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Weighted LARS for Quantitative Stream Reasoning

Thomas Eiter!

Abstract. We extend LARS, which is a recent stream reasoning
framework based on ASP, to weighted LARS (WLARS), where for-
mulae are interpreted as algebraic expressions over semirings. This
adds the ability to express quantitative measures of many different
natures and to approach respective reasoning problems such as prob-
abilistic reasoning, preferential reasoning and quantitative queries in
a uniform manner. Notably, well-known quantitative ASP extensions
can be formalized using wLARS, thus lifting them to the streaming
setting. We identify a relevant wLARS fragment that is equivalent
to weighted automata, which consequently gives us a rule-based lan-
guage for expressing behaviors of such automata. Furthermore, we
analyze evaluating wLARS formulae, showing that brave preferen-
tial reasoning is PSPACE- resp. X5 -complete in relevant settings.

1 Introduction

In recent years, there has been increasing interest in reasoning with
non-static data in streams, due to the need for handling data in large
quantities that is incrementally available and constantly changing
[13], with applications in many domains ranging from traffic mon-
itoring to public health [12]. The LARS framework [3] extends An-
swer Set Programming (ASP) with means to formulate complex re-
lationships over data streams by rule-based programs, in which data
snapshots (windows) are available as language elements. Evaluating
LARS programs under stable semantics yields answer streams where
rules derive a minimal amount of positive information that ensures
supportedness and handles recursion and non-monotonic negation.

However, answer streams may only be an intermediate result in
some contexts. Just like in ASP, we are interested in:

e probabilistic reasoning on the answer streams;

e preferential reasoning, i.e. considering only answer streams that
are most preferred w.r.t. some measure and ordering;

e quantitative questions (“At how many timepoints does o hold?”)
rather than only qualitative ones (“Does a hold at some timepoint?”).
All of these quantitative problems involve the specification of some
measure on the answer streams, which is then normalized, optimized
or simply evaluated depending on the problem at hand.

For ASP this fact is not commonly used. Instead the above prob-
lems are considered separately, in a multitude of different quantita-
tive extensions for probabilistic reasoning [2, 22], preferential rea-
soning [23, 8, 7] and quantitative queries [21, 11]. These extensions
are rather ad hoc, i.e., designed to solve a specific type of problem,
and relationships between them, like the one between LPMIN [28]
and weak constraints [8] are revealed in a posteriori analysis [22].
Also in the context of stream reasoning the formalisms PrASP [25]
and MTL with incomplete states [10] are designed to solve a partic-
ular type of problem, viz. probabilistic stream reasoning and stream
reasoning under incomplete probabilistic information, respectively.
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We follow a different strategy and propose a general formalism
that can be used to specify measures of many different natures on
streams, while using homogeneous syntax and semantics. Semirings
appear to be a suitable means for carrying out calculations that are
commonly needed for evaluating measures on streams or interpreta-
tions. These are structures R = (R, ®, ®, ea, eg) where intuitively
@ is addition and ® multiplication over a set R with neutral ele-
ments eg and eg, respectively. Calculations are modeled by alge-
braic expressions. We allow for expressions like o = Circus A 20 V
Restaurant A 15 in our LARS extension that use the syntax of for-
mulae and semantics of algebraic expressions to mix qualitative and
quantitative information. E.g., over the semiring (Q, +, -, 0, 1) of the
rational numbers, o may specify how much money is spent during
an evening. When visiting the Circus but not the Restaurant, the
semantics of avis given by 1 - 20 40 - 15 = 20.

Our main contributions are summarized as follows.

e We introduce weighted LARS (wWLARS), inspired by weighted
logics [14]. Here given a classical interpretation Z, a formula is not
assigned a truth value but evaluated as an algebraic expression over
a semiring R, resulting in a value from it (e.g. a real number, subset
of a set). Using wLARS formulae, one can intuitively specify calcu-
lations depending on the satisfaction of atoms in Z. There is no need
to resort to a meta-level, and one can keep using the LARS syntax to
specify measures. As the semiring is generic, there is no commitment
to a fixed set of operations.

e We show that the weighted formalism is interesting for ASP in its
own right by expressing the measures of well-known quantitative ex-
tensions of logic programming, viz. (a)ProbLog [11, 21] and LPMN
[22] in wLARS; for further extensions (e.g., P-Log [2], ASP with
weak constraints [8], asprin [7]) this is also possible. As a byproduct,
these formalisms are lifted to streams reasoning.

e We identify a fragment of wLARS that is as expressive as a frag-
ment of weighted monadic second order (MSO) logic, and thus by
[14] as expressive as weighted finite state automata. This general-
izes a similar result for LARS in [3] to the quantitative setting. Thus,
wLARS can be seen as a rule-based alternative to weighted automata
over words, and similarly to rational formal power series [15].

e While evaluating wLARS formulae can have unbounded com-
plexity, we identify settings where this is feasible in polynomial
space resp. tractable. Based on this, we show that preferential reason-
ing with wLARS is PSPACE- resp. 2%-complete in relevant settings.

2 Preliminaries

LARS [3] is a stream reasoning framework, in which the observed
data may vary between the different time points in the considered,
discrete interval. For our purposes the information whether certain
data is observed is encoded using propositional variables (aroms)
from a finite set .A. Interpretations of LARS formulae are formalized
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by streams S, which are pairs (T',v), where T' = {¢t,t + 1,...,t +
n} C N is the finite interval of discrete timepoints from ¢ to ¢t + n
andv : T — 2% expresses that at time ¢’ € T the atoms v(t') appear
in the stream. We say a stream S’ = (7", v") is a substream of S, if
T' CTandforallt’ € T': v'(#') C v(t'), denoted S’ C S.

