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Abstract. Ontology-mediated query answering is a paradigm that
seeks to exploit the semantic knowledge expressed in terms of on-
tologies to improve query answers over incomplete data sources. In
this paper, we focus on description logic ontologies, and study the
problem of explaining why an ontology-mediated query is entailed
from a given data source. Specifically, we view explanations as min-
imal sets of assertions from an ABox, which satisfy the ontology-
mediated query. Based on such explanations, we study a variety of
problems taken from the recent literature on explanations (studied
for existential rules), such as recognizing all minimal explanations.
Our results establish tight connections between intractable explana-
tion problems and variants of propositional satisfiability problems.
We provide insights on the inherent computational difficulty of de-
riving explanations for ontology-mediated queries.

1 INTRODUCTION

Ontology-mediated query answering (OMQA) [35, 9] emerged as a
sophisticated paradigm for accessing low-level data sources through
a high-level logical theory (i.e., ontology). The idea is to encode
background knowledge of an application domain in the form of an
ontology, through which additional information (beyond the mere
facts given in the data source) can be deduced. Extending the ca-
pabilities of data sources by allowing for a more complete set of an-
swers to user queries, OMQA has become one of the focal points of
research in knowledge representation and reasoning.

Description logics (DLs) [5] constitute a family of logic-based
knowledge representation languages, which are commonly used to
formulate ontologies. In the context of DLs, high-level domain
knowledge is encoded into the TBox (i.e., ontology), and low-level,
assertional knowledge is encoded into the ABox (i.e., data source).
OMQA relative to the languages in the DL family is extensively stud-
ied, and it is well-understood. This theoretical understanding is sup-
ported by the various systems that have been developed to support
OMQA in practice [44, 1].

Arguably, one of the most appealing aspects of logical reason-
ingis being able to explain the logical entailments. Having an unam-
biguous semantics, ontological knowledge can be interpreted, and its
entailments can be explained relative to the axioms from the TBox
and/or the assertions from the ABox. Explainability is an essential
ingredient of various application domains, and so it has been widely
investigated in DLs, though under different names such as justifica-
tions, abduction, and axiom pinpointing, as we outline next.
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The study of explanations in DLs dates back to [32, 10], where an
explanation for a given subsumption is viewed as a proof with respect
to the underlying proof calculi. A large of body of work provides ex-
planations for subsumptions [25, 4, 41, 39], where an explanation
is defined as a minimal subset of TBox axioms that suffices for the
subsumption to be derived. This approach is sometimes called axiom
pinpointing [4, 39, 34], as the task is to pinpoint a set of TBox ax-
ioms that are minimal and sufficient to entail the subsumption. The
minimal set of axioms is commonly called justifications [25, 41]. Jus-
tifications are also essential for debugging unsatisfiable classes and
contradictions; see, e.g., [38, 26] for explaining concept unsatisfiabil-
ity, and [24] for explaining inconsistency. Various types of justifica-
tions were introduced in the literature depending on different notions
of semantic minimality [23].

From a broader perspective, all these approaches can be viewed as
a form of logical abduction, but all the works noted so far focus on
the standard TBox reasoning tasks, such as subsumption checking
and concept (un)satisfiability. Klarman et al. present a study based
on ABox abduction [28], where the idea is to view explanations as
sets of assertions, but differently from axiom pinpointing, the core
aim is to explain non-entailments of instance queries. That is, given
a non-entailment, the abduction task is to find a minimal set of (ad-
ditional) facts such that, when the given ABox is extended to in-
clude these facts, the entailment holds [28]. An analogous study has
been conducted by Calvanese et al. [14] for conjunctive queries, and
for the DL-Lite family, where for a given a negative query answer
(i.e., a non-entailment), the goal is to identify additions to the ABox
that will ensure entailment. Despite the extensive research on ex-
planations, the only work that provides explanations for (positive)
ontology-mediated query answering in DLs is given for DL-Lite [11],
where a polynomial-time algorithm for constructing explanations for
ontology-mediated queries (OMQs) is presented.

In this work, we conduct a systematic study for explaining OMQA
in order to close this gap. Note that a thorough study for explain-
ing query entailments relative to existential rules has recently been
given [16]: Briefly, given an OMQ, a minimal explanation, called
MINEX, is defined as a minimal subset of facts from the database
(or ABox) that entails the OMQ, while no strict subset of it does
so. Based on this notion, several decision problems from the axiom
pinpointing literature [34] are adapted to facilitate OMQA systems
with explanations. These problems include the decision versions of
identifying a minimal explanation (IS-MINEX), finding all minimal
explanations (ALL-MINEX), finding all explanations that contain
some distinguished fact (MINEX-REL), and finding all explanations
that do not contain a set of forbidden facts (MINEX-IRREL).

We study these problems in the context of DLs towards providing
a more complete picture of explanations for OMQA. For each expla-
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Table 1: Syntax and semantics of concept descriptions (top), TBox axioms
(middle), and ABox assertions (bottom) for DLs.

