
Step-Wise Explanations of Constraint Satisfaction Problems
Bart Bogaerts1 and Emilio Gamba1 and Jens Claes2 and Tias Guns1

Abstract. We explore the problem of step-wise explaining how to
solve constraint satisfaction problems, with a use case on logic grid
puzzles. More specifically, we study the problem of explaining the
inference steps that one can take during propagation, in a way that
is easy to interpret for a person. We aim to give the constraint solver
explainable agency, which can help in building trust in the solver by
being able to understand and even learn from the explanations. The
main challenge is that of finding a sequence of simple explanations,
where each explanation should aim to be as cognitively easy as pos-
sible for a human to verify and understand. This contrasts with the
arbitrary combination of facts and constraints that the solver may use
when propagating. We propose the use of a cost function to quantify
how simple an individual explanation of an inference step is, and
identify the explanation-production problem of finding the best se-
quence of explanations of a CSP. We propose an approach that is
agnostic of the underlying constraint propagation mechanisms, and
that can provide explanations even for inference steps resulting from
combinations of constraints. Our proposed algorithm iteratively con-
structs the explanation sequence by using an optimistic estimate of
the cost function to guide the search for the best explanation at each
step. Our experiments on logic grid puzzles show the feasibility of
the approach in terms of the quality of the individual explanations
and the resulting sequences obtained.

1 Introduction

Explainable AI research aims to fulfil the need for trustworthy AI
systems that can explain their reasoning in a human-understandable
way. As these systems employ more advanced reasoning mechanisms
and computation power, it becomes increasingly difficult to under-
stand why certain decisions are made. Understanding the decisions
is important for verifying the correctness of the system, as well as to
control for biased or systematically unfair decisions.

Explainable AI is often studied in the context of (black box) ma-
chine learning systems such as neural networks, where the goal is to
provide insight into what part of the input is important in the learned
model. These insights (or local approximations thereof) can justify
why certain predictions are made. In contrast, in constraint satisfac-
tion problems, the problem specification is an explicit model-based
representation of the problem, hence creating the opportunity to ex-
plain the inference steps directly in terms of this representation.

Explanations have been investigated in constraint solving before,
most notably for explaining overconstrained, and hence unsatisfiable,
problems to a user [15]. Our case is more general in that it also works
for satisfiable problems. At the solving level, in lazy clause genera-
tion solvers, explanations of a constraint are studied in the form of
an implication of low-level Boolean literals that encode the result

1 Vrije Universiteit Brussel, firstname.lastname@vub.be
2 jensclaes33@gmail.com

of a propagation step of an individual constraint [9]. Also, no-goods
(learned clauses) in conflict-driven clause learning SAT solvers can
be seen as explanations of failure during search [23]. These are not
meant to be human-interpretable but rather to propagate efficiently.

We aim to explain the process of propagation in a constraint solver,
independent of the consistency level of the propagation and without
augmenting the propagators with explanation capabilities. For prob-
lems that can — given a strong enough propagation mechanism — be
solved without search, e.g. problems such as logic grid puzzles with
a unique solution, this means explaining the entire problem solving
process. For problems involving search, this means explaining the in-
ference steps in one search node. It deserves to be stressed that we are
not interested in the computational cost of performing an expensive
form of propagation, but in explaining all consequences of a given
assignment to the user in a way that is as understandable as possible.

More specifically, we aim to develop an explanation-producing
system that is complete and interpretable. By complete we mean that
it finds a sequence of small reasoning steps that, starting from the
given problem specification and a partial solution, derives all conse-
quences. Gilpin et al. [13] define interpretable explanations as “de-
scriptions that are simple enough for a person to understand, using a
vocabulary that is meaningful to the user”. Our guiding principle is
that of simplicity, where smaller and simpler explanations are better.
We choose to represent the constraints in natural language, which is
an obvious choice for logic grid puzzles which are given as natural
language clues. We representing the previously and newly derived
facts visually, as can be seen in the grid in Figure 1.

Figure 1: Demonstration of explanation visualisation.

Our work is motivated by the “Holy Grail Challenge”3 which had
as objective to provide automated processing of logic grid puzzles,
ranging from natural language processing, to solving, and explaining.

3
https://freuder.wordpress.com/pthg-19-the-third-workshop-on-progress-towards-

the-holy-grail/

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200149

640

https://freuder.wordpress.com/pthg-19-the- third-workshop-on-progress-towards-the-holy-grail/
https://freuder.wordpress.com/pthg-19-the- third-workshop-on-progress-towards-the-holy-grail/

An earlier version of our system won the challenge at the workshop.
While our system has the capability of solving logic grid puzzle start-
ing from the natural language clues (see Section 7), the focus of this
paper is on the novel explanation-producing part of the system.

The explanation-generating techniques we develop can be applied
in a multitude of use cases. For instance, our tool can explain the en-
tire sequence of reasoning, such that a user can debug the reasoning
system or the set of constraints that specify their problem. As our
approach starts from an arbitrary set of facts, it can also be used as a
virtual assistant when a user is stuck in solving a problem. The sys-
tem will explain the simplest possible next move, or in an interactive
setting where a system can explain how it would complete a partial
solution of a user. Finally, our measures of simplicity of reasoning
steps can be used to estimate the difficulty of solving a problem for a
human, e.g. for gradual training of experts.
Our contributions are the following:
• We formalize the problem of step-wise explaining the propagation

of a constraint solver through a sequence of small inference steps;
• We propose an algorithm that is agnostic to the propagators and

the consistency level used, and that can provide explanations for
inference steps involving arbitrary combinations of constraints;

• Given a cost function quantifying interpretability, our method uses
an optimistic estimate of this function to guide the search to low-
cost explanations, thereby making use of Minimal Unsatisfiable
Subset extraction;

• We experimentally demonstrate the quality and feasibility of the
approach in the domain of logic grid puzzles.

