on this actual contributing
cause, since removing the final action of this cause produces the trace
[teleHack(H2,C),recover(C),drive(C,I1,I2),teleHack(H2,C)],
whose execution starting in S0 brings about φcc anyway.

4 Actual Achievement Causes

In this section, we identify a simple property that is both necessary
and sufficient for actual achievement causes. Based on this, we then
give our new definition of actual cause. We start by formulating a
more inclusive sufficient condition (than in the previous section). In
this, we want to ensure that the cause K is not preempted by another
actual contributing cause. The definition must also take into consider-
ation any possible contributing cause that is preempted by K. Finally,
we must ensure that the effect of K is enduring.

Definition 11 (Weak Sufficiency). Given causal setting C =
〈D, σ, φ(s)〉 and an ordered set of (action, situation) pairs K =
{(α1, σ1), · · · , (αn, σn)} taken from σ. We say that K is weakly
sufficient for φ if and only if K is an actual contributing cause of C
with witness {σ1, · · · , σn}, and

D |= ¬φ(σn).

Notice the difference from Def. 10, where the effect ¬φ was veri-
fied at the end of σCl(αn,σn); in contrast, in Def. 11, ¬φ is verified
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in situation σn. By doing this, we omit the effect of the final action
αn in K, and the effects of all subsequent actions that occur on the
trace after the situation σn where αn is performed. This is important
since if there is a competing enduring cause that was preempted by
K, it can manifest only after the situation σn. By omitting all such
situations (and actions performed in those situations) from our con-
sideration in Def. 11 we are essentially ignoring the effects of all
potential competing causes that are preempted by K.

Note that if φ counterfactually depends on K, then K is weakly
sufficient for φ, but not vice-versa. In this sense, weak sufficiency is
a weaker condition than counterfactual dependence w.r.t actual con-
tributing causes. It is important to note that weak sufficiency by itself
does not guarantee causation, since a subsequent action from σ – one
that occurs after situation σn – may render the effect false. However,
in the absence of such subsequent actions (i.e. when K is also an
enduring producer of φ given causal setting C), one can in fact guar-
antee that if K is weakly sufficient for φ, then K is also sufficient for
φ, since K is enduring, i.e. φ remains true from situation do(αn, σn)
up to the end of the trace σ. Thus weak sufficiency, along with en-
durance of the achieved effect, is a sufficient condition for causation.

In our original example (with trace σcc), the only enduring
producer {(drive(C, I1, I2), S3), (keyHack(H1, C), S4)}
is weakly sufficient for φcc. Moreover, in our mod-
ified example with trace σcc2, the enduring producer
Kcc2 = {(drive(C, I1, I2), S′

2), (keyHack(H1, C), S′
3)} is

weakly sufficient for φcc; recall that φcc is not counterfactually
dependent on Kcc2.

It can be shown that enduring producers are weakly sufficient.

Proposition 4 (Enduring Producers are Weakly Sufficient). Let
C = 〈D, σ, φ(s)〉 be a causal setting and K be an enduring pro-
ducer of C. Then K is weakly sufficient for φ given setting C.

Put otherwise, if K = {(α1, σ1), · · · , (αn, σn)} is an enduring pro-
ducer of the causal setting C = 〈D, σ, φ(s)〉, then D |= ¬φ(σn),
i.e. the theory D entails that the effect φ cannot be observed in the
situation obtained by executing all the actions of σ except for those
that occur after situation σn, starting from the initial situation S0.
Thus enduring production is indeed a property that is both neces-

sary and sufficient for actual achievement causes. It is a necessary
property in the sense of Propositions 1, 2, and 3. That is, each part
of an enduring producer must contribute to the achievement of the
effect. An enduring producer can not be preempted, and the effect
brought about by an enduring producer must persist. It is a sufficient
property for actual achievement causes in the sense of Proposition 4.
That is, had the final action in the enduring producer not occurred,
the effect φ would not have been observed, under the contingency
that all subsequent competing (but preempted) causes are ignored.

We are now ready to give our new definition. We define actual
achievement causes simply as enduring producers of the effect.