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
negation (C) ¬C ΔI \ CI

intersection C �D CI ∩DI

union (U ) C �D CI ∪DI

existential restriction ∃r.C {
a | ∃b ∈ CI .(a, b) ∈ rI

}

universal restriction ∀r.C {
a | ∀b ∈ CI .(a, b) ∈ rI

}

nominal (O) {a} {
aI

}

at least restrictions (Q) ≤n r.C {d | #{e | (d, e) ∈ rI} ≤ n}
at most restrictions (Q) ≥n r.C {d | #{e | (d, e) ∈ rI} ≥ n}
role inverse (I) r− {(b, a) | (a, b) ∈ rI}

TBOX AXIOMS

GCI C � D CI ⊆ DI

role inclusion (H) r � s rI ⊆ sI

transitivity axiom trans(r) rI = (rI)+

ABOX ASSERTIONS

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

nation problem, we conduct a detailed complexity analysis, relative
to a wide range of OMQs. More specifically, we allow queries in the
form of instance queries, or unions of conjunctive queries, which are
coupled with ontologies formed in a DL that ranges from the light-
weight DL-Lite and EL to expressive fragments such as SHIQ. In
our data complexity analysis, we show that all these problems are
tractable for DL-Lite and DL-LiteR. Other tractability results in data
complexity are given for EL, ELI, and Horn-SHOIQ, for the prob-
lem of identifying minimal explanations. All the other results in data
complexity confirm the hardness of deriving explanations, as we al-
most always observe an increase in the complexity in comparison to
the complexity of OMQA. Our combined complexity analysis is less
surprising in that the complexity is typically dominated by the com-
plexity of OMQA, but in some cases (as we will highlight), we also
observe an increase in the complexity. Detailed proofs are deferred
to an extended version of this paper.

2 PRELIMINARIES

In this section, we give an overview of description logics, and ontolo-
gy-mediated query answering, and provide the necessary computa-
tional complexity preliminaries relevant to our study.

2.1 Description logics

DLs are a family of knowledge representation languages, widely
used in forming ontologies [18, 17]; they comprise prominent lan-
guages for ontology-mediated query answering.
Syntax. A vocabulary of a DL L consists of three countably infinite,
pairwise disjoint sets of symbols: the set NI of individual names, the
set NC of concept names, and the set NR of role names. The build-
ing blocks of the DL syntax are individuals that represent concrete
objects, concepts that represent sets of objects, and roles relating ob-
jects to objects via binary relations. DL concepts are built inductively
from concept and role names, using the constructors given in Table 1.

DL-Lite

DL-LiteR

EL

ELI ELH ALC

SHALCHQALCI

SHIQ

Horn-SHOIQ

Horn

Figure 1: Semantic relationships between the DLs considered in this paper,
where each arrow represents a language inclusion.

Knowledge base. Concepts are then used to form the axioms and
assertions of the respective language, which are in the form of gen-
eral concept inclusions (GCIs), role inclusions, transitivity axioms,
concept assertions, or role assertions as given in Table 1. A TBox
axiom is a GCI, a role inclusion, or a transitivity axiom. An ABox
assertion is either a concept assertion, or a role assertion as shown
in Table 1. Finally, a TBox, or an ontology, is a finite set of axioms,
an ABox is a finite set of assertions. Then, a knowledge base is a pair
K = (T ,A), where T is a TBox, and A is an ABox.
Semantics. The semantics of DLs is given in terms of interpreta-
tions. An interpretation I is a pair

(
ΔI , ·I

)
of a non-empty inter-

pretation domain ΔI and an interpretation function ·I . This function
assigns to each individual name a ∈ NI an element aI ∈ ΔI , to each
concept name A ∈ NC a subset AI ⊆ ΔI , and to each role name
r ∈ NR a binary relation rI ⊆ ΔI × ΔI . Interpretations are then
extended to arbitrary concept descriptions, axioms, and assertions as
shown on the right-most column of Table 1.

An interpretation I is a model of a TBox T , denoted I |= T , if it
satisfies all the axioms in T . Similarly, I is a model of an ABox A,
denoted I |= A, if it satisfies all the assertions in T . Finally, I is a
model of a KB K = (T ,A), denoted I |= K, if I |= T and I |= A.
Overview of the DL family. In the scope of this work, we consider a
variety of different DLs that are all well-known in the literature. The
DL ALC allows for GCIs as TBox axioms, and the concept language
of ALC allows only for the constructors top, bottom, negation, con-
junction, disjunction, existential, and universal restrictions. The DL
S extends ALC with transitivity axioms. The letters H, I, Q, and O
denote role inclusions, inverse roles, qualified number restrictions,
and nominals, respectively. Depending on what is allowed in the lan-
guage, we obtain a variety of DLs, such as the very expressive DL
SHOIQ, which allows all the constructors given in Table 1.

The DL EL is a sub-logic of ALC which only allows the construc-
tors top, conjunction, and existential restrictions. The DL DL-Lite
allows axioms of the form B � C, where B and C are concepts that
are defined as follows:

B := A | ∃r.� | ∃r−.�, C := B | ¬B.

The DL DL-LiteR also allows a restricted type of role inclusions.
For further details, we refer the reader to the relevant literature [5, 3].
Figure 1 summarizes the language inclusions between these DLs.

2.2 Ontology-mediated query answering

Ontology-mediated query answering generalizes the query answer-
ing task by incorporating knowledge in terms of an ontology. For-
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Table 2: Complexity of OMQA relative to different DLs.

Description Logic
IQ UCQ

data comb. data comb.

DL-Lite, DL-LiteR ≤ AC0 NL ≤ AC0 NP
EL, ELH P P P NP
ELI, Horn-SHOIQ P EXP P EXP

ALC, ALCHQ CONP EXP CONP EXP

ALCI, SH, SHIQ CONP EXP CONP 2EXP

mally, an ontology-mediated query is a pair (Q, T ), where Q is a
query, and T is an ontology. Given an ABox A and an OMQ (Q, T ),
we say that A entails the OMQ (Q, T ), denoted A |= (Q, T ), if for
all models I of the knowledge base (T ,A), we have that I |= Q.
Ontology-mediated query answering is the task of deciding whether
A |= (Q, T ) for a given ABox A and an OMQ (Q, T ).