2 Related work

This research fits within the general topic of Explainable
Agency [19], whereby in order for people to trust autonomous agents,
the latter must be able to explain their decisions and the reasoning
that produced their choices. For example, explainable planning [10]
is concerned with building planning systems that can explain their
own behaviour. This includes answering queries such as “why did
the system (not) make a certain decision?”, “why is this the best de-
cision?”, etc. In contrast to explainable machine learning research,
in explainable planning one can make use of the explicit model-
based representation over which the reasoning happens. Likewise,
we will make use of the constraint specification available to con-
straint solvers.

Explanation of Constraint Satisfaction Problems (CSP) has been
studied mostly in the context of overconstrained problems. The goal
then is to find which constraints conflict with each other. The Quick-
Xplain method [15] for example uses a dichotomic approach that re-
cursively partitions the constraints to find a minimal conflict set. This
is also known as the Minimum Unsat Subset (MUS) problem or Min-
imal Unsat Core extraction [22]. Many algorithm exist for finding a
MUS or enumerating all MUS’s [22]. We will use MUS extraction
for finding a minimal explanation of an individual inference step.

Our work is inspired by the holy grail challenge at CP’2019, which
in turn has its roots in earlier work of E. Freuder on inference-based
explanations [26]. In that work, the authors investigate logic grid
puzzles and develop a number of problem-specific inference rules
that allow solving such puzzles without search. These inference rules
are equipped with explanation templates such that each propagation
event of an inference rule also has a templated explanation, and hence
an explanation of the solution process is obtained. We point out that
the more complex inference rules (NCC and GNCC) are in infer-
ence rules over hard-coded combinations of (in)equality constraints.

In contrast, our proposed method works for any type of constraint
and any combination of constraints, and automatically infers a mini-
mal set of facts and constraints that explain an inference step, without
using any problem-specific knowledge.

There is a rich literature on automated and interactive theorem
proving, recently focussing on providing proofs that are understand-
able for humans [11] and, e.g., on teaching humans – using interac-
tion with theorem provers – how to craft mathematical proofs [27].
Our work fits into this line of research since our generated explana-
tions can also be seen as proofs, but in the setting of finite-domain
constraint solving.

Our approach also relates to the work of Belahcene et. al. [1] who
— in the context of decision-aiding — aim to build incremental ex-
planations using preference relations. In our case, this would cor-
respond to preferring simple constraints to more complex combina-
tions of constraints through a cost function.

3 Background

Logic grid puzzles. While our proposed method is applicable to con-
straint satisfaction problems in general, we use logic grid puzzles as
example domain, as it requires no expert knowledge to understand.

A logic grid puzzle (also known as Zebra puzzle or Einstein puz-
zle) consists of natural language sentences (from hereon referred to
as “clues”) over a set of entities occurring in those sentences. For
instance, our running example in Figure 1 contains as second clue
“The person who chose arrabiata sauce is either Angie or Elisa” and
(among others) entities “arrabiata sauce”, “Angie” and “Elisa”.

The set of entities is sometimes left implicit if it can be derived
from the clues, but often it is given in the form of a grid. Further-
more, in such a puzzle the set of entities is partitioned into equally-
sized groups (corresponding to types); in our example, “person” and
“sauce” are two such types. The goal of the puzzle is to find relations
between each two types such that
• each clue is respected,
• each entity of one type is matched with exactly one entity of the

second type, e.g., each person chose exactly one sauce and each
sauce is linked to one person (this type of constraint will be re-
ferred to as bijectivity), and

• the relations are logically linked, e.g., if Angie chose arrabiata
sauce and arrabiata sauce was paired with farfalle, then Angie
must also have eaten farfalle (from now on called transitivity).

In Section 7, we explain how we obtain a vocabulary and first-order
theory in a mostly automated way from the clues. The result is a
vocabulary with types corresponding to the groups of entities in the
clues, and the names and types of the binary relations to find (e.g
chose(person, sauce), paired(sauce, pasta), eaten(person, pasta)); as
well as constraints (first-order sentences) corresponding to the clues,
and the bijectivity and transitivity constraints. Let TP be a theory
containing all of these constraints for a given puzzle P .

Our running example is a puzzle about people having dinner in a
restaurant and ordering different types of pasta. It is the hardest logic
grid puzzle we encountered (as a reference, at a recent AI conference,
when presenting our tool [8], only four out of 80 researchers who
tried managed to solve it). The entire puzzle can be seen in Figure
1; the full final explanation generated for it can be found at http:
//bartbog.github.io/zebra/pasta.

Typed first-order logic. Our constraint solving method is based
on typed first-order logic. Part of the input is a logical vocabulary
consisting of a set of type symbols, (typed) constant symbols, and

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems 641

http://bartbog.github.io/zebra/pasta
http://bartbog.github.io/zebra/pasta

(typed) relation symbols with associated type signature (i.e., each re-
lation symbol is typed T1×· · ·×Tn with n types Ti). 4 For example,
type person with constant symbol Angie of type person and a relation
chose(.,.) with signature person × sauce.

A first-order theory is a set of sentences (well-formed variable-free
first-order formulas in which each quantified variable has an associ-
ated type), also referred to as constraints. Since we work in a fixed
and finite domain, the vocabulary, the interpretation of the types (the
domains) and the constants are fixed. This justifies the following def-
inition.

Definition 1. A (partial) interpretation is a finite set of literals, i.e.,
expressions of the form P (d) or ¬P (d) where P is a relation symbol
typed T1 × · · · × Tn and d is a tuple of domain elements where each
di is of type Ti.

A partial interpretation is consistent if it does not contain both
an atom and its negation, it is called a full interpretation if it either
contains P (d) or ¬P (d) for each well-typed atom P (d).

For instance in the partial interpretation IAng−Ar =
{chose(Angie, arrabiata), ¬chose(Elisa, arrabiata)} it is
known that Angia had arrabiata sauce and Elisa did not.

A partial interpretation I1 is more precise than partial interpre-
tation I2 (notation I1 ≥p I2) if I1 ⊇ I2. The partial inter-
pretation {chose(Angie, arrabiata), ¬chose(Elisa, arrabiata),
¬chose(damon, arrabiata)} is more precise than IAng−Ar .