Definition 1 (Window Function). A window function w given a
stream S and time point t restricts S to a substream w(S,t) C S.

Intuitively such window functions filter the data in a stream and
give a snapshot of the data, e.g. the data occurring in the last three
time points, or the latest 20 atoms.

LARS formulae are defined by the grammar
az=p|-alara|aVa|CalOa|Qua|B | >a,
where t € N, p € A and w is a window function. Here > is the
reset operator, which resets a stream S C S* obtained by applying
window functions(s) to the original stream S*. It allows for more

succinct program specifications.

We use the shorthands L :=p A —p, T := -l anda — § =
—aV B. A (pointed) LARS interpretation is a tuple Z = (S*, S, t) of
streams S* = (T*,v*), S = (T, v) and a time point ¢ € T™, where
S C S*. Satisfaction of a LARS formula « by Z, in symbols Z = «,
is inductively defined by

ITEp <~ peu(t),forpe A

7 = -« — Ika

IEaANf <<= ZIkFaandIl=p
ITEaVpf << ZIkEaoIEp

7 = Ca = HeT: (55t =a
7T E Oa = WeT:(S5t)Ea
ITkEQua <= ("5 t)Faandt €T
IE®H"a = (S, w(S1),t) Ea

7 Erva = (8,5 Ea«

We identify the pair (.5, t) with the LARS interpretation (S, S, t).

Definition 2 (LARS Program). A LARS program is a finite set II of
rules r of the form r = a < (3, where «, 3 are LARS formulae. We
write o and —3 as a shorthand for o <— T and 1 < [ respectively.

A rule r is satisfied at a time point ¢t by a stream S (written
(S,t) = m),if (S,t) = B — «. Programs are seen as the con-
junction of their rules; thus a stream S satisfies a program II at time
t (written (S, t) = 10), if for all r € IL, (S, ¢) = r holds.

We distinguish between extensional and intensional atoms con-
tained in .A° and A’ respectively. Extensional atoms represent the
input data (and therefore do not occur in rule heads).

Definition 3 (Data and Interpretation Stream). A data stream is a
stream D = (T, v) where v asserts only extensional atoms, i.e. V't €
T :v(t) C A°. A stream S = (T,v’) is an interpretation stream of
D, if D C S and v,v" agree on A°.

Finally, answer sets semantics is defined using the FLP-
reduct [17], which for a program IT w.r.t. a pair (S, t), is given by

I = {a+ B ell| (St) F B}

Definition 4 (Answer Stream). An interpretation stream S of D is
an answer stream for Il at t, if (S, t) satisfies I1 and no interpretation
stream S' C S of D exists s.t. (S',t) satisfies It We denote the
set of such streams by AS(I1, D, t).

We illustrate the basic usage of LARS using a running example.

Example 1 (Traveling). We know that a friend went on a journey,
which satisfies the following constraints:

e Travel from S to E while staying within a set of cities C.

o Only travel using transportation from the set T

o For the i*™™ trip we use 7, the i*® element of 7 € T™.

e Every trip changes the city.

If there were traffic jams in a city for the last three days our friend
does not leave the city using a bus.

We further know the cost Cost(c1, T, c2) of traveling between cities
c1 and co using transport T, which is co when one cannot travel be-
tween two cities using T. Given these constraints, we want to derive
as much information as possible about the journey of our friend.

We can design a LARS program 11 whose answer streams corre-
spond to the possible journeys of our friend, using the rules

= \/cﬁéchC ine, Aine,, OV, ccine, (1
OV Cost(eg t,09) =00 1er A (" Cing, ) A travel,,  (2)
OV, e ine A (B 0in,), 3)

(@™ OL Aing), Qping, 4)
- VCEC (EHSDtrafﬁc,jamc) A ing A travelpys. (5)

The rules (1) ensure that our friend is always in exactly one city. Rule
(2) enforces that one can not travel between certain cities. Accord-
ing to rule (3) every trip changes city. The window function next in
(3) gives us the stream restricted to the next timepoint or the empty
stream if there is no next time point. Therefore B**** O is similar to
a strong next operator - it can only be satisfied when there is a next
time point and o holds at it. The rules (4) take care of the starting
and end city. Here, B****Oq is similar to a weak next operator as it
is satisfied when there is no next time point or at the next time point
a holds. Rule (5) implements the last constraint using the window
operator B3, which restricts the stream to the last three timepoints.
The given sequence T, referred to by the program using travel, is
extensional, i.e. input data.

For more background on LARS and a study of properties see [3].

3 Weighted LARS

In a weighted LARS (WLARS) formula oo we allow as atoms besides
propositional variables also values from a semiring R. The seman-
tics [a]= (S, t) is not satisfaction but interpretation as an algebraic
expression over the semiring R.