We focus on two classes of queries, namely, instance queries (IQs)
and unions of conjunctive queries (UCQs). An instance query (IQ) is
an assertion C(a), where C ∈ NC and a ∈ NI. A conjunctive query
(CQ) is a formula ∃XΦ(X,Y), where Φ(X,Y) is a conjunction of
expressions of the form C(t1) or r(t1, t2), where C ∈ NC, r ∈ NR,
and ti is an individual or a variable. The variables in X are called
quantified, and in Y free. A union of conjunctive queries (UCQ) is a
disjunction of CQs. In this work, we focus on Boolean queries. Such
queries have no free variables, that is, Y = ∅.

We write OMQA(Q,L) to refer to the problem of OMQA, where
the query language Q can be instantiated either with IQs, or with
UCQs, and L can be instantiated with a DL. We write L-TBox to
denote the class of TBoxes that can be formed in the DL L.

2.3 Complexity background

In our complexity analysis, we make the standard assumptions [42].
Specifically, the combined complexity of OMQA is calculated by
considering all the components as part of the input, i.e., the ABox,
the TBox, and the query, and the data complexity is calculated by
considering only the ABox as the input, i.e., everything else is as-
sumed to be fixed.

The relations between the complexity classes that are most rele-
vant for our analysis are given as follows:

AC0 ⊆ NL ⊆ P ⊆ NP, CONP ⊆ DP ⊆ ΣP
2 ,Π

P
2 ⊆ EXP ⊆ 2EXP.

The complexity of query answering in DLs considered in this paper
is presented in Table 2.

3 EXPLAINING QUERY ENTAILMENTS

We define the notion of a minimal explanation for a given OMQ rel-
ative to an ABox A, as in earlier work [16]. Assuming the OMQ
is entailed, we view minimal subsets of the ABox as explanations,
provided that these sets are sufficient to entail the OMQ.

Definition 1 (MINEX). Let A be an ABox and (Q, T ) be an OMQ
such that (T ,A) is consistent. An explanation for (Q, T ) in A is a
subset E ⊆ A such that E |= (Q, T ).

A minimal explanation E , or MINEX, for (Q, T ) in A is an expla-
nation for (Q, T ) in A that is subset-minimal for (Q, T ), i.e., there
is no proper subset E ′ � E that is an explanation for (Q, T ) in A.

part1 part2 part3

part4 part5 part6 part7

overheat

leakage

non-ignition

Figure 2: Illustration of possible faults in different parts of a system.

We say that E is a MINEX for (Q, T ) if the ABox A is clear from
the context. Importantly, this definition assumes the initial knowl-
edge base to be consistent, which is not explicit in the definition of
earlier work [16], but it is implied, since that work focuses on exis-
tential rules without any negative constraints.

The choice of consistency of the initial knowledge base helps us to
identify the complexity of recognizing explanations more precisely.
More specifically, as (T ,A) is assumed to be consistent, for any sub-
set B ⊆ A, the knowledge base (T ,B) is also consistent. This holds,
as every model of (T ,A) is also a model of (T ,B). In particular,
(T , E) is consistent for any candidate MINEX E for (Q, T ) in A.

MINEXS are tightly connected to minimal hitting sets, and there-
fore can be applied in a variety of fields [21], including, computa-
tional biology [16, 27], data mining [13], and model-based fault di-
agnosis [36]. Our running example is a fault diagnosis problem.

Example 2. Suppose we have an engine that might experience a
number of possible failures, each caused by a fault of one of the con-
stituent parts, presented in Figure 2. We can encode fault diagnosis
as follows. We define an ABox A = Afaults ∪ Ast , where the first
component of the ABox encodes the parts that may fail:

Afaults = {Fault(part i) | 1 ≤ i ≤ 7}.

The second component of the ABox encodes causes of failures:

Ast = {caused(overheat , part i) | i ∈ {1, 2, 3}}∪
{caused(leakage, part i) | i ∈ {2, 3, 5, 6}}∪
{caused(non-ignition, part i) | i ∈ {4, 5}}.

The TBox consists of a single axiom that expresses that, if a part
failed, it causes the corresponding failures:

T = {∃caused .Fault � Failure}.

The query asks for a minimal set of faults that explains the observed
failures together with the structural facts of the engine:

Q =Failure(overheat) ∧ Failure(leakage)∧

Failure(non-ignition) ∧
∧

ψ∈Ast

ψ.

Any MINEX for (Q, T ) in A is a minimal subset of Fault con-
cepts, together with all assertions in Ast , that lead to overheat ,
leakage , and non-ignition . In particular, MINEXS for (Q, T ) in
A correspond to minimal covers of the graph in Figure 2.

4 DECISION PROBLEMS FOR
EXPLANATIONS

In the following, we introduce the key decision problems for our
study. We investigate four different problems, namely, recognizing
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whether a set is a MINEX, recognizing if a set contains all MINEXS,
deciding if a fact is contained in some MINEX, and deciding if there
is a MINEX that does not contain any forbidden set.

4.1 A minimal explanation

A fundamental problem related to minimal explanations is the prob-
lem of recognizing a MINEX.
Problem: IS-MINEX(Q,L)
Input: An ABox A, an OMQ (Q, T ), and a subset E ⊆ A, where
(T ,A) is consistent, Q is a query from the class Q, and T is an
L-TBox.
Question: Is E a MINEX for (Q, T ) in A?

Let us illustrate IS-MINEX on our running example.