Since variable-free literals are also sentences, we will freely use
a partial interpretation as (a part of) a theory in solver calls or in
statements of the form I ∧ T |= J , meaning that everything in J is
a consequence of I and T , or stated differently, that J is less precise
than any model M of T satisfying M ≥p I .

In the context of first-order logic, the task of finite-domain con-
straint solving is better known as model expansion [24]: given a log-
ical theory T (corresponding to the constraint specification) and a
partial interpretation I with a finite domain (corresponding to the
initial domain of the variables), find a model M more precise than I
(a partial solution that satisfies T).

4 Problem definition

The overarching goal of this paper is to generate a sequence of small
reasoning steps, each with an interpretable explanation. We first in-
troduce the concept of an explanation of a reasoning step, after which
we introduce a cost function for a reasoning step and the cost of a se-
quence of reasoning steps.

Explanation of reasoning steps. We assume that a theory TP and
an initial partial interpretation I0 are given and fixed.

Definition 2. We define the maximal consequence of a theory TP

and partial interpretation I (denoted max(I, T)) as the precision-
maximal partial interpretation J such that I ∧ TP |= J .

Phrased differently, max(I, T) is the intersection of all the mod-
els of T more precise than I; this is also known as the set of cau-
tious consequences of T and I and corresponds to ensuring global
consistency in constraint solving. Algorithms for computing cautious
consequences without explicitly enumerating all models exist, such
as for instance the ones implemented in clasp [12] or IDP [6] (in
the latter system the task of computing all cautious consequences is

4 We here omit function symbols since they are not used in this paper.

called optimal-propagate since it performs the strongest propagation
possible).

Weaker levels of propagation consistency can be used as well,
leading to a potentially smaller maximal consequence interpreta-
tion maxother−consistency(I, T). The rest of this paper assumes
we want to construct a sequence that starts at I0 and ends at
max(I0, TP) for some consistency algorithm, i.e., that can explain
all computable consequences of TP and I0.

Definition 3. A sequence of incremental partial interpretations
of a theory TP with initial partial interpretation I0 is a sequence
〈I0, I1, . . . , In = max(I0, TP)〉 where ∀i > 0, Ii−1 ≤p Ii (i.e., the
sequence is precision-increasing).

The goal of our work is not just to obtain a sequence of incremental
partial interpretations, but also for each incremental step 〈Ii−1, Ii〉
we want an explanation (Ei, Si) that justifies the newly derived in-
formation Ni = Ii \ Ii−1. When visualized, such as in Figure 1, it
will show the user precisely which information and constraints were
used to derive a new piece of information.

Definition 4. Let Ii−1 and Ii be partial interpretations such that
Ii−1 ∧ TP |= Ii. We say that (Ei, Si, Ni) explains the derivation of
Ii from Ii−1 if the following hold:
• Ni = Ii \ Ii−1 (i.e., Ni consists of all newly defined facts),
• Ei ⊆ Ii (i.e., the explaining facts are a subset of what was previ-

ously derived),
• Si ⊆ TP (i.e., a subset of the clues and implicit constraints are

used), and
• Si ∪ Ei |= Ni (i.e., all newly derived information indeed follows

from this explanation).

The problem of simply checking whether (Ei, Si, Ni) explains
the derivation of Ii from Ii−1 is in co-NP since this problem can be
performed by verifying that Si ∧ ¬Ni has no models more precise
than Ei. It is hence an instance of the negation of a model expansion
problem [18].

Part of our goal of finding easy to interpret explanations is to
avoid redundancy. That is, we want a non-redundant explanation
(Ei, Si, Ni) where none of the facts in Ei or constraints in Si can be
removed while still explaining the derivation of Ii from Ii−1; that is:
the explanation must be subset-minimal.

Definition 5. We call (Ei, Si, Ni) a non-redundant explanation of
the derivation of Ii from Ii−1 if it explains this derivation and when-
ever E′ ⊆ Ei;S

′ ⊆ Si while (E′, S′, Ni) also explains this deriva-
tion, it must be that Ei = E′, Si = S′.

Definition 6. A non-redundant explanation sequence is a sequence

〈(I0, (∅, ∅, ∅)), (I1, (E1, S1, Ni)), . . . , (In, (En, Sn, Nn))〉
such that (Ii)i≤n is sequence of incremental partial interpretations
and each (Ei, Si, Ni) explains the derivation of Ii from Ii−1.

Interpretability of a reasoning steps. While subset-minimality
ensures that an explanation is non-redundant, it does not quantify
how interpretable a explanation is. This quantification is a problem-
specific and often subjective manner.

We will assume the existence of a cost function f(Ei, Si, Ni) that
quantifies the interpretability of a single explanation. This is typically
specific to the family of problems considered.

In line with the goal of “simple enough for a person to understand”
and Occam’s Razor, we reason that smaller explanations are easier

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems642

to interpret than explanations that use a larger number of facts or
constraints. In Section 6 we provide a size-based cost function for
use in our logic grid puzzle tool, though others can be used as well.

Interpretability of a sequence of reasoning steps. In its most
general form, we would like to optimize the understandability of the
entire sequence of explanations. While quantifying the interpretabil-
ity of a single step can be hard, doing so for a sequence of explana-
tions is even harder. For example, is it related to the most difficult step
or the average difficulty, and how important is the ordering within the
sequence? As a starting point, we here consider the total cost to be
an aggregation of the costs of the individual explanations, e.g. the
average or maximum cost.

Definition 7. Given a theory TP and initial partial interpretation
I0, the explanation-production problem consist of finding a non-
redundant explanation sequence

〈(I0, (∅, ∅, ∅)), (I1, (E1, S1, Ni)), . . . , (In, (En, Sn, Nn))〉
such that a predefined aggregate over the sequence
(f(Ei, Si, Ni))i≤n is minimised.