Definition 5 (Semiring). A semiring R = (R,®,Q®,eq,eg) is
a nonempty set R equipped with two binary operations @ and ®,
called addition and multiplication, such that

e (R, ®) is a commutative monoid with identity element eg),

e (R, ®) is a monoid with identity element e,

o multiplication left and right distributes over addition, and

e multiplication by eq annihilates R, i.e. Y7 € R : 1 ® eq =
ep =eg Q.
R is commutative, if (R, ®) is commutative; if a unary operator

—():R—=R
resp. ()" : R\ {ep} = R

such that r®—r=eg

1

such that rr - =eg

exists, then @ (resp. ®) is invertible.
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Some examples of semirings are
o F = (F,+,-,0,1), for F € {N,Z,Q,R} the semiring of the
numbers in F with addition and multiplication,
e P(A) = (2*,U,n,0, A), the semiring over the powerset of A
with union and intersection,
e B = ({t,f},V,A, £, t), the boolean semiring, and
® Rirop = (QU {00}, min, +, 00, 0), the tropical semiring.
Semirings have already previously been successfully applied for
the definition of uniform semantics in applications ranging from
parsing [18] over provenance [19] to argumentation [6]. Inspired by
Droste and Gastin’s seminal work on weighted logics [14], we define
weighted LARS and add two new connectives =g, — .

Definition 6 (Weighted LARS Syntax and Semantics). A wLARS
formula over a semiring R = (R, ®, ®, eg, eg) is of the form

az=p|l-alaralaVa|Ca|la|Qa|BYa|ba

[k |a—=g ala—g a,

wheret € Nk € R, p € A and w is a window function. Further
L, T and — are defined as previously. The connective — ¢ requires
that © is invertible (® € {®, ®}).

Given a wLARS formula o over semiring R and a LARS interpre-
tation T = (S*, S, t) where S* = (T*,v*), S = (T,v),t € T, the
semantics of o w.r.t. L is given by

[K]=(Z) =k fork € R
pieca - {2 12210
[ale(@ = { & Tlele® 7o

[o A BI=(Z) = [a]=(T) © [B]=(Z)
[aV Bl=(T) = [a]=(Z) & [B]= (Z)
[©al=(T) = Buerlelr (5™, 5,1)
[[DO‘]]R(I) = ®t/€T HQHR(S*v 57 t/)
[@ra]=(T) = { Eﬂk(s*’ 0 o
[B*e]=(Z) = [e]= (5™, w(S, 1), 1)
[Pal=(T) = [al= (S, 57, t)
For non-commutative ® and T = {t, ..., t + n} we define

Ruer [E)=fH) @ ft+1) @ @ f(t +n).

If —g or —g are available, we define their semantics as

[a =e BI=(Z) = [B]=(T) ® —([e]= (1)),

(T) {EZHR(I) © ([e]=(@)™"  [olr(Z) # eo

Lo Pln(@) = [o]x(Z) = e

The semantics of (possibly negated) atoms is given by the neutral
elements eg, eg of addition and multiplication. This fits naturally,
as falsehood f corresponds to the neutral element of disjunction and
truth t to the neutral element of conjunction.

The usage of a —g b for the formula b A a’ is borrowed from
Heyting algebras [1] where the connective — has a similar role.

Observe that some equivalences from propositional logic do not
hold anymore. The following example shows that =—«a does not nec-
essarily have the same semantics as a:

Example 2 (Traveling cont’d). Consider the LARS formula $inp
over N the semiring of natural numbers. Then its semantics is the
number of time points that our friend is in Paris:

[Cinp]n(S, S,t) = Zt’eT,inpev(t) L=t eT |inp € v(t)}].

If we apply double negation, the semantics [-—<inp]n(S, S,t) is
equal to 1 if our friends visits Paris at least once and 0 otherwise.

In general the weighted semantics behaves differently than satis-
faction in LARS. However, we see that the weighted semantics is a
generalization of the classical LARS semantics: if we choose R = B
the value w.r.t. the weighted semantics corresponds to satisfaction for
unweighted LARS formulas.

Proposition 7. For every LARS formula o, it holds that
[e]e(S,t) =t < (S,t) E a.

We define LARS measures as a formal way of specifying quanti-
tative measures using wWLARS formulae on answer streams.

Definition 8 (LARS Measure). A LARS measure ;1 = (II, o, R)
consists of a LARS program 11, a wLARS formula o, and a semiring
R. The weight of an answer stream S € AS(I1, D, t) is

w(S, D,t) = [a]r(S,1).
For streams S ¢ AS(I1, D, t) we set (S, D, t) = eg.

Example 3 (Traveling cont’d). We fix an instance as follows:

e S = Hamburg, F = Amsterdam

e C = {Amsterdam, Hamburg, Paris} = {A, H, P},

e 7 = {Boat, Plane, Train} = {B,P, T}, 7 = (T, B, P)
e Cost(c1,B/P/T,c2) is given by

c1\c2 A H P
A 0/0/0 34/80/47 | 45/00/79
H 32/90/53 0/0/0 00/110/96
P 00/64/89 | 00/113/94 0/0/0

The cost of a specific journey can be expressed by a formula o over
the tropical semiring Rirop as follows:

a = D(Vcl,CQEC VTET O/Cl,CQJ' v EneXtDJ‘)7 where

! . t .
Oy en,r = travelr Aing, A B Oine, A Cost(cr, T, c2)

The formula o can only have a value unequal to eg, if the logical
“guard” travel. A ing, A EE“e"tOian is classically satisfied. This
illustrates how one can make algebraic expressions dependent on the
truth of atoms w.r.t. interpretations.