Example 3. Consider the ABox A from the running example, and
the following subsets of it:

E1 = {Fault(part2),Fault(part5} ∪ Ast ,

E2 = {Fault(part1),Fault(part4),Fault(part6)} ∪ Ast ,

E3 = {Fault(part1),Fault(part4),Fault(part5)} ∪ Ast , and

E4 = {Fault(part4),Fault(part6)} ∪ Ast .

Note that E1 and E2 are MINEXS for (Q, T ) in A, while E3 and
E4 are not. E3 is not a MINEX for (Q, T ) in A, since its subset
{Fault(part1),Fault(part5)} ∪ Ast entails (Q, T ), and so E3 is
not minimal. E4 is not a MINEX for (Q, T ) in A, as E4 �|= (Q, T ).

The generic approach for solving IS-MINEX [16] also applies
here: To ensure that a set E is a MINEX for the OMQ, we need
to check that it entails the query (which can be done in C), and that
it is minimal. The latter can be done by checking whether removing
any single assertion from E would invalidate the OMQ, and hence
with |E| number of co-C checks. So, we state the following corollary
to [16, Theorem 4].

Corollary 4. IS-MINEX(Q,L) can be decided by a single C check,
and a linear number (in the size of data) of co-C checks, where C is
the complexity of OMQA(Q,L).

Corollary 4 covers all the membership results shown in Table 3.
For example, if C = AC0, we need a single AC0 and a linear number
of co-AC0 checks to solve IS-MINEX(Q,L). Since AC0 is closed
under complement, we have that a linear number of AC0 checks
is sufficient. They can be combined with an AND gate to obtain
an AC0 circuit (i.e., fixed depth and polynomial size) that solves
IS-MINEX(Q,L).

If, on the other hand, C = CONP, we can encode a linear num-
ber of CONP checks as a single CONP check. To see that, note that
we can solve the complement problem in NP, as we can combine
linearly many NP-certificates as a single NP-certificate of polyno-
mial size in the size of the input. Therefore, we can conclude that
IS-MINEX(Q,L) is in DP = NP ∧ CONP in this case. Other mem-
bership results follow by analogous arguments.

We proceed with the hardness results, presented in Table 3, which
are novel. First, we show that OMQA(IQ, ELI) can be reduced
to IS-MINEX(IQ, ELI) in data complexity, and thus recognizing a
MINEX is not easier than OMQA. In this reduction, we replace each
role assertion by two role assertions and introduce reachability type
axioms to the TBox to force each MINEX to contain all assertions
from the constructed ABox. Thus, an ABox entails an OMQ iff the
extended ABox is a MINEX for the OMQ. The combined complexity
results borrow ideas from this data complexity reduction.

Table 3: Complexity results for IS-MINEX(Q,L).

Description Logic
IQ UCQ

data comb. data comb.

DL-Lite, DL-LiteR ≤ AC0 ≤ P ≤ AC0 DP

EL, ELH ≤ P P ≤ P DP

ELI, Horn-SHOIQ P EXP P EXP

ALC,ALCHQ DP EXP DP EXP

ALCI,SH,SHIQ DP EXP DP 2EXP

Theorem 5. IS-MINEX(IQ, ELI) is P-hard in data complexity, and
EXP-hard in combined complexity. IS-MINEX(UCQ,ALCI) and
IS-MINEX(UCQ,SH) are 2EXP-hard in combined complexity.

It is unclear whether IS-MINEX(IQ, EL) is also P-hard in data
complexity, so it is open whether Theorem 5 can be strengthened in
this direction. This is so, because our proof heavily relies on inverse
roles to enforce all ABox assertions to be included in the minimal
explanation, which is necessary for IS-MINEX to simulate OMQA.
It is unclear whether a similar simulation can be obtained in EL.

EXP-hardness of IS-MINEX(IQ, ELI) in combined complexity
is immediate given the data complexity reduction, and implies lower
bounds for (IQ, Horn-SHOIQ), (IQ, ALCI), and (IQ, SHIQ)
due to language inclusions. 2EXP-hardness of IS-MINEX(UCQ,
ALCI) and hence of IS-MINEX(UCQ,SHIQ) follow by a slightly
modified proof. The proof for IS-MINEX(UCQ,SH) requires a fur-
ther modification due to the lack of inverse roles in SH, but we make
use of the UCQ and the role inclusions to obtain the result.

All the remaining P- and EXP-hardness results from Table 3 are
covered by the following result.

Theorem 6. IS-MINEX(IQ, EL) is P-hard; IS-MINEX(IQ, ELU)
is EXP-hard in combined complexity.

We reduce from subsumption checking in EL and ELU to
IS-MINEX(IQ, EL) and IS-MINEX(IQ, ELU), respectively. Theo-
rem 6 also implies lower bounds for IS-MINEX(IQ,ALC).

Our next result covers all DP-hardness results for IS-MINEX in
data complexity, and is arguably the most interesting result of this
section. This result is a consequence of CONP-hardness of OMQA
in ALC in data complexity, and therefore differs from the data com-
plexity results obtained for existential rules.

Theorem 7. IS-MINEX(IQ,ALC) is DP-hard in data complexity.

Proof sketch. The reduction is from the DP-complete problem IS-
MUS [33] to IS-MINEX(IQ,ALC) in data complexity. The prob-
lem IS-MUS asks if a 3CNF φ is a minimal unsatisfiable formula
(MUS), that is, φ is unsatisfiable, but removing any clause renders φ
satisfiable. Note that IS-MUS is close in nature to IS-MINEX.