Example aggregation operators are max() and average(), which
each have their peculiarities: the max() aggregation operator will
minimize the cost of the most complicated reasoning step, but does
not capture whether there is one such step used, or multiple. Like-
wise, the average() aggregation operator will favour many simple
steps, including splitting up trivial steps into many small components
if the constraint abstraction allows this. Even for a fixed aggregation
operator, the problem of holistically optimizing a sequence of ex-
planation steps is much harder than optimizing the cost of a single
reasoning step, since there are exponentially more sequences.

5 Explanation-producing search

In this section, we tackle the goal of searching for a non-redundant
explanation sequence that is as simple to understand as possible.

Ideally, we could generate all explanations of each fact in In, and
search for the lowest scoring sequence among those explanations.
However, the number of explanations for each fact quickly explodes
with the number of constraints, and is hence not feasible to com-
pute. Instead, we will iteratively construct the sequence, by generat-
ing candidates for a given partial interpretation and searching for the
smallest one among those.

Sequence construction. We aim to minimize the cost of the expla-
nations of the sequence, measured with an aggregate over individual
explanation costs f(Ei, Si, Ni) for some aggregate like max() or
average(). The cost function f could for example be a weighted
sum of the cardinalities of Ei, Si and Ni; see Section 6 for the cost
function we will use for logic grid puzzles.

Instead of globally optimizing the aggregated sequence cost, we
encode the knowledge that we are seeking a sequence of small expla-
nations in our algorithm. Namely, we will greedily and incrementally
build the sequence, each time searching for the lowest scoring next
explanation, given the current partial interpretation. Such an expla-
nation always exists since the end point of the explanation process
max(I0, TP) only contains consequences of I0 and TP .

Algorithm 1 formalizes the greedy construction of the sequence,
which determines Iend = max(I0, TP) through propagation and
relies on a min-explanation(I, C) function to find the next cost-
minimal explanation.

Algorithm 1: High-level greedy sequence-generating algo-
rithm.

1 Iend ← propagate(I0 ∧ TP);
2 Seq ← empty sequence;
3 I ← I0;
4 while I = Iend do

5 (E,S,N) ←min-explanation(I, TP);
6 append (E,S,N) to Seq;
7 I ← I ∪N ;
8 end

Candidate generation. The main challenge is finding the lowest
scoring explanation, among all reasoning steps that can be applied
for a given partial interpretation I . We first look at how to enumerate
a set of candidate non-redundant explanations given a set of con-
straints.

For a set of constraints C (later algorithms will not always use
TP for this C!), we can first use propagation to get the set of new
facts that can be derived from a given partial interpretation I and the
constraints C. For each new fact a not in I , we wish to find a non-
redundant explanation (E ⊆ I, S ⊆ C, {a}) that explains a. Recall
from Definition 6 that this means that whenever one of the facts in E
or constraints in S is removed, the result is no longer an explanation.
We now show that this task is equivalent to finding a Minimal Unsat
Core (or Minimal Unsat Subset, MUS) of a derived this. To see this,
consider the theory

I ∧ C ∧ ¬a.

This theory surely is unsatisfiable since a is a consequence of I and
C. Furthermore, under the assumption that I ∧ C is consistent (if
it were not, there would be nothing left to explain), any unsatisfiable
subset of this theory contains ¬a. We then see that each unsatisifiable
subset of this theory is of the form E ∧ S ∧ ¬a where (E,S, {a})
is a (not necessarily redundant) explanation of the derivation of {a}
from I . Vice versa, each explanation of {a} corresponds to an un-
satisifiable subset. Thus, the minimal unsatisifiable subsets (MUS)
of the above theory are in one-to-one correspondence with the non-
redundant explanations of a, allowing us to use existing MUS algo-
rithms to search for non-redundant explanations.

We must point out that MUS algorithms typically find an unsatis-
fiable core that is subset-minimal, but not cardinality-minimal. That
is, the unsat core can not be reduced further, but there could be an-
other minimal unsat core whose size is smaller. That means that if
size is taken as a measure of simplicity of explanations, we do not
have the guarantee to find the optimal ones. And definitely, when a
cost function kicks, optimality is also not guaranteed.

Algorithm 2 shows our proposed algorithm. The key part of the al-
gorithm is on line 4 where we find an explanation of a single new fact
a by searching for a MUS that includes ¬a. We search for subset-
minimal unsat cores to avoid redundancy in the explanations. Fur-
thermore, once a good explanation (E,S,N) is found, we immedi-
ately explain all implicants of E and S. In other words: we take N
to be subset-maximal. The reason is that we assume that all deriv-
able facts that use the same part of the theory and the same part of
the previously derived knowledge probably require similar types of
reasoning and it is thus better to consider them at once. Thus, we
choose to generate candidate explanations at once for all implicants
of (E,S) on line 7. Note that the other implicants A \ {a} may have
simpler explanations that may be found later in the for loop, hence
we do not remove them from J .

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems 643

Algorithm 2: candidate-explanations(I, C)

input : A partial interpretation I and a set of constraints C
1 Candidates ← {};
2 J ← propagate(I ∧ C);
3 for a ∈ J \ I do

// Minimal expl. of each new fact:
4 X ← MUS(¬a ∧ I ∧ C) ;
5 E ← I ∩X; // facts used
6 S ← C ∩X; // constraints used
7 A ← propagate(E ∧ S); // all implied facts
8 add (E,S,A) to Candidates
9 end

10 return Candidates

We assume the use of a standard MUS algorithm, e.g. one that
searches for a satisfying solution and if a failure is encountered, the
resulting Unsat Core is shrunk to a Minimal one [22]. While comput-
ing a MUS may be computationally demanding, it is far less demand-
ing than enumerating all MUS’s (of arbitrary size) as candidates.

Cost functions and cost-minimal explanations. We use Algo-
rithm 2 to generate candidate explanations, but in general our goal is
to find cost-minimal explanations. In the following, we assume that
we have a cost function f(E,S,N) that returns a score for every
possible explanation (E,S,N).