Definition 12 (Actual Achievement Cause). Given a causal setting
C = 〈D, σ, φ(s)〉, a non-empty ordered set of action-situation pairs
{(α1, σ1), · · · , (αn, σn)} is an actual cause of φ(s) if and only if it
is an enduring producer of φ(s) given C.

Implementation. We developed a preliminary implementation of
our definition of actual cause based on Reiter’s regression [35]. We
used the simpler definition in [1] for this (thanks to Corollary 1, see
below). The current version does not handle quantified effects, and it
can be improved. We tested queries from the example mentioned in

the paper, as well as causal queries from a simple blocks world do-
main with about 20 blocks. Our program computed actual causes in
less than 0.02 seconds, i.e., that our implementation is quite efficient.

5 The Batusov-Soutchanski (2018) Approach

According to Batusov and Soutchanski [1], if some action α of the
action sequence in σ triggers the formula φ(s) to change its truth
value from false to true relative to D, and if there are no actions in
σ after α that change the value of φ(s) back to false, then α is an
actual cause of achieving φ(s) in σ. They showed that when used
together with the single-step regression operator ρ, in addition to the
single action that brings about the effect of interest, one can also cap-
ture the chain of actions that build up to it. The following inductive
definition formalizes this intuition. Let Πapa(α, σ) be the right-hand
side of the precondition axiom for action α in situation σ.

Definition 13 (Actual Achievement Cause (Batusov-Soutchanski
2018)). A causal setting C = 〈σ, φ(s)〉 satisfies the achievement
condition of φ via the situation term do(α∗, σ∗) � σ if and only if
there is an action α′ and situation σ′ such that

D |= ¬φ(σ′) ∧ ∀s. do(α′, σ′) � s � σ → φ(s),

and either α∗ = α′ and σ∗ = σ′, or the causal setting
〈σ′, ρ[φ(s), α′] ∧ Πapa(α

′, σ′)〉 satisfies the achievement condition
via the situation term do(α∗, σ∗). Whenever a causal setting C sat-
isfies the achievement condition via situation do(α∗, σ∗), the action
α∗ executed in situation σ∗ is said to be an achievement cause in C.

Batusov and Soutchanski [1] show that the achievement causes of
C form a finite sequence of situation-action pairs, which they call the
achievement causal chain of C.

Formal Relationship. We can now show that our definition is indeed
equivalent to the one proposed in [1]. In particular, counterfactual de-
pendence entails their achievement causes.

Theorem 1. Given setting C = 〈D, σ, φ(s)〉, if an effect φ is coun-
terfactually dependent on some action α∗ with witness σ∗, then α∗

executed in σ∗ is an achievement cause of φ in C according to [1].

Proof Sketch. Fix C = 〈σ, φ〉, α∗, and σ∗, and assume that the an-
tecedent is true, i.e. that φ counterfactually depends on α∗ executed
in σ∗. From this and Def. 9, we have: D |= ¬φ(σCl(α∗,σ∗)). By Def.
1, D |= φ(σ). This gives us 2 cases: (Case-1). There is some action
α′ executed in some situation σ′ s.t. (α′, σ′) ∈ 〈Cl(α∗, σ∗, σ)〉 and
s.t. α′ achieves φ in σ. Then by Def. 13, α′ executed in σ′ is a cause
of φ. Also, by this and Def. 13, any action executed in some situation
between S0 and σ′ that directly, and by induction indirectly, brings
about the preconditions of α′ must be a cause of φ. Since (α′, σ′)
is in 〈Cl(α∗, σ∗, σ)〉, the preconditions of α′ depends on α∗, and
thus (α∗, σ∗) is a cause. (Case-2). There is some action α′ executed
in situation σ′ that achieves φ in σ, but (α′, σ′) /∈ 〈Cl(α∗, σ∗, σ)〉.
By this and by the antecedent, α′ executed in σ′ does not achieve
φ in σCl(α∗,σ∗). This can only happen if the removal of the actions
in 〈Cl(α∗, σ∗, σ)〉 removed some condition ψ that is required for
the achievement of φ when α′ is executed in σ′. By this, Def. 13,
and by induction, there is an action, say α′′ executed in σ′′, s.t.
(α′′, σ′′) ∈ 〈Cl(α∗, σ∗, σ)〉 and S0 ≤ σ′′ < σ′, whose execution
brings about ψ, and (α′′, σ′′) is a cause of the effect φ. Moreover,
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by induction, it can be shown that since the preconditions of α′′ di-
rectly or indirectly depends on α∗ (as (α′′, σ′′) ∈ 〈Cl(α∗, σ∗, σ)〉),
(α∗, σ∗) is also a cause of φ.