We encode φ in the ABox Aφ as follows. For each clause cj
with i negative literals, we add a fact Ci(cj) to Aφ, and, for each
i ∈ {1, 2, 3}, add a fact rpi(cj , xk) or rni(cj , xk) to encode that xk

appears as a positive or a negative literal in cj in the ith position, re-
spectively. We further add assertions Tau(τ) and r0 (τ, xk) for each
variable xk in φ, which are needed to establish the correspondence
between minimal unsatisfiability and minimal explanations.

The TBox Tφ captures the satisfiability of φ. It asserts that in each
clause cj at least one literal has to be satisfied. It also ensures that if
some variable is assigned both values true and false, then Unsat(τ)
holds. We take the query to be Unsat(τ). Then, Unsat(τ) is entailed
if there is no satisfying assignment to φ. This construction ensures
that Aφ is a MINEX for (Unsat(τ), Tφ) iff φ is a MUS.
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Table 4: Complexity results for ALL-MINEX(Q,L).

Description Logic
IQ UCQ

data comb. data comb.

DL-Lite, DL-LiteR ≤ P ≤ P ≤ P DP

EL, ELH CONP CONP CONP DP

ELI, Horn-SHOIQ CONP EXP CONP EXP

ALC,ALCHQ ΠP
2 EXP ΠP

2 EXP

ALCI,SH,SHIQ ΠP
2 EXP ΠP

2 2EXP

It remains to show the DP-hardness results in combined com-
plexity for light-weight DLs. We reduce from 3COL-NONCOL of
determining whether one graph is 3-colourable and another not 3-
colourable to IS-MINEX(UCQ,L). We encode the two graphs into
the query and the allowed colourings of the edges into the ABox. Our
result applies to any DL, as it is shown relative to an empty TBox.

Theorem 8. IS-MINEX(UCQ,L) is DP-hard in combined com-
plexity for any DL L.

This concludes the results given in Table 3, and our analysis for
IS-MINEX.

4.2 All minimal explanations

Another important problem related to MINEXS is the problem of
recognizing the set of all MINEXS.

Problem: ALL-MINEX(Q,L)
Input: An ABox A, an OMQ (Q, T ), and a set E ⊆ P(A) of subsets
of A, where the query Q is from the class Q, and T is an L-TBox.
Question: Is E precisely the set of all MINEXS for (Q, T ) in A?

Example 9. In our example, the set E of all MINEXS for (Q, T ) in
the ABox A is

E =
{
{Fault(part1),Fault(part4),Fault(part6)} ∪ Ast ,

{Fault(part1),Fault(part5)} ∪ Ast ,

{Fault(part2),Fault(part4)} ∪ Ast ,

{Fault(part2),Fault(part5)} ∪ Ast ,

{Fault(part3),Fault(part4)} ∪ Ast ,

{Fault(part3),Fault(part5)} ∪ Ast

}
.

Notice that there is no minimal explanation outside of this set.

To decide whether E contains all the MINEXS, we check whether
each element in E entails the OMQ with a linear number of C checks.
Then, observe that each set in E is minimal, and there is no MINEX
outside of E, iff E ′ �|= (Q, T ) for each E ′ ⊆ A such that E �⊆ E ′
for any E ∈ E. To ensure this, we need a co-(NPC) check. Thus,
we can again give a general membership result for ALL-MINEX as
a corollary to a result on existential rules [16, Theorem 8].

Corollary 10. ALL-MINEX(Q,L) can be decided by a linear num-
ber of C checks and a single co-(NPC) check, where C is the com-
plexity of OMQA(Q,L).

This implies all but the P-membership results in Table 4. If the
OMQ is FO-rewritable, then all explanations can be computed in
polynomial time in data complexity. The following result is a corol-
lary to [16, Theorem 9] and [7, Proposition 4.8].

Corollary 11. For any DL-LiteR-TBox T , any ABox A, and any
UCQ Q, computing all MINEXS for an OMQ (Q, T ) in A is feasible
in polynomial time in data complexity.

The above implies that ALL-MINEX is in P in data complexity
when the query is IQ or UCQ and the TBox is a DL-Lite or DL-LiteR
TBox. This result can be generalized to any FO-rewritable language.

The only missing membership results for ALL-MINEX are for
(IQ,DL-Lite) and (IQ,DL-LiteR) in combined complexity. Impor-
tantly, DL-LiteR does not allow conjunctions on the left-hand side of
the TBox axioms, and any concept has at most one role or concept
name. Hence, every MINEX for DL-LiteR can only be of size 1 for
instance queries. This means that we can go through each ABox as-
sertion and see whether each is a MINEX in polynomial time. This
implies that the check whether a given candidate set E is exactly the
set of all MINEXS is feasible in polynomial time.

Lemma 12. For any DL-LiteR-TBox T , any ABox A, and any in-
stance query Q, computing the set of all MINEXS for (Q, T ) in A
is in polynomial time in combined complexity.

We proceed with the hardness results, presented in Table 4. We
show that ALL-MINEX(IQ, EL) is CONP-hard in data complexity.
We show it by reducing a CONP-complete problem that has a very
close nature to ALL-MINEX, namely, ALL-MV [6, Lemma 1]. This
problem asks to decide if a given set V contains all minimal valua-
tions satisfying a Boolean monotone formula φ. In our reduction, the
ABox Aφ encodes φ, and T is empty. Each MINEX for (Q, T ) in
Aφ corresponds to a minimal valuation for φ. This result implies all
the CONP-hardness results for ALL-MINEX, presented in Table 4.

Theorem 13. ALL-MINEX(IQ, EL) is CONP-hard in data com-
plexity.

Note that this result strengthens the result given in [16, Theo-
rem 9], since EL can be embedded in guarded existential rules.