To guide the search to cost-minimal MUS’s, we use the observa-
tion that typically a small (1 to a few) number of constraints is suffi-
cient to explain the reasoning. A small number of constraints is also
preferred in terms of easy to understand explanations, and hence have
a lower cost. For this reason, we will not call candidate-explanations
with the full set of constraints TP , but we will iteratively grow the
number of constraints used.

We make one further assumption to ensure that we do not have to
search for candidates for all possible subsets of constraints. The as-
sumption is that we have an optimistic estimate g that maps a subset
S of TP to a real number such that ∀E,N, S : g(S) ≤ f(E,S,N).
This is for example the case if f is an additive function, such as
f(E,S,N) = f1(E) + f2(S) + f3(N) where g(S) = f2(S) as-
suming f1 and f3 are always positive.

We can then search for the smallest explanation among the can-
didates found, by searching among increasingly worse scoring S as
shown in Algorithm 3. This is the algorithm called by the iterative
sequence generation (Algorithm 1).

Algorithm 3: min-explanation(I, C)

input : A partial interpretation I and a set of constraints C
1 Candidates ← {};
2 for S ⊆ C ordered by g(S) do

3 if g(S) < min({f(candi)|candi ∈Candidates}) then

4 break;
5 end

6 cand ← candidate-explanations(I, S);
7 add to Candidates all candi with corresp. value f(candi);
8 end

9 return candi ∈ Candidates with minimal f(candi)

Every time min-explanation(I, C) is called with an updated partial
interpretation I the explanations should be regenerated. The reason

is that for some derivable facts a, there may now be a much eas-
ier and cost-effective explanation of that fact. There is one benefit
in caching the Candidates across the different iterations, and that is
that in a subsequent call, the cost of the most cost-effective expla-
nation that is still applicable can be used as a lower bound to start
from. Furthermore, in practice, we cache all candidates and when we
(re)compute a MUS for a fact a, we only store it if it is more cost-
effective than the best one we have previously found for that fact,
across the different iterations.

6 Explanations for logic grid puzzles

We instantiated the above described algorithm in the context of
logic grid puzzles. In that setting there are basically three types of
constraints in TP : transitivity constraints, bijectivity constraints and
clues, where the first two follow the same structure in every puzzle
and the clues are obtained in a mostly automatic way (see Section 7).
Before defining a cost-function, and the estimation for g used in our
implementation, we provide some observation that drove our design
decision.

Observation 1: propagations from a single implicit constraint

are very easy to understand Contrary to the clues, the implicit con-
straints (transitivity/bijectivity) are very limited in form and propa-
gations over them follow well-specified patterns. For instance in the
case of bijectivity, a typical pattern that occurs is that when X − 1
out of X possible values for a given function have been derived not
to be possible, it is propagated that the last value should be true; this
is visualized for instance in Figure 1. Hence, in our implementation,
we ensure that they are always performed first. Stated differently, g
and f are designed in such a way that g(S1) ≥ f(I, S2) whenever
S2 consists of only one implicit constraint and S1 does not.

Observation 2: clues propagate rarely by themselves We ob-
served that the automatically obtained logic representation of clues
usually has quite weak (unit) propagation strength in isolation. This
is not a property of the clues, but rather of the final obtained trans-
lation. As an example, consider the following sentence: “The per-
son who ordered capellini is either Damon or Claudia”. From this, a
human reasoner might conclude that Angie did not order capellini.
However, the obtained logical representation is

∃p : ordered(p, capellini) ∧ (p = Damon ∨ p = Claudia).

This logic sentence only entails that Angie did not order capellini in
conjunction with the bijectivity constraint on ordered. In the natural
language sentence, this bijectivity is implicit by the use of the person
which entails that there is only a single person ordering capellini.

We observed that there is rarely any propagation from sole clues,
and that only few implicit constraints are active together with a clue
at any time. Hence, when pairing clues to other constraints we always
pair it with the set of all implicit (bijectivity, transitivity) constraints.

Observation 3: clues are typically used independently from

other clues A final observation is that in all the puzzles we encoun-
tered, human reasoners never needed to combine two clues in order
to derive new information and that when such propagations are possi-
ble, they are quite hard to explain, and can be split up into derivations
containing only single clues. The latter is of course not guaranteed,
since one can artificially devise disjunctive clues that do not allow
propagation by themselves. Our algorithms are built to handle this
case as well, but it turned out to be not necessary in practice.

With these three observations in mind, we devised f and g as fol-

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems644

lows (where nc(C) denotes the number of clues in C):

f(I, C) = basecost(C) + |I|+ |C|

g(C) = basecost(C) =

⎧
⎨

⎩

0 if |C| = 1 and nc(C) = 0
20 if |C| > 1 and nc(C) = 0
20 · nc(C) otherwise

The number 20 is taken here to be larger than any reasonable ex-
planation size. The effect of this, is that we can generate our subsets
S in Line 2 of Algorithm 3 in the following order:
• First all S containing exactly one implicit constraint.
• Next, all S containing exactly all implicit constraints and (option-

ally) exactly one clue.
• Finally, all clue pairs, triples etc. though in practice this is never

reached.
Summarized, our instantiation for logic grid puzzles differs from the
generic methods developed in the previous section in that it uses a
domain-specific optimization function f and does not considering
all S in Line 2, but only promising candidates based on our observa-
tions.

Figure 2: Demonstration of hard explanation.

For the complete non-redundant explanation sequence our tool
produces on the running example using these scoring functions, we
refer to http://bartbog.github.io/zebra/pasta. An
example of the hardest derivation we encountered (with cost 28) is
depicted in Figure 2. It uses several bijectivity constraints for unique-
ness of persons, but also for reasoning on the relation between costs
and types of pasta, in combination with a clue and three assump-
tions. Intuitively, the reasoning happening here can be explained as
follows: if farfalle were to cost $8, then due to the assumptions and
bijectivity rotini would cost 16. However, since Damon did not take
farfelle (which we assumed costs $8), this is in contradiction with the
highlighted clue. Hence farfalle does not cost $8.