The LARS measure defined by . = (I1, &, Rirop) yields the money
spent by our friend or oo if the journey is invalid. E.g. for S = (T, v)
T=1{0,1,2,3}, v={0+~ {travelr,inu}, 1 — {travelg,ina},

2+ {travelp,inu}, 3 — 0},

we have (1(S, D1 B,p),0) = oo since S does not satisfy I1. Here

D7 = (T,vs) is the data stream encoding the sequence T, ie.

v=(t) = {inz, }. By changing v(3) to {ina }, we obtain

/’L(S7 D?v O) = HD(\/01’C25C V-reT a21y0217 \ BHDCXEDJ-)]]R(Sv 0)
= Zf:o min{ [, ¢, -7 (S,0) | c1,c2 €C, 7 €T}
=53+34+90 =177

Other quantitative questions we could answer are
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e q1: “How often was our friend in Paris?”

o qo: “What percentage of time was our friend in Paris?”

e g3: “How many cities were visited?”
using the measures p1 = (I1, Ginp, N), po = (I, 01 —g Oinp, R)
and pz = (II, 7=<inp V 7—=<Cing V =—<ina, N) respectively. The
formula $inp adds 1 for every time point at which inp holds, while
&1 similarly counts the number of time points. Their connection
Ol —g <inp in the po thus divides the number of time points in
Paris by the total number of time points. The double negations in
s are needed to get from the number of times a city was visited a
value in {0, 1} corresponding to whether the city ¢ was visited (i.e.,
[=Cinc]n = 1) or not (i.e., [-—<inec]n = 0).

We are not only interested in measures on answer streams but also
aggregates of such measures.

Definition 9 (LARS Measure for Data Streams). We extend the def-
inition of LARS measures to a data stream D and timepoint t via

w(D;t) == D{u(S; D,t) | S € AS(IL, D, t)}.

We can see LARS measures for data streams as weighted model
counting, where each model S has weight [o]=(S,t). Fora = 1
and R = Nwe get (D, t) = |AS(IL, D, t)|.

Example 4 (Traveling cont’d). Using the LARS measure (i in Exam-
ple 3 on data streams, we can obtain the minimum amount of money
spent on any valid journey. For the data stream DT B p),

M(D(T,B,P), O) = mln{u(S, D(T,B,P)7 0) | S S AS(H7 D7 O)}

Therefore, we obtain the minimum cost of all possible journeys using
T, which is 177 for 7 = (T, B, P).

3.1 Preferential Reasoning with wLARS

Given a strict partial order > defined on the set R of elements of
the semiring R, we can use any quantitative query defined by some
LARS measure p as the objective function w.r.t. which streams are
ranked in preference based reasoning.

Definition 10 (Preferred Streams). We say an answer stream S €
AS(I1, D,t) is a preferred stream w.rt. a LARS measure pn =
(I, &, R), data stream D, timepoint t, and strict order > on R, if

35" € AS(IL, D, t) : u(S’, D, t) > (S, D, t).

This allows for a natural generalization of common extensions of
ASP with preferences to the specific characteristics of LARS: asprin
[7] for instance allows for expressions like w : o« where formulae are
labeled and if the formula « is satisfied by an answer set Z, the qual-
ity of Z is reduced or enhanced by w. This is sufficient for ASP;
however in the context of LARS, new capabilities are needed: we
may want a formula « to be satisfied at as many timepoints as pos-
sible, which cannot be expressed using the asprin formalism. The
expressions w : Do or w : G« only approximate the desired prefer-
ence. Alternatively adding w: @Q;« for each time point is not pos-
sible, since the number of timepoints may vary. In wLARS we can
simply specify the weighted formula ¢ (——a) A w, which evaluates
to k - w where k is the number of timepoints at which « holds.

Furthermore, preferences w.r.t. multiple objectives are captured in
our approach natively:

Proposition 11. Assume that we have two LARS measures p; =
(I, avi, Ri), @ = 1,2 to optimize. Then the LARS measure

M1 X 2 2= <H7 (e®176€92) AoV (669176@2) Aoz, R1 X R2>

defines the corresponding multi-objective optimization. Here

Ri1 X Rz = (Rl X R27®7®5(669176@2)7(6@176@2))7
(T1,22) © (y1,92) = (1 O1 91,22 O242),0 € {D, ®}.

Example 5 (Preferred Traveling). Given the knowledge that our
friend likes Paris in addition to traveling cheaply, we assume that
he prefers trips that visit Paris as often as possible, while being as
cheap as possible. We therefore are interested in answer streams that
are Pareto optimal w.r.t. p1 = (I1, Oinp, N) and the LARS measure
w2 modeling the cost of a journey from Example 3. These are the pre-
ferred streams w.r.t. 1 X 2 and (D(T,B,p) ,0). Both answer streams
of I, i.e. S = (T, v) from Example 3 and S’ = (T, v") where

v' = {0 > {travelr,ing}, 1 — {travelp,ina},
2 — {travelp,inp},3 — {ina}},

are preferred since p1 x p2(S’, Dir,p,p),0) = (1,187), which is
incomparable to py x p2(S, D(r, g p),0) = (0,177).

4 Lifting other Formalisms

Besides defining native measures for streams, we can use our frame-
work to express extensions of ASP that implicitly use measures. This
is possible as ordinary ASP can be seen as a LARS program for a sin-
gle timepoint, i.e. T'={0}. Based on this, the extensions are lifted
to LARS, i.e., one can use them as known from ASP but in the con-
text of stream reasoning with LARS. Novel quantitative extensions
of ASP via semirings can be defined and lifted analogously.

4.1 ProbLog [11] and aProbLog [21]

ProbLog [11] is a prominent rule language for probabilistic query an-
swering, which has been generalized to Algebraic Prolog (aProbLog)
[21] to allow for queries over general commutative semirings. We
consider only aProbLog in detail, since the lifting of ProbLog fol-
lows from the subsumption of ProbLog in aProbLog [21].