We now show ΠP
2 -hardness of ALL-MINEX(IQ,ALC) in data

complexity, which is the most intricate result of this section and
builds on the ideas presented in the proof of Theorem 7.

Theorem 14. ALL-MINEX(IQ,ALC) is ΠP
2 -hard in data complex-

ity.

Proof sketch. We give a reduction from the ΠP
2 -complete problem

∀∃3SAT [40, 43], which asks, whether ∀X ∃Y φ(X,Y ) is satisfi-
able, where φ(X,Y ) is a 3CNF formula. We encode φ(X,Y ) in the
ABox Aφ in the same way as in the proof of Theorem 7: we just add
the facts rpi and rni both for variables in X and Y . Furthermore, we
add two assertions T (xj) and F (xj) to Aφ for each variable xj in
X . They correspond to xj being assigned true and false. We take the
TBox T and the query Q = Unsat(τ) as in the proof of Theorem 7.

Then, E = {{Tau(τ), r0(τ, xj), T (xj), F (xj)} | xj a var. in φ}
is the set of all MINEXS for (Q, T ) in Aφ iff ∀X ∃Y φ(X,Y ) is
satisfiable. To see that this claim holds, first note that each set E
in E is a MINEX for (Q, T ), as E contains the four facts needed
for the axiom Tau 
 ∃r0.(T 
 F ) � Unsat to force Unsat(τ) to
hold in every model. Note also that, as in the proof of Theorem 7,
if ∀X ∃Y φ(X,Y ) is satisfiable, then there are no other MINEXS

outside E. Additionally, if ∀X ∃Y φ(X,Y ) was not satisfiable, then
there would be a truth assignment vX to variables in X such that, for
any choice of values vY for Y , φ(vX(X), vY (Y )) is false. In this
case, some subset of {Tau(τ), r0(τ, xj) | xj a var. in φ}∪{T (xj) |
vX(xj) = T} ∪ {F (xj) | vX(xj) = F} would be a MINEX, not
contained in E.
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Table 5: Complexity results for MINEX-IRREL(Q,L).

Description Logic
IQ UCQ

data comb. data comb.

DL-Lite, DL-LiteR ≤ P ≤ P ≤ P NP
EL, ELH NP NP NP NP
ELI, Horn-SHOIQ NP EXP NP EXP

ALC,ALCHQ ΣP
2 EXP ΣP

2 EXP

ALCI,SH,SHIQ ΣP
2 EXP ΣP

2 2EXP

The remaining hardness results, such as EXP- or 2EXP-hardness,
follow immediately from the proofs of the IS-MINEX results. This
concludes our analysis for ALL-MINEX.

4.3 Explanations avoiding forbidden sets

In some applications, we are interested in the existence of a MINEX
avoiding certain configurations, that is, the problem of deciding if
there is a MINEX that does not contain any of the forbidden sets of
assertions.
Problem: MINEX-IRREL(Q,L)
Input: An ABox A, an OMQ (Q, T ), and a set F ⊆ P(A) of subsets
of A, where the query Q is from the class of Q, and T is an L-TBox.
Question: Is there a MINEX E for (Q, T ) in A such that F �⊆ E for
every F ∈ F?

We illustrate MINEX-IRREL on our running example, by assum-
ing that in our engine, some sets of parts cannot all be faulty. This
constraint can be formulated as an instance of MINEX-IRREL.

Example 15. Let the following set

F1 =
{
{Fault(part5)}, {Fault(part1),Fault(part6)}

}

be the set of forbidden sets. Then, observe, for example, that the set
{Fault(part2),Fault(part4)} ∪ Ast is a MINEX for (Q, T ) in A
that does not contain any of the sets in F1. On the other hand, if the
forbidden sets are F2 = F1 ∪

{
{Fault(part4)}

}
, then there is no

MINEX for (Q, T ) in A such that no set in F2 is contained in E .

As before, we show a generic membership result that follows
from [16, Theorem 13]. MINEX-IRREL can be solved by first guess-
ing a set E not containing any of the forbidden sets in NP, and then
checking in C, whether E entails the OMQ. If E entails the OMQ,
then it must contain a MINEX as a subset (as a simple consequence
of the monotonicity of the entailment relation).

Corollary 16. MINEX-IRREL(Q,L) can be decided in NP, calling
a check in C, where C is the complexity of OMQA(Q,L).

Corollary 16 covers all membership results, presented in Table 5,
except for the P-membership results. If C = NP, then two NP certifi-
cates can be combined as a single NP certificate, and thus MINEX-
IRREL is in NP. If, for example, C = CONP, then MINEX-IRREL is
in ΣP

2 .
The upper bounds for DL-LiteR is due to similar reasons as before,

since we can construct the set of all MINEXS in polynomial time by
Corollary 11, and then check in polynomial time if this set contains
a MINEX that does not contain any forbidden set.

Corollary 17. For any DL-LiteR-TBox T , any ABox A, and any
UCQ Q, finding a MINEX for an OMQ (Q, T ) in a ABox A that
does not contain forbidden set of assertions F is feasible in polyno-
mial time in data complexity.

Table 6: Complexity results for MINEX-REL(Q,L).

Description Logic
IQ UCQ

data comb. data comb.

DL-Lite, DL-LiteR ≤ P ≤ P ≤ P ΣP
2

EL, ELH NP NP NP ΣP
2

ELI, Horn-SHOIQ NP EXP NP EXP

ALC,ALCHQ ΣP
2 EXP ΣP

2 EXP

ALCI,SH,SHIQ ΣP
2 EXP ΣP

2 2EXP

This proves that MINEX-IRREL for (UCQ, DL-Lite) and (UCQ,
DL-LiteR) are in P in data complexity. Our arguments here are of
a general nature in the sense that they can be extended to any FO-
rewritable OMQ.