7 Logic grid puzzles: From natural language clues
to typed first-order logic

We developed a demo system, called ZEBRATUTOR, named after
Einstein’s zebra puzzle, which is an integrated solution for solving
logic grid puzzles, and for explaining, in a human-understandable
way, how the solution can be obtained from the clues. The input to
ZEBRATUTOR is a plain English language representation of the clues
and a list of all the entities present in the puzzle. It then applies NLP
techniques to build a puzzle-specific lexicon. This lexicon is fed into

a type-aware variant of the semantical framework of Blackburn &
Bos [3, 4], which translates the clues into Discourse Representation
Theory [16]. The logic is further transformed to a specification in the
IDP language, a typed extension of first-order logic. The underlying
solver, IDP [6] uses this formal representation of the clues both to
solve the puzzle and to explain the solution. We chose the IDP sys-
tem as an underlying solver since it natively offers different inference
methods to be applied on logic theories, including model expansion
(searching for solutions), different types of propagation (we used op-
timalpropagate here to find max(I, TP)), and unsat-core extraction
and offers a lua interface to glue these inference steps together seam-
lessly [6]. The complete specification undergoes the following steps:
A Part-Of-Speech (POS) tagging: A part-of-speech tag is associ-

ated with each word using an out-of-the-box POS tagger [21].
B Chunking and lexicon building: A problem-specific lexicon is

constructed; each word or set of words (chunk) is assigned a role,
based on the POS tags. On top of these roles, we defined a puzzle-
independent grammar in the Blackburn and Bos framework [3, 4].
The grammar was created based on 10 example training puzzles,
and tested on 10 different puzzles to ensure genericity [7].

C Parsing: We use a typed variant of the Blackburn and Bos frame-
work to use the lexicon and grammar to derive a logical formula-
tion of the clues in Discourse Representation Theory. The typed
extension allows us to discover the case where different verbs
are used as synonyms for the same inherent relation between two
types, e.g. ‘ate(person, pasta)’ and ‘ordered(person, pasta)’.
This is then translated into the IDP language and the bijectivity
and transitivity constraints are automatically added.

D Explanation-producing search in IDP: this is the main contri-
bution of this paper, as explained in Section 5.

E Visualisation: all explanation steps (Ei, Si, Ni) are visualized by
means of a color-coded logic grid, where different colors are used
to highlight Ei and Ni, and Si. Figures 1 and 2 contain examples.

An online demo of our system can be found on http://
bartbog.github.io/zebra, containing examples of all the
steps. A more detailed explanation of steps B and C of the informa-
tion pipeline can be found in [7]. From a natural language processing
point of view, the hardest part is step B: automatically deriving the
lexicon. In our system, this is a semi-automated method that suggests
a lexicon and lets a user modify and approve it, to compensate for
possible “creativity” of the puzzle designers who tend to insert am-
biguous words, or use implicit background knowledge such as using
“in the morning” when there is only one timeslot before 12:00.

8 Experiments

Using logic grid puzzles as a use-case, we validate the feasibility
of finding a non-redundant explanation sequence. As data we use
puzzles from Puzzle Baron’s Logic Puzzles Volume 3 [25]. The first
10 puzzles were used to construct the grammar; the next 10 to test the
genericity of the grammar. Our experiments below are on test puzzles
only; we also report results on the pasta puzzle, which was sent to us
by someone who did not manage to solve it himself.

As constraint solving engine, we use IDP [6] for the reasons ex-
plained in Section 7. The algorithm itself is written in embedded
LUA, which provides an imperative environment inside the other-
wise declarative IDP system. The code was not optimized for effi-
ciency and can at this point not be used in an interactive setting, as it
takes between 15 minutes to a few hours to fully explain a logic grid
puzzle. Experiments were run on an Intel(R) Xeon(R) CPU E3-1225
with 4 cores and 32 Gb memory, running linux 4.15.0 and IDP 3.7.1.

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems 645

http://bartbog.github.io/zebra/pasta
http://bartbog.github.io/zebra
http://bartbog.github.io/zebra

Figure 3: Type of constraints used in each step

1. Sequence composition We first investigate the properties of the
puzzles and the composition of the resulting sequence explanations.
The results are shown in Table 1. The puzzle identified as p is our run-
ning example. |type| is the number of types of entities (e.g. person,
sauce) while |dom| is the number of entities of each type. |grid| is
the number of cells in the grid, i.e. the number of literals in the maxi-
mal consequence interpretation In = max(I0, TP). Coincidentally,

puzzle |type| |dom| |grid| steps % Bij. % Trans. % 1 Clue % m-i % m-c

1 4 5 150 113 30.97 49.56 18.58 0.0 0
2 4 5 150 122 21.31 59.02 18.85 0.0 0
3 4 5 150 115 28.7 53.91 16.52 0.0 0
4 4 5 150 116 27.59 54.31 17.24 0.0 0
5 4 5 150 123 24.39 58.54 16.26 0.0 0
6 4 5 150 116 26.72 57.76 14.66 0.0 0
7 4 5 150 111 36.94 45.05 17.12 0.0 0
8 4 5 150 119 33.61 47.06 18.49 0.0 0
p 4 4 96 82 34.15 40.24 21.95 2.44 0

Table 1: Composition of puzzle explanations

almost all the puzzles have 4 types with domain size 5, hence 150
cells, except for the pasta puzzle which has a domain size 4, thus 96
cells. We notice that the number of inference steps is around 120 for
all but the pasta puzzle. When investigating the proportion of the in-
ference steps that use bijections (only), transitivity (only) or a clue,
we can see that around 50% the explanations typically use a transi-
tivity constraint, around 25% typically a trivial bijectivity constraint
(e.g. completing a row or column in one relation), and less then 1/5th
of the explanations actually need to use a clue. In the table, #m-i and
#m-c refer to the use of multiple implicit constraints and multiple
clues respectively. We can see that it is never necessary to combine
multiple constraints in one inference step. Also, notably, the puzzles
from the booklet never require combining implicit constraints, while
the anecdotally hard pasta puzzle is the only one that does: it cannot
be solved by focussing on the clues but requires combining facts and
knowledge in the table alone to crack it.