In aProbLog over the semiring R = (R, ®,®, e, eg) exten-
sional atoms f € F and their negation — f are labeled with semiring
elements «(f),a(—f) € R respectively. The background knowl-
edge BK consists of Horn clauses that are unlabeled. The label of a
query q is then given by

A(q) = @1\:BKq Qe alf) ®f€F\Za(_‘f)' (6

Where Z =gk ¢ if Z C F and Z U BK & ¢. We can model such
labeled queries in our framework.

Proposition 12. Given a set F' of extensional facts labeled with el-
ements of a semiring R, a background knowledge BK, and a query
q, a wLARS formula aq over R and a LARS program Ilrpx de-
pending on F and BK are constructible s.t. the LARS measure
u = (Ir Bk, g, R) fulfills 1(Dy,0) = A(q), where Dy is the
data stream ({0},{0 — 0}).

Proof (sketch). The program Ilp gk contains for each definite
clause @ V =by V --- V =b, € BK the rule a < by, ...,b,. Fur-
thermore, for each extensional atom f € F' it contains the choice
modelled by the rules f «+ —f" and f' + —f. We set ay =
(=@) A Njep (f ANa(f) V =f Aa(=f)) . Here =g sorts out all
answer streams that do not satisfy g. The rest of the formula mod-
els the value of the given interpretation based on which extensional
atoms are satisfied. The sum over all interpretations in (6) is the sum
over all interpretation streams S of Dy in our framework. O



T. Eiter and R. Kiesel / Weighted LARS for Quantitative Stream Reasoning 733

4.2 LPMIN|[28]

LPMIN [28] assigns interpretations of logic programs a probability.
One considers a set of weighted rules

H:{wlle,...,wn:Rn}

where w; € R or w; = z and R; is a disjunctive rule. The weight
scheme of LPMN is the same as that of Markov Logic, i.e. the prob-
ability of a rule being correct is log-linear in its weight. If w; = =
the weight is interpreted to be arbitrarily large.

In the context of LPM™N_ one considers a different notion of stable
models: the reduct I17 of program II w.r.t. an interpretation Z is de-
fined as IIz = {R | w : R € II,Z = R}. The stable models of
IT are then the interpretations Z that are (classical) stable models of
IIz. Furthermore, the weight of a stable model Z is given by

Wit(Z) = [Lu:ren, exp ().
(Notably, 117 is easy to express in classical stable models.) Using this
definition of stable models also for LARS, one obtains:

Proposition 13. Given a set of weighted rules 11 we can specify a
WLARS formula o over the semiring R = (R[z],+,-,0,1) of the
polynomials with coefficients in the reals s.t. for the LARS measure
= (r(II), o, R), it holds that

M(SlvDQ)?O) = WH(I)7

where 7(I1) is the logical part of the P-log program 11, St =
({0},{0— 7}) and Dy = ({0}, {0 — 0}).

Proof (sketch). We choose @ = A per (- R A exp(w)) V -R.
The subformula =— R effects that the value exp(w) is only included
in the product if R is satisfied, otherwise =R and the whole term for
the given rule have value 1 and thus no effect on the product. O

In LPM™N one obtains a probability measure Prr over the set of sta-
ble models from the weight function W1 by normalizing and taking
the limit z — oo. We can simply replace Wiy by 1+ and normalization
by division by the aggregate p(Dy, 0):

PH(Z) = hmz%oo N(Sza D@a 0)/M(D®’ 0)

4.3 Further ASP Extensions

Some further ASP extensions expressible using wLARS are

P-log [2]: P-log is a well-known probabilistic extension of ASP,
where one can assign propositional variables different probabilities
depending on conjunctions of literals that are satisfied. Furthermore,
one intuitively can specify that a predicate takes a value following a
certain probability distribution (e.g. only one of dice(1), . . ., dice(6)
each with probability !/6). We can also express the measures defin-
able in this ASP extension (omitted due to space restrictions).

Weak Constraints [8]: Buccafurri et al. considered preferred an-
swer sets according to an order on the answer sets defined by con-
straints of different importance. A strong connection between LPM-N
and weak constraints was shown in [22]; as the measures in LPM™N
are expressible in wLARS, to no surprise we can specify for any
program with weak constraints a LARS measure and an order under
which the same answer sets are preferred.

asprin [7]: the asprin framework allows for the optimization of
sets {w; : «; | i = 1,...,n} of labeled formulae w.r.t. arbitrary
aggregates of the labels w; of the satisfied «; it subsumes most

approaches for preferential reasoning in ASP [7]. We are bound to
aggregates expressible by semiring operations; those mentioned in
[7], viz. union of sets, count of elements and sum of integers, are all
captured by weighted formulae over the semirings P(A), N, and Z
respectively. Using semirings also has benefits: it allows for complex
expressions beyond an aggregation. In asprin, one can specify orders
and define composite orders for multiple objectives. While wLARS
has access to arbitrary definable orders (any strict order is admissi-
ble), we do not provide a language for specifying orders.

5 Relation to Weighted MSO and Automata

Weighted (finite state) automata generalize finite state automata, just
like the weighted semantics for formulae generalizes the boolean se-
mantics. Instead of just accepting words like finite state automata,
weighted automata associate a weight over a semiring to words. In-
tuitively this defines a function from words to values in a semiring.

Definition 14 (Weighted Automaton). A weighted automaton A over
a finite alphabet A is a tuple (Q, \, 8, ), where (i) Q is a finite set
of states, (ii) A,y : Q — R map states to weights (elements) and
(iii) & : A* — R2*? a monoid homomorphism, for some semiring
R =(R,®,®,eg,ew). Its behavior is defined as

I A" = Row = @y greq AMa) @ 6(w)g.q @ (q).