Their causal chains are enduring producers and vice-versa.

Theorem 2. Given setting C = 〈D, σ, φ(s)〉, K is a causal chain
relative to C according to [1] if and only if K is an enduring producer
of φ given C.

Proof Sketch. (=>) The proof involves showing that the primary
cause w.r.t a setting C is unique; this follows from Def. 13, the fact
that the trace is linear and thus there can be only one action α∗

and situation σ∗ on the trace s.t. D |= ¬φ(σ∗) ∧ φ(do(α∗, σ∗)) ∧
∀s′(do(α∗, σ∗) ≤ s′ ≤ σ) → φ(s′), and that the output of ρ is
unique. The rest of the proof involves constructing an enduring pro-
ducer that matches the causal chain, starting from the final situation
of the chain. This can be done by showing by induction on the length
of the causal chain that all (action,situation) pairs in the causal chain
are on the enduring producer, and showing that the sequence is max-
imal (i.e. it can’t be extended in the past). (<=) This case is similar,
but uses Prop. 2 to show an enduring producer is unique.

Consequently, our causes are equivalent to their causal chains.

Corollary 1. Given causal setting C = 〈D, σ, φ(s)〉, K is a causal
chain relative to C according to [1] if and only if K is an actual
achievement cause of C.

6 Discussion

Following Hume’s definition and motivated by the Lewis’s [26] pa-
per, there has been much work investigating the relationship be-
tween causality and counterfactual reasoning [31]. Researchers have
argued that reasoning about counterfactual worlds plays an indis-
pensable role when determining causation [32]. Experimental results
from psychology show that varying relevant counterfactual worlds
while keeping the actual world events fixed strongly affect partici-
pants’ causal judgments [8]. In contrast, keeping the counterfactual
worlds constant and varying how the actual outcome was brought
about much less influence their causal judgments. This demonstrates
that human causal judgments are indeed inextricably linked to coun-
terfactuals. Researchers have emphasized the close interrelation be-
tween causality and counterfactuals while studying causal responsi-
bility [24] and causation in legal and moral reasoning [23].

The HP Approach. Of particular note is Halpern and Pearl’s inspir-
ing work on actual causality. In [33], Pearl proposed a definition of
actual cause based on the notion of causal beams. An improved ver-
sion appeared in the first edition of Pearl’s book [34]. However, it
handled path switching examples incorrectly [37, 1]. As a remedy,
HP introduced their original definition in [17]. Counter examples by
Hopkins and Pearl [21] motivated the updated definition, which was
introduced in [18]. However, their updated definition did not agree
with intuition as was shown using counter examples by Hopkins [20],
Weslake [37], and others. To deal with this, the modified definition
was introduced in [20, 15]. Unfortunately, this latest definition also
has issues (see below). In the words of Halpern ([16], p.27) “The jury
is still out on what the ‘right’ definition of causality is”.

HP’s approach is based on the framework of Structural Equations
Models (SEM). An acyclic SEM model consists of an ordered set of
assignments processed top down, where each endogenous variable

on the left takes a value computed using a function. The function is
such that its arguments are values of other variables computed from
the preceding equations. The definition of actual cause is given using
interventions that allow the overriding of the values of some variables
to model counterfactuals. In [1], it is shown that SEM and interven-
tions can be formulated in terms of a basic action theory in the SC.

Due to lack of space we cannot go over the details of all three HP
definitions, but the technical details are well presented in [16, 37]
and elsewhere. However, we would like to discuss the modified defi-
nition [16], since it attempts to address the problems in the previous
definitions. Notice we do not argue against SEM approach in general.