2. Sequence progression Figure 3 shows a visualisation the type
of explanation used at every step of the sequence, for some different
puzzles. The red line is the pasta puzzle. We can see that typically
at the beginning of the sequence, clues (4th line) and bijectivity (2nd
line) are used, i.e., the trivial ones. This is then followed by a round
of clues and some bijectivity/transitivity, after which a large fraction
of the table can be completed with bijectivity/transitivty, followed by
a few last clues and another round of completion.

The exception to this is the pasta puzzle. We can see that after
around 20 steps where mostly clues have been used, twice a com-
bination of implicit logigram constraints must be used to derive a
new fact, after which the table can be easily completed with bijectiv-
ity/transitivity and twice the use of a clue.

avg. facts % of clue expl. with facts

p all Clues Trans. Bij. 0 facts 1 fact 2 facts >2 facts

1 1.82 0.52 2.0 2.37 66.6% 28.5% 0.0% 4.7%
2 1.80 0.61 2.0 2.38 47.8% 47.8% 0.0% 4.3%
3 1.83 0.31 2.0 2.45 78.9% 15.7% 0.0% 5.2%
4 1.85 0.45 2.0 2.50 70.0% 15.0% 15.0% 0.0%
5 1.87 0.40 2.0 2.60 65.0% 30.0% 5.0% 0.0%
6 1.82 0.29 2.0 2.35 76.4% 17.6% 5.8% 0.0%
7 1.93 0.73 2.0 2.46 57.8% 26.3% 5.2% 10.5%
8 1.84 0.18 2.0 2.57 81.8% 18.1% 0.0% 0.0%
p 1.76 1.05 2.0 2.07 60.0% 15.0% 0.0% 25.0%

Table 2: Puzzle explanation cost based on the cost function f(I, C)
and statistics on puzzle constraints

3. Explanation size. Our cost-function is constructed to favour
few (if any) clues and constraints in the explanations, and few previ-
ously derived facts |E|. Table 2 shows the average number of facts
used per explanation. We also show the average number of facts used
when using only bijectivity or transitivity, or when a clue is used.

We can observe that the average number of facts used is indeed
low, less than two. Furthermore, the breakdown shows that bijectiv-
ity typically uses more facts: it uses three ‘negative’ facts in one row
to infer a ‘positive’ fact, as in Figure 1 or it uses one ‘positive’ fact to
infer three negative facts. Note that for such an intuitive constraint,
the number of facts used does not matter much. Transitivity, by na-
ture, always uses two previously derived facts. Finally, when looking
at the number of facts used together with a clue we can see that our
approach successfully finds small explanations: many clues (the triv-
ial ones) use no facts, while some use 1 fact and only occasionally
2 or more facts are needed. The exception is again the difficult pasta
puzzle.

9 Discussion, future work, and conclusions

In this paper, we formally defined the problem of step-wise expla-
nation generation and presented a generic algorithm for solving this
problem. We implemented this algorithm in the context of logic grid
puzzles, where we start from natural language clues and provide a
human-friendly explanation in the form of a visualisation. We used
this implementation to investigate puzzle properties and difficulty.

The main bottleneck of the current algorithm is the many calls to
MUS, which is a hard problem by itself. Therefore, in future work
we want to investigate unsat-core optimization with respect to a cost-
function, either by taking inspiration for instance from the MARCO
algorithm [20] but adapting it to prune based on cost-functions in-
stead of subset-minimality, or alternatively by reduction to QBF [17].

Secondly, we want to dig deeper into the question what constitutes
an understandable explanations for humans, either by optimizing the
entire sequence instead of step by step, by learning the cost function
based on user traces, or by reusing our developed algorithms to ex-
plain reasoning steps in more detail and as such develop an expla-

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems646

nation mechanism that operates at different levels of abstraction. To
illustrate this last point: in the setting of very difficult puzzles, some
of the explanation steps still require some effort to understand. When
explained by a human, this is often done using some form of proof
by contradiction using an explanation of the form “suppose this [the
derived fact] would not hold, then [some simpler reasoning steps],
which is not possible”. This is also how we explained Figure 2 at
the end of Section 6. This explanation process is of exactly the same
form as what we generate now. The only difference is that I0 is not
the empty interpretation, but one in which a wrong value is assigned.

A final direction for future work is to make our approach interac-
tive, essentially allowing ZEBRATUTOR to be called while a user is
solving the puzzle and to implement in more serious domains such as
for instance interactive configuration in which a human and a search
engine cooperate to solve some configuration problem and the human
can often be interested in understanding why the system did certain
derivations [14, 5].

Acknowledgements

This research received funding from the Flemish Government un-
der the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaan-
deren” programme.

REFERENCES

[1] Khaled Belahcene, Christophe Labreuche, Nicolas Maudet, Vincent
Mousseau, and Wassila Ouerdane, ‘Explaining robust additive utility
models by sequences of preference swaps’, Theory and Decision, 82(2),
151–183, (2017).

[2] Katrien Beuls, Bart Bogaerts, Gianluca Bontempi, Pierre Geurts, Nick
Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe, and Paul Van
Eecke, eds. Proceedings of the 31st Benelux Conference on Artificial
Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference
on Machine Learning (Benelearn 2019), Brussels, Belgium, Novem-
ber 6-8, 2019, volume 2491 of CEUR Workshop Proceedings. CEUR-
WS.org, 2019.

[3] Patrick Blackburn and Johan Bos. Representation and inference for
natural language, 2005.

[4] Patrick Blackburn and Johan Bos, ‘Working with discourse representa-
tion theory’, An Advanced Course in Computational Semantics, (2006).