We proceed with the hardness results for MINEX-IRREL. First,
we show the NP-hardness for MINEX-IRREL(IQ, EL) in data com-
plexity, as an adaptation of the result presented in [16, Theorem 15]
to the DL EL and to instance queries. This reduction is from the NP-
complete problem PATH WITH FORBIDDEN PAIRS [20, 22].

Theorem 18. MINEX-IRREL(IQ, EL) is NP-hard in data complex-
ity.

It remains to show that MINEX-IRREL(IQ,ALC) is ΣP
2 -hard in

data complexity, which implies all ΣP
2 -hardness results in Table 5.

Theorem 19. MINEX-IRREL(IQ,ALC) is ΣP
2 -hard in data com-

plexity.

Proof sketch. We provide a reduction from a ΣP
2 -complete problem

QBFCNF
2,∀,¬ [37] of determining whether a formula ∃X∀Y ¬φ(X,Y ),

where φ is 3CNF, is valid. The construction is an extension
of the proof of Theorem 14. In particular, given a formula
∃X∀Y ¬φ(X,Y ), the ABox Aφ encodes φ(X,Y ) and both the T
and F assignment to each variable in X . The forbidden sets are of
the form {T (xi), F (xi)}, where xi ∈ X . The TBox ensures that the
instance query is entailed iff there is no assignment to Y that entails
the query.

Finally, if we do not forbid any of the sets of the ABox assertions,
then MINEX-IRREL is equivalent to OMQA. This observation im-
plies that the remaining hardness results in Table 5 follow from the
hardness of OMQA.

4.4 Explanations containing a distinguished fact

The last problem that we investigate is related to the role of an in-
dividual assertion in explaining OMQA. This problem asks whether
there is a MINEX containing a distinguished assertion.

Problem: MINEX-REL(Q,L)
Input: An ABox A, an OMQ (Q, T ), and an assertion ψ ∈ A, where
the query Q is from the class Q, and T is a L-TBox.
Question: Is there a MINEX E for (Q, T ) in A such that ψ ∈ E?

Example 20. Suppose that we want to know whether a particular
part can be contributing to the observed failures. That is, we want
to find out whether ψ1 = Fault(part1) or ψ2 = Fault(part7)
can be part of an explanation for the observed failures. Note that
there is a MINEX for (Q, T ) in A that contains ψ1, for example,
{Fault(part1),Fault(part5)} ∪Ast . On the other hand, there is no
MINEX for (Q, T ) in A that contains ψ2.
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In order to solve MINEX-REL, we can guess a subset of the ABox
that contains a distinguished fact in NP, and then check if it is a
MINEX using an oracle for IS-MINEX, as in [16, Theorem 17],
which yields the following corollary.

Corollary 21. MINEX-REL(Q,L) is in NP, calling a single check
in IS-MINEX(Q,L).

This result covers all membership results, presented in Table 6,
apart from the membership in P. In particular, if IS-MINEX(Q,L)
is in DP, then, since DP = NP ∧ CONP, MINEX-REL(Q,L) can
be decided in NPCONP = ΣP

2 .
To solve MINEX-REL for FO-rewritable languages, we can first

compute the set of all MINEXS in polynomial time (Corollary 11)
and then check if any of these MINEXS contains a distinguished
assertion, which yields the following result.

Corollary 22. For any DL-LiteR-TBox T , any ABox A, and any
UCQ Q, finding a MINEX for an OMQ (Q, T ) in a ABox A over
L that contains a distinguished assertion ψ is feasible in polynomial
time in data complexity.

Our next result concerns MINEX-REL(IQ, EL), and is an adap-
tation of [16, Theorem 19] to the DL EL and instance queries: we
reduce from the NP-complete problem PATH VIA NODE [29].

Theorem 23. MINEX-REL(IQ, EL) is NP-hard in data complexity.

The most interesting result of this section is also related to the
DL ALC. We show that MINEX-REL(IQ,ALC) is ΣP

2 -hard in data
complexity. This implies all ΣP

2 -hardness results in data complexity
in Table 6. The proof of the following theorem borrows ideas from
the proof of Theorem 19

Theorem 24. MINEX-REL(IQ,ALC) is ΣP
2 -hard in data complex-

ity.

Finally, we show the ΣP
2 -hardness results in combined complex-

ity, where the complexity is one level higher up in the polyno-
mial hierarchy, as compared to the complexity of OMQA in the re-
spective languages. We reduce the ΣP

2 -hard problem QBFCNF
2,∀,¬ to

MINEX-REL(UCQ,L) in combined complexity, where L may be
any DL, as we take the TBox to be empty in the reduction.

Theorem 25. MINEX-REL(UCQ,L) is ΣP
2 -hard in combined com-

plexity for any DL L.

The remaining hardness results follow from the fact that
OMQA(Q,L) in combined complexity can be reduced to
MINEX-REL(Q,L) in combined complexity for DLs L containing
EL. To see why this holds, it is sufficient to observe that EL contains
conjunctions on the left-hand side. As a result, if we have an instance
query Q = C(a), an ABox A, and a TBox T , we take two new
concept symbols D and F , and add the axiom C 
 D � F to T ,
call it T ′. Then, A |= (Q, T ) iff there is a MINEX for (F (a), T ′) in
A∪{D(a)} containing D(a). If Q is a UCQ, a similar reduction ap-
plies: simply take a fresh concept symbol D, and add D(a) to every
conjunct of the given UCQ Q, and call it Q′. Note that A |= (Q, T )
iff there is a MINEX for (Q′, T ) in A ∪ {D(a)} containing D(a).