Regarding the expressive power of LARS measures, we identify
here a fragment that can express the same functions as weighted au-
tomata. To this aim, we do not consider general window functions,
but only those definable in monadic second-order logic (MSO).

Definition 15. A window function w is MSO definable, if there ex-
ist MSO formulae ¢,(P, P’ 1),y (Ts, Te, %, T, ) S.t. for every
stream S = (T,v), w(T,v),t) = (T",v') and ts = minT,t. =
maxT,t, = minT’,t, = maxT’:

Su (P[], o (P'),t) holds iff o (P') = P[]
1/)w(t57t67 O’(I;),O’(Q?é),t) hOIds lﬁcO'(.T/S) = t;,o’(l’é) = tle

where for a valuation v, P[v] is the vector of monadic predicates
P,v]fora € A st ¥t € T': P[v](t') < a€v(t).

For example, the window functions used in the examples above
are all MSO expressible.

Furthermore, we disallow —¢ and —g and restrict negation —
to only occur in front of atoms p € .A. Since our proofs rely on
the commutativity of multiplication we only consider commutative
semirings in this section.

Example 6 (Traveling cont.). We can also model the minimum trav-
eling cost function using a weighted automaton. We choose the al-
phabet A = T, and use as states Q the cities C. We know the costs
0(T)ey,eo = Cost(cr, T, c2) of going by T from c1 to ca, which we
set to o0 when c¢1 = ca. Then the weighted automaton

A ={(Q, X, 6,7), where
o ={ 0 Ton aw={ 0

oo otherwise.
models the minimal traveling cost function. To obtain the minimal
cost, we use the semiring Rirop again: then transportation costs are
added and the aggregation step with @ chooses the minimum cost
of a journey from Hamburg to Amsterdam with transports 7:

[AN(T) = By,qreq Ma) @ (T, B, P))g.¢ @7(q)

ifg=A,

otherwise.
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= min §(T)u,q +0(B)g,y +(P)gr.a

7,94'€Q

=0(T)ua+0B)an+(P)aa =177

We have seen that one can model the minimum travel cost calcu-
lation both with LARS measures and with weighted automata. In the
following we show that generally, the expressivity of weighted au-
tomata is equivalent to that of a restricted class of LARS measures.

Theorem 16 (Reduction of Weighted Automata to LARS Measures).
Given a weighted automaton A over a finite alphabet A and semiring
R, there exists a LARS measure n = (I, a, R), s.t.

Vw € A" : [l All(w) = o m(w),
where T(w) maps words w to pairs of data streams and time points.

The above theorem is shown by constructing a program that has
as answer streams all possible paths through the weighted automaton
and a wLARS formula, whose semantics for a given answer stream
is the weight of the path. By summing over all answer streams, one
obtains then the behavior of the automaton on the given word.

We proceed to establish the other direction of encodability, by ex-
pressing LARS measures via restricted weighted MSO formulae,
which were shown to be equivalent to weighted automata [14]. In
such formulae, universal quantifiers are restricted to first-order vari-
ables. Furthermore, the semantics of the quantified formula may only
take finitely many values [14]. We define restricted LARS measures
analogously as LARS measures y = (I, o, R}, where Of can only
be a subformula of « if 3 takes finitely many values.

Theorem 17 (Reduction of LARS Measures to Weighted MSO). Let
(I1, o, R) be a restricted LARS measure over a semiring R. Then a
restricted weighted MSO formula ¥ over R is constructible, s.t.

VD, t: u(D;t) = [¥]r(a(D, 1)),

where o(D,t) = (o1(D,t),02(D,t)) s.t. o1 is the word that the
weighted MSO formula is interpreted over and o2 corresponds to the
assignments of free variables in V.

Proof (sketch). For the proof, we use the weighted MSO formula
¥ = 3JA.T(®r)(A) A f(). Intuitively the claim holds because:

— f(«) is a faithful translation of « to weighted MSO,

—3A is the sum over all interpretation streams S of D,

—®r(A) is a MSO formula, which is satisfied by A iff A corre-
sponds to an answer stream. It can be obtained by extending the re-
sult in [3] that given a LARS program II one can construct a MSO
formula that is satisfiable iff IT has an answer stream.

—T( .) is a translation to weighted MSO that preserves the boolean
semantics, due to [14]. O

Droste and Gastin [14] showed that restricted weighted MSO and
weighted automata are equally expressive; hence, it follows that also
restricted LARS measures and weighted automata are equally ex-
pressive. Notably, restrictedness is needed: the value 2171 of the for-
mula o = 002 over N is inexpressible by weighted automata [14].

6 Computation and Complexity

We first consider evaluating wLARS formulae, by encoding them
as weighted automata. This seems promising, as weighted automata
have polynomial data complexity when counting the arithmetic op-
erations. Unfortunately, any encoding is non-elementary in general.

Theorem 18. For every constant k, there is no translation of re-
stricted wLARS formulae of size n to weighted automata s.t. the size
of the automaton can be bounded by a function of the form exp(k),
where exp(0) = n, exp(k + 1) = 25P*),

This follows from Meyer and Stockmeyer’s result [27] that trans-
lating MSO to finite automata has non-elementary complexity. How-
ever, if we consider windows common in practice like time-based
windows and restrict rules to fragments like plain LARS [3], we can
obtain a translation from restricted LARS measures to weighted au-
tomata that can be bounded double exponentially.