[5] Pierre Carbonnelle, Bram Aerts, Marjolein Deryck, Joost Vennekens,
and Marc Denecker, ‘An interactive consultant’, In Beuls et al. [2].

[6] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens,
and Marc Denecker, ‘Predicate logic as a modeling language: the IDP
system’, in Declarative Logic Programming: Theory, Systems, and Ap-
plications, eds., Michael Kifer and Yanhong Annie Liu, 279–323, ACM
/ Morgan & Claypool, (2018).

[7] Jens Claes, Master thesis: Automatic Translation of Logic Grid Puzzles
into a Typed Logic, Master’s thesis, KU Leuven, Leuven, Belgium, June
2017.

[8] Jens Claes, Bart Bogaerts, Rocsildes Canoy, Emilio Gamba, and Tias
Guns, ‘Zebratutor: Explaining how to solve logic grid puzzles’, In
Beuls et al. [2].

[9] Thibaut Feydy and Peter J Stuckey, ‘Lazy clause generation reengi-
neered’, in International Conference on Principles and Practice of
Constraint Programming, pp. 352–366. Springer, (2009).

[10] Maria Fox, Derek Long, and Daniele Magazzeni, ‘Explainable plan-
ning’, in IJCAI’17 workshop on Explainable AI (arXiv:1709.10256).

[11] M. Ganesalingam and W. T. Gowers, ‘A fully automatic theorem prover
with human-style output’, Journal of Automated Reasoning, 58(2),
253–291, (Feb 2017).

[12] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub, ‘The
conflict-driven answer set solver clasp: Progress report’, in Logic Pro-
gramming and Nonmonotonic Reasoning, 10th International Confer-
ence, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Pro-
ceedings, eds., Esra Erdem, Fangzhen Lin, and Torsten Schaub, volume
5753 of Lecture Notes in Computer Science, pp. 509–514. Springer,
(2009).

[13] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael
Specter, and Lalana Kagal, ‘Explaining explanations: An overview of
interpretability of machine learning’, in 5th IEEE International Con-
ference on Data Science and Advanced Analytics, DSAA 2018, Turin,
Italy, October 1-3, 2018, eds., Francesco Bonchi, Foster J. Provost,
Tina Eliassi-Rad, Wei Wang, Ciro Cattuto, and Rayid Ghani, pp. 80–
89. IEEE, (2018).

[14] Pieter Van Hertum, Ingmar Dasseville, Gerda Janssens, and Marc De-
necker, ‘The KB paradigm and its application to interactive configura-
tion’, TPLP, 17(1), 91–117, (2017).

[15] Ulrich Junker, ‘Quickxplain: Conflict detection for arbitrary constraint
propagation algorithms’, in IJCAI’01 Workshop on Modelling and Solv-
ing problems with constraints, (2001).

[16] Hans Kamp, ‘Discourse representation theory: What it is and where it
ought to go’, in Natural Language at the Computer, Scientific Sympo-
sium on Syntax and Semantics for Text Processing and Man-Machine-
Communication, Heidelberg, FRG, February 25, 1988, Proceedings,
ed., Albrecht Blaser, volume 320 of Lecture Notes in Computer Sci-
ence, pp. 84–111. Springer, (1988).

[17] Hans Kleine Büning and Uwe Bubeck, ‘Theory of quantified boolean
formulas’, in Handbook of Satisfiability, eds., Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, volume 185 of Frontiers
in Artificial Intelligence and Applications, 735–760, IOS Press, (2009).

[18] Antonina Kolokolova, Yongmei Liu, David G. Mitchell, and Euge-
nia Ternovska, ‘On the complexity of model expansion’, in Logic for
Programming, Artificial Intelligence, and Reasoning - 17th Interna-
tional Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15,
2010. Proceedings, eds., Christian G. Fermüller and Andrei Voronkov,
volume 6397 of Lecture Notes in Computer Science, pp. 447–458.
Springer, (2010).

[19] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi, ‘Ex-
plainable agency for intelligent autonomous systems’, in Twenty-Ninth
IAAI Conference, (2017).

[20] Mark H Liffiton and Ammar Malik, ‘Enumerating infeasibility: Find-
ing multiple muses quickly’, in International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial Optimiza-
tion Problems, pp. 160–175. Springer, (2013).

[21] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz,
‘Building a large annotated corpus of english: The penn treebank’,
Computational Linguistics, 19(2), 313–330, (1993).

[22] Joao Marques-Silva, ‘Minimal unsatisfiability: Models, algorithms and
applications’, in 2010 40th IEEE International Symposium on Multiple-
Valued Logic, pp. 9–14. IEEE, (2010).

[23] Joao Marques-Silva, Inês Lynce, and Sharad Malik, ‘Conflict-driven
clause learning sat solvers’, in Handbook of satisfiability, 131–153, ios
Press, (2009).

[24] David G. Mitchell, Eugenia Ternovska, Faraz Hach, and Raheleh Mo-
hebali, ‘Model expansion as a framework for modelling and solving
search problems’, Technical Report TR 2006-24, Simon Fraser Univer-
sity, Canada, (2006).

[25] Stephen Ryder, Puzzle Baron’s logic puzzles, Alpha Books, Indianapo-
lis, Indiana, 2016.

[26] Mohammed H Sqalli and Eugene C Freuder, ‘Inference-based con-
straint satisfaction supports explanation’, in AAAI/IAAI, Vol. 1, pp. 318–
325, (1996).

[27] Kaiyu Yang and Jia Deng, ‘Learning to prove theorems via interacting
with proof assistants’, in Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, eds., Kamalika Chaudhuri and Ruslan Salakhutdinov,
volume 97 of Proceedings of Machine Learning Research, pp. 6984–
6994. PMLR, (2019).

B. Bogaerts et al. / Step-Wise Explanations of Constraint Satisfaction Problems 647

	Introduction
	Related work
	Background
	Problem definition
	Explanation-producing search
	Explanations for logic grid puzzles
	Logic grid puzzles: From natural language clues to typed first-order logic
	Experiments
	Discussion, future work, and conclusions