Let U and V be the sets of exogenous and endogenous variables,
(M, V̄U ) be a causal setting, X be an endogenous variable, and VX

be the value of X , see [16] for details. The conjunction of primi-
tive events X̄ = V̄X , short for X1 = VX1 ∧ · · · ∧ Xk = VXk ,
is an actual cause in (M, V̄U ) of a HP query φ if all the following
conditions hold: 1. (M, V̄U ) |= (X̄ = V̄X) and (M, V̄U ) |= φ.
2. There exists a set W̄ (disjoint from X̄) of variables in V with
(M, V̄U ) |= (W̄ = V̄W ) and a setting V̄ ′

X of variables X̄ such
that (M, V̄U ) |= [X̄ ← V̄ ′

X , W̄ ← V̄W ]¬φ. 3. No proper sub-
conjunction of (X̄ = V̄X) satisfies 1, 2. The tuple 〈W̄ , V̄W , V̄ ′

X〉 is
called a witness to the fact that (X̄ = V̄X) is a cause of φ. Note that
in Item 2, according to (M, V̄U ) |= (W̄ = V̄W ), interventions that
set variables in X̄ to counterfactual values V̄ ′

X must set all variables
in W̄ to their actual values V̄W in the actual context. This means, ac-
cording to the modified definition, that if the set W̄ �=∅, then the val-
ues assigned to exogenous variables and/or the counterfactual values
V̄ ′
X cannot propagate downstream in the set of equations to influence

the values of W̄ and the values of those variables which directly or
indirectly depend on W̄ . Contrary to the constraints embodied in the
SEM, only selective propagation is allowed since values of variables
W̄ are fixed by the actual context. This is counter-intuitive since each
equation reflects a mechanism in a model. Hitchcock [19] labelled
such selective propagations explicitly nonforetracking counterfactu-
als. Hall [13] pointed out that the analysis of actual causation us-
ing non-actual worlds where the causal relations do not hold is non-
intuitive. Halpern acknowledges this, by calling such interventions
“miraculous” ([16], p.32), and introduces the notion of normality in
an attempt to minimize them.

To illustrate the problem with the modified definition, we use the
well known “bottle” example [12]. Suzy and Billy both pick up
rocks and throw them at a bottle. Suzy’s rock gets there first shat-
tering the bottle. Billy’s rock would have shattered it had it not for
Suzy’s. The story can be modeled using the following set of struc-
tural equations that uses 5 endogenous variables: ST := 1, BT :=
1, SH := ST,BH := BT ∧ ¬SH,BS := SH ∨ BH, where
ST, SH,BT,BH , and BS stand for Suzy throws, Suzy hits, Billy
throws, Billy hits, and bottle shatters. Note that, according to the
modified definition, ST is the cause of BS since taking a witness
BH := 0 (Billy did not hit) yields: (M, V̄U ) |= [ST ← 0, BH ←
0]¬BS. However, this reasoning is counter-intuitive. This counter-
factual is physically impossible and violates the model. Namely, if
ST := 0 (Suzy did not throw) and BT := 1 (Billy did throw), then
BH must be 1 according to the given equations, not 0. Notice also
that BS equals to BT ∨ ST ; so the conclusions of this definition
depend on the syntax. The underlying issue of this counter-intuitive
argument is in selective propagation of values from interventions to
the endogenous variables. We sidestep this conceptual problem with
the modified definition, since we propose a new definition of actual
achievement causes that avoids selective propagation altogether. To
see why the aforementioned issues are not a problem in our defini-
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tion, it is sufficient to notice that our basic action theory D is fixed
and therefore valuations such as ¬ST ∧BT ∧ ¬BH cannot occur.

In the following, we show how the bottle example can be formal-
ized in our framework. Here, we introduce two additional actions,
each representing a hit on the bottle. This abstracts away from the
time of throwing a rock and the duration after which it hits the bot-
tle.7 The actions in our formalization of the bottle example are thus
throws(p) and hits(p), where p is either Suzy or Billy. The pre-
conditions for these actions are as follows:

∀p, s. (Poss(throws(p), s) ↔ true),

∀p, s. (Poss(hits(p), s) ↔ thrown(p, s)).

There are two fluents, thrown(p, s), representing that person p
has thrown the rock in situation s, and broken(s), that the bottle is
broken in s. Their successor-state axioms are as follows:

∀p, a, s. thrown(p, do(a, s)) ↔ ( a= throw(p) ∨ thrown(p, s) ),

∀a, s. broken(do(a, s)) ↔ (∃p(a=hits(p)) ∨ broken(s) ).