Alternatively, we can evaluate WLARS formulae using a Turing
machine. For this we consider as in [3] window functions that can
be evaluated in polynomial time. We formally define the evaluation
problem as follows:

o EVAL-wLARS: given a wLARS formula « over a semiring R, a
stream S, a timepoint ¢ in S, compute the value of [a]r (S, t).

The complexity of this problem may grow arbitrarily depending on
the semiring and can be undecidable in general (unless R is ex-
plicitly represented, functions for the arithmetic operations are pro-
vided in the input). Beck et al. [3] showed that evaluating LARS
formulae is PSPACE-complete; thus PSPACE-hardness is a lower
bound for any non-trivial semiring. Semirings s.t. EVAL-wLARS
is FPSPACE(poly)-complete can be found, where FPSPACE(poly)
are the functions with polynomial output size computable by Turing
machines in polynomial space. In the next subsection, we present
restrictions that allow for efficient evaluation.

6.1 Efficiently Evaluable Fragments

The inefficiency of the evaluation of a weighted formula o under
some stream is due to the unrestricted use of quantifiers, i.e. O, ¢ in
a. If we bound the nesting depth of quantifiers, denoted gdepth(a),
by some constant k, we obtain that under reasonable restrictions on
the semiring, the time needed for evaluation of a formula given some
stream is polynomial in the size of the formula and the stream.

Definition 19 (Efficiently Encodable Semiring). Ler R = (R, ®,
®, eq, e ) be a semiring and e : R — N be an injective function s.t.
both e and e~ * are computable in polynomial time. Then R is effi-
ciently encoded by e iff there exists a constant C s.t. foranyr,v’ € R
and © € {®, ®} it holds that

logy(e(r © 1)) < log, (e(r)) +logy (e(r) + C, ()
log, (max(e(—r),e(r™")) < log,(e(r)) + C. (8)

Condition (8) only applies if ® or ® are invertible.

Furthermore, given e(r),e(r’) it must be possible to calculate
e(r ®r"),e(=r) and e(r™1) in polynomial time in the length of the
binary encoding of e(r), e(r").

The restriction on the encoding function is mild in practice, since
most practically used semirings, like Q, N, B, P(A), Rirop satisfy it.

Theorem 20 (Complexity of Evaluation I). Let R be a (fixed) semir-
ing that is efficiently encoded by e, and k € N (fixed). Then for any
wLARS formula o over R s.t. qdepth(a) < k, we can calculate
[a] = (S,t) in polynomial time in the size of « and S.

Proof (sketch). The proof is by structural induction on the formula
a, with the induction hypothesis that the time ¢(«) needed is in
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O(N"'(k“)), where N is the size of the input, n € N is a con-
stant that is not depending on the input and & = qdepth(«). Fur-
thermore, the size s(«) of the representation of the obtained value,
i.e. log,(e([a] = (S,1))),isin O(N - N*¥). 0

This result is as expected from LARS, where under similar restric-
tions one can perform model checking in polynomial time [3]. How-
ever the FPSPACE(poly)-membership does not seem to generalize
to arbitrary formulae. If we consider the formula ok = D\Z\k*12,
which is 2/71" when evaluated over N , we see that the binary repre-
sentation of the result has exponential size. Similarly, if we consider
the evaluation of LARS measures u(D, t) over data streams D, we
have to sum up exponentially many values p(S, D,t). Thus, effi-
cient encodability is not sufficient for FPSPACE(poly)-membership.
Hence, we consider encodings s.t. the summation behaves only
slightly worse than the sum over the natural numbers:

Definition 21 (Natural Addition/Multiplication). Let R efficiently
encoded by e. If some C' € N exists s.t. forall r,7’ € R

e(ror’) <e(r) +e() +C,
then e supports natural addition (multiplication) when ® = @ (®).

Having natural addition is a stronger restriction: while N, B,
P(A), Rerop satisfy it, it is an open question whether an encoding
that supports natural addition exists for Q.

Theorem 22 (Complexity of Evaluation II). Let R be a (fixed) semir-
ing that is efficiently encoded by e which supports natural addition,
and k € N (fixed). Then for any LARS measure . = (II, a, R) s.t.
qdepth(a) < k, stream S, data stream D and timepoint t, comput-
ing u(D,t) and p(S, D, t) are both in FPSPACE(poly).

Proof. Deciding S € AS(II, D, t) is feasible in PSPACE [3], and

II has at most Q‘AIHTl < 2N2 answer streams S for D, where N
k+1

is the size of the input. For each of them e(u(S, D, t)) € O(2V * ),

thus e(u(D, t)) € (’)(QNHS) as e supports natural addition; thus the
binary representation of e(u(.S, D, t) resp. e(u(D, t)) has size poly-
nomial in N. Furthermore, iterating over all S to compute e(u(D, t))
is doable in polynomial space. O

The problem is FPSPACE(poly)-complete in general. For restricted
classes of programs II or weighted formulae, we may end up with
problems that are complete for classes contained in FPSPACE(poly).
For example, when a=1 and R =N the evaluation of pu(D,t)
amounts to model counting of programs, which is #P-complete for
normal ASP programs and #coNP-complete for disjunctive ASP pro-
grams (as follows from results for #SAT resp. #CIRC [16]).

6.2 Preferential Reasoning

Given some LARS measure u = (II, o, R) with a strict partial order
> on R, we consider the following two problems:

e Preference Checking (PC): Given a stream S, LARS measure p,
data stream D and time ¢, check whether S is preferred.

o Brave Preferential Reasoning (BPR): Given a LARS measure p,
data stream D, time ¢t and an atomic formulae a check whether there
exists a preferred stream S such that (S, t) [ a.