5 RELATED WORK

The task of deriving explanations for query answers is a form of log-
ical abduction [36, 19]. Explanations are first considered in the con-
text of DLs with the work of [32], which is then followed by [10].

The main goal of these early works in DLs was to explain why a con-
cept subsumption is entailed from a given theory, which amounts to
finding proofs for a given concept subsumption, based on the under-
lying deductive calculi.

Viewing minimal subsets of the TBox as explanations (instead of
the specific proofs) represents a shift in the literature [38]. This ap-
proach is often referred to as axiom pinpointing [25, 4, 34], and such
explanations are called justifications [23, 24]. This line of research
has received much attention, and a number of systems have been de-
veloped [25, 39].

The problem of ABox abduction [28] is closer to our approach in
the sense that it views sets of assertions as explanations, as opposed
to sets of TBox axioms. However, the problem studied in [28], as well
as in [14], is very different from ours: Given an instance query that
is not entailed from the knowledge base, the idea is to find a set of
assertions such that, when they are added to the ABox, the entailment
holds. On the other hand, our explanations are for entailments that are
known to hold, and any minimal subset of the ABox that satisfies the
query is an explanation.

To our knowledge, explanations for (positive) OMQA are only
studied for the DL-Lite family of languages [11] in the context of
DLs. Our work builds on the recent literature on explanations inves-
tigated for existential rules [16]. This work lifts the ideas from the
axiom pinpointing literature [25, 4, 34] to OMQA and introduces the
decision problems studied in this paper. Our focus is on DLs, and
our results differ significantly: All the results reported in this paper
are novel, except for the membership results that are explicitly given
as corollaries to earlier work [16]. In particular, our hardness results
are in a stronger form, as they are given for binary arity. Besides,
DLs that allow disjunction require new techniques as compared to
existential rules (see, e.g., our results on ALC).

Other related work is by [7], where the idea is to explain query an-
swers under inconsistency-tolerant semantics. The notion of MINEX
can be found as minimal T -support [8] and a cause [7] in this con-
text. These approaches are clearly incomparable to our approach, as
they are relative to a different semantics, which also implies very dif-
ferent complexity results. Finally, we note an earlier work on deriv-
ing explanations for OMQs under existential rules [15], which con-
siders probabilistic databases as the data model and hence is of a
different flavor.

6 SUMMARY AND OUTLOOK

We studied the problem of explaining query answers in terms of min-
imal subsets of the ABox assertions, and provided a thorough com-
plexity analysis for several decision problems associated with mini-
mal explanations. There are a number of future research directions.
It would be interesting to do a more fine-grained complexity analysis
to better identify queries that are tractable, e.g., such classification
results are obtained, e.g., for classical OMQA(IQ, EL) [30], and for
consistent query answering over a restricted class of queries [31].

We also want to study other variants of explanation-related prob-
lems, such as counting the number of minimal explanations. In
most cases, it is easy to see that such problems are #P-hard [34].
In our framework, counting-related explanation problems are nec-
essarily related to existing results on OMQA over probabilistic
databases [12]. We also note the recent dichotomy result for query
evaluation over probabilistic data over binary signatures [2]. We ex-
pect many of the existing techniques from probabilistic query an-
swering to translate to the problem of counting the number of mini-
mal explanations.
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Similarly to axiom pinpointing [34], it is worthwhile studying
enumeration-related problems, i.e., understanding the complexity of
enumerating all MinAs w.r.t. a specific order. The results in this pa-
per form the basis for the study of enumeration problems; a detailed
treatment of counting and enumeration problems is future work.
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[34] Rafael Peñaloza and Barış Sertkaya, ‘Understanding the complexity of
axiom pinpointing in lightweight description logics’, Artif. Intell., 250,
80 – 104, (2017).

[35] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe
De Giacomo, Maurizio Lenzerini, and Riccardo Rosati, ‘Linking data
to ontologies’, in J. Data Sem. X, volume 4900 of LNCS, 133–173,
Springer-Verlag, (2008).

[36] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artif.
Intell., 32(1), 57 – 95, (1987).

[37] Marcus Schaefer and Christopher Umans, ‘Completeness in the
polynomial-time hierarchy: A compendium’, SIGACT News, (2002).

[38] Stefan Schlobach and Ronald Cornet, ‘Non-standard reasoning services
for the debugging of description logic terminologies’, in Proc. IJCAI,
pp. 355–360, (2003).

[39] Roberto Sebastiani and Michele Vescovi, ‘Axiom pinpointing in
lightweight description logics via Horn-SAT encoding and conflict
analysis’, in Proc. CADE, (2009).

[40] Larry J. Stockmeyer, ‘The polynomial-time hierarchy’, Theor. Comput.
Sci., 3(1), 1 – 22, (1976).

[41] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase, ‘A
modularization-based approach to finding all justifications for OWL DL
entailments’, in Proc. ASWC, pp. 1–15, (2008).

[42] Moshe Y. Vardi, ‘The complexity of relational query languages (ex-
tended abstract)’, in Proc. STOC, pp. 137–146, (1982).

[43] Celia Wrathall, ‘Complete sets and the polynomial-time hierarchy’,
Theor. Comput. Sci., 3(1), 23 – 33, (1976).

[44] Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov, Mark Kaminski,
and Ian Horrocks, ‘PAGOdA: Pay-as-you-go ontology query answering
using a datalog reasoner’, J. Artif. Intell. Res., 54, 309–367, (2015).
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