Initially, the bottle is intact and no rocks have been thrown, i.e.
∀p.(¬thrown(p, S0)) and ¬broken(S0). Let us now consider three
causal settings 〈do(�α, S0), broken(s)〉, where �α can be as follows:

i. [throws(Suzy), throws(Billy), hits(Suzy), hits(Billy)],

ii. [throws(Billy), throws(Suzy), hits(Suzy), hits(Billy)],

iii. [throws(Billy), throws(Suzy), hits(Billy), hits(Suzy)].

By Definition 12, the causes relative to these settings are
{(throws(Suzy), S0), (hits(Suzy), S

i
2)}, {(throws(Suzy), Sii

1 ),
(hits(Suzy),Sii

2 )}, and {(throws(Billy), S0),(hits(Billy), Siii
2 )},

respectively. Here Si
2 = do([throws(Suzy), throws(Billy)], S0),

Sii
1 = do(throws(Billy), S0), S

ii
2 = do(throws(Suzy, Sii

1 )), etc.
Note that, as expected, Billy’s throw and subsequent hit is the cause
in the last causal setting where his throw hits the bottle first.

The INUS Condition. Interestingly, our new definition of actual
cause can be used to illustrate Mackie’s [27] account of Hume’s
regularity definition. Elaborating on Hume, Mackie proposed the
so called INUS condition, which postulates that A is a cause of
B if A is an Insufficient but Necessary part of a condition that
is itself Unnecessary but Sufficient for B. Put otherwise, A is a
cause of B if there exist X and Y such that (A ∧ X) ∨ Y is
both necessary and sufficient for B, but neither A nor X by itself
is sufficient to entail B. For simplicity, we present an argument
involving causes that consist of a single action-situation pair only,
or for that matter, primary causes. The argument for causes with
multiple action-situation pairs is similar. Let us illustrate the INUS
condition relative to our definition starting from right (S) to left
(I). First note that an enduring producer is Sufficient for causation.
This is because the existence of the enduring producer on the trace
guarantees causation. But it is Unnecessary for causation, since
other subsequent (preempted) actions could have brought about the
effect had the enduring producer not occurred.

Next, we will show that the actual cause itself is in some sense
an insufficient but necessary part of the enduring producer. To see
this, note that while a (primary) cause is a pair (α∗, σ∗), we use
the situation σ∗ only to uniquely identify which instance of action
α∗ is a cause, since the trace may include multiple occurrences of
α∗. In other words, if all actions had distinct names, we could have
ignored σ∗. Thus, a (primary) cause is essentially an action α∗ in our
framework, one that represents the Necessary part of our unnecessary
but sufficient condition (i.e. of the enduring producer). The action α∗

7 As can be seen above, Halpern and Pearl also abstracts away from the tem-
poral aspects by introducing variables BH and SH.

executed in σ∗ is necessary since the effect φ was false in σ∗, and φ
is achieved only after the execution of α∗ in σ∗. Finally, α∗ by itself
is Insufficient, since the execution of α∗ in some arbitrary situation
does not guarantee the achievement of the effect φ. Rather, α∗ only
achieves φ under some appropriate conditions, which in our case, are
captured by the situation σ∗.

Put another way, (A ∧X) can be understood as the enduring pro-
ducer, Y includes any subsequent (preempted) actions that occur on
the trace after the enduring producer, A is the action part of the en-
during producer, and X includes the conditions under which the ex-
ecution of the actions in the enduring producer achieve φ, namely
those that are captured by the situations on the trace where these ac-
tions are executed. Note that, we illustrate Mackie’s approach not
w.r.t general causality, but w.r.t actual causality. While the original
INUS definition was criticized because it does not deal with preemp-
tion, we avoid this problem by taking into account the order in which
actions occurred in the trace. For us, only the earliest actual enduring
contributing cause on the trace can be an actual cause. Therefore, the
actual cause could not have been preempted by another contributing
cause. Notice our illustration of Mackie’s proposal transcends criti-
cal comments in Section 10.1.4 of J. Pearl’s book [34].