We obtain the following results:

Theorem 23. Let R be a (fixed) semiring efficiently encoded by e,

> be a strict order on R s.t. 1 > r2 is decidable in polynomial time,
and k € N (fixed). Then for every LARS measure p = (I, o, R) s.t.
qdepth(a) < k (i) PC and BPR are PSPACE-complete. If moreover
every a + [ € 11 fulfills max(qdepth(«), qdepth(B)) < k, then
(ii) PC is 115 -complete and (iii) BPR is 3%-complete.

Proof (sketch). (i) PSPACE-hardness follows from the fact that al-
ready checking whether a stream is an answer stream is PSPACE-
hard for general LARS programs [3]. For PSPACE membership we
can use that we can iterate over all answer streams in PSPACE.

(il) Membership in TT5 can be shown by guessing S’ and checking
whether S’ € AS(I1, D, t) and p(S’, t) > (S, t). Hardness for I15
is shown by reduction from unsatisfiability checking of a disjunctive
program using a similar construction as in the proof of (i).

(iii) For membership in 3%, we can guess an interpretation stream
S for D which contains a and use a IT} oracle for (PC). Hardness for
X% is shown by a reduction from checking whether a QBF formula
of the form ® = 3XVY3Z : ¢(X,Y, Z) evaluates to true. O

BPR has a lower complexity, namely A%, when one considers only
pairs (R, >) such that efficient binary search is possible, as for BPR
in the presence of weak constraints [23].

7 Discussion and Conclusion

Our results about the encodability of weighted automata in a frag-
ment of WLARS and vice versa demonstrate not only the expressive
power of wLARS but also a convenient way of specifying the calcu-
lation of a weighted automaton. In contrast to the transition function
6 of a weighted automaton, which needs to encode both which words
are accepted and their corresponding weights, we have a clear sepa-
ration of the weighted and unweighted parts of the calculation. More
precisely, obtaining a weight has three steps:

1. specify which interpretations to consider using an unweighted log-
ical expression with answer set semantics, by LARS program II,

2. assign a value [a]r (S, t) to each of the solutions (.5, ¢), using a
weighted logical expression c, and

3. aggregate the solution values @SEAS(H,D,t) [a]= (S, ).

Regarding the usefulness of wLARS in practical applications, we
have seen in our travel scenario that we can answer different mean-
ingful questions using WLARS formulae. This also showed the
strengths of the framework: while quite diverse calculations may be
done, the flexible choice of the semiring allows for homogeneous
syntax to specify the measure. Furthermore, due to the specification
using logical connectives one can intuitively mix the parts of the for-
mula representing an algebraic expression and those that guard which
calculation is performed, based on the truth of atoms.

Related Work. Both in the context of ASP and stream reasoning
there exist quantitative extensions.

e ASP: We have seen that well-known quantitative extensions of ASP,
viz. LPM™N [28] and (a)ProbLog [11, 21] can be expressed in our
framework. The same can be done for P-log [2], ASP with weak con-
straints [8] and a considerable fragment of asprin [7]. There are how-
ever limitations to the quantitative measures we can express. Nilsson-
style probabilistic languages like PrASP [25], which fits both in the
context of stream reasoning and ASP, specify probabilities in an in-
direct manner and thus seemingly cannot be captured. General An-
notated Logic Programs (GALP) [20] have multi-valued interpreta-
tions and allow for the specification of values using arbitrary mono-
tone functions and for limited temporal reasoning (e.g. no window
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functions). Therefore, only fragments of wLARS can be expressed
in GALP and vice versa. Of the extensions mentioned above, some
aim for generality. In particular asprin is a very general framework
for preferential reasoning; one of LPM“"’s highlighted features is that
itis a “good middle ground language” between P-log and weak con-
straints [22]. The languages used for the specification of measures
in these approaches are however more restricted than ours: asprin
lacks complex expressions and LPMN only allows for measures over
the real numbers. There are other logic programming extensions that
make use of semirings, like Weighted Datalog [4] and Semiring-
based Constraint Logic Programming [5]; however they consider
non-boolean semantics for programs rather than measures on answer
sets of programs.

e Stream Reasoning: Quantitative Regular Expressions [24] allow
for arbitrary sets of operations in structured stream processing, lead-
ing to more involved algebraic expressions in more complex syntax.
These measures are more expressive than the ones in our framework
but also come with more involved syntax and semantics. de Leng and
Heintz [10] concerned themselves with approximate stream reason-
ing, given probabilistic input data. The conditional probability mea-
sures can be modeled as a ratio between two LARS measures. The
only quantitative stream reasoning formalisms with answer set se-
mantics we are aware of are PrASP and GALP, mentioned above.

Future Work. Given the lifting of well-known quantitative exten-
sions of ASP to LARS, we consider wLARS to be a promising tool
to formally describe quantitative extensions. Especially in the con-
text of preferential reasoning wLARS leads to a natural generaliza-
tion. We aim to lift more formalisms and to design novel quantitative
extensions using wLARS. This includes considering quantitative ex-
tensions that do not concern themselves with reasoning from the set
of answer streams but also quantitative extensions that change how
one can specify which atoms are true in an answer stream (e.g. weight
constraints [26]). We further plan to define a weighted variant of an
alternative stream reasoning framework,viz. temporal ASP due to [9]
and compare it to WLARS. Last but not least, a more detailed com-
plexity analysis of wLARS and LARS measures depending on the
type of semirings and an implementation are on our agenda.
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