Other Approaches. Our notions of contributors and producers re-
semble that of discussed in [3] and [12], but the connections end
there. In particular, our action framework, i.e. the SC, is much more
expressive than theirs. With this expressiveness, we encounter sub-
tleties that must be dealt with. For example, we now need to deal with
objects, preconditions of actions, and the non-persistence of fluents,
among other things. As effects are simply events in their account,
once they occur, they cannot “unoccur” again. On the other hand,
effects in the situation calculus are uniform formulae consisting of
fluents, and fluents can change their value depending on the situa-
tion. Thus, effects in our framework can be undone by other events,
and only the first “enduring” actual contributing cause can be consid-
ered as an actual cause. Although by incorporating a temporal order
on events into the equation, [3] made a positive step towards an ac-
ceptable solution (roughly by ensuring that the event that achieved
the effect is the earliest occurring one), their model of this is some-
what ad-hoc and relies on some unusual notions, e.g. that of time of
“occurrence” of an absent event, etc. On the other hand, we use a for-
mal language of action and change to define actual causation, where
timing (i.e., ordering) of actions or events is implicitly obtained from
the underlying situations; e.g. if S0 ≤ do(α, σ1) < do(β, σ2) ≤ σ,
then event α must have occurred before event β.

Previously, Hopkins and Pearl [22] attempted to capture counter-
factuals within the SC. However, they did not take preconditions of
actions into account. They did not define actual cause in their paper.

Recently, Bochman [5, 6] gave a definition of actual cause in the
causal calculus [4], a non-monotonic formalism introduced by Mc-
Cain and Turner [28] for reasoning about actions. His definition is
based on a causal version of the INUS condition, namely the NESS
condition [38]. While our definition of actual achievement cause can
informally illustrate Mackie’s approach, our definition is motivated
and derived from a very different perspective. Also, as we explained,
our definition cannot be reduced to any arbitrary INUS condition.
Rather, our actual cause is an appropriately selected INUS condi-
tion. Namely, this condition to be right must depend on the order and
occurrence of actions in the trace. On the other hand, the definition
given in [5] is based on the regularity approach, and it is, to quote
from [5], “a direct formalization of the NESS test”.

In [5] and [6], causation is defined between propositions. In con-
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trast, our ontology for causes and effects is different. Namely, our
causes are actions (or events) and effects are (uniform) formulae in
the situation calculus. Moreover, our framework builds on the more
expressive situation calculus with a standard first-order logic seman-
tics in contrast to propositional non-monotonic causal calculus in
[5, 6] that has a non-standard semantics. Therefore, unlike [5] and
[6], we can deal with effects formulated as quantified formulas. Fur-
thermore, we can compute causal chains in our framework using
one-step regression. It is not obvious how this can be done in the
non-monotonic causal calculus.

In [6], Bochman argued that actual causes can be defined with-
out appeal to counterfactuals, which are shown, using examples, to
have their limitations within the causal theories. As stated above, we
consider counterfactuals within the situation calculus, which has a
different ontology and expressiveness than causal theories. Whether
the limitations of counterfactuals mentioned in [6] also manifest in
other frameworks, including our approach, is an open question.

The event calculus [30] is another well-known formalism for rea-
soning about events and change. But since it does not include situa-
tions, and therefore the regression operator cannot be defined, it is not
clear how one can use the event calculus to replicate our approach.

7 Conclusion and Future Work

In this paper, we studied the intuitive properties that are necessary for
actual causes and conditions that are sufficient for the achievement
of an observed (possibly quantified) effect. We identify a property
that is both necessary and sufficient for actual achievement causes.
This lead to a new definition of actual achievement causes. We prove
that our new definition is equivalent to the one proposed by Batusov
and Soutchanski [1]. This shows that their foundational definition
of actual achievement causes can be understood in counterfactual
terms. Also, our definition can illustrate Mackie’s interpretation of
the regularity account. Thus, we contribute to the long standing de-
bate between the regularity and the counterfactual camps by giving a
definition that was derived using counterfactual analysis and that can
illustrate Mackie’s definition. In some sense, our paper contributes
towards the task of bridging the gap between these two camps. As in
[1], we focused on linear traces only. In the future, we would like to
study cases where the order of actions is given only partially.
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