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Abstract. The resource-bounded alternating-time temporal logic
RB±ATL combines strategic reasoning with reasoning about re-
sources. Its model-checking problem is known to be 2EXPTIME-
complete (the same as its proper extension RB±ATL∗). Several frag-
ments have been identified to lower the complexity.

In this work, we consider the variant RB±ATL+ which permits
Boolean combinations of path formulae starting with single temporal
operators, but restricted to a single resource, providing an interesting
trade-off between temporal expressivity and resource analysis. We
show that the model-checking problem for RB±ATL+ restricted to
a single agent and a single resource is Δp

2-complete, hence the same
as for CTL+. In this case reasoning about resources comes at no ex-
tra computational cost. Furthermore, we show that, with an arbitrary
number of agents and a fixed number of resources, the problem can
be solved in EXPTIME using a Turing reduction to the parity game
problem for alternating vector addition systems with states.

1 Introduction

Reasoning about resources with ATL-like logics. Reasoning about
multi-agent systems (MAS) in which autonomous agents can in-
teract and perform actions to reach (joint or individual) goals have
benefited from the model-checking approach with the development
of ATL-like logics (see, e.g., [11, 10]). The need for managing re-
sources in MAS has been identified quite early and many logical
formalisms based on ATL (“Alternating-time temporal logic”) were
introduced to endow actions with consumption or production of re-
sources [13, 34, 14, 5, 3]. Unsurprisingly, dealing with resources
can lead to high complexity, even undecidable model-checking prob-
lems, which is best illustrated in [13, 14, 3]. Still decidable resource
logics have been identified, for instance by allowing only resource
consumption [8]. The challenge for years has been to design re-
source logics, general enough to allow consumption and production
of resources, while having a decidable model-checking, possibly low
complexity, to allow the implementation in model-checking tools.
A remarkable breakthrough occurred with the design of the logic
RB±ATL, with production and consumption of resources, whose
model-checking problem was shown decidable in [5]. Later on, frag-
ments of RB±ATL have been designed with relatively low complex-
ity: with a single agent and a single resource the PTIME upper bound
was shown in [12] (see also [6, 7]).
When RB±ATL+ comes into play. The model-checking problem
for RB±ATL is shown 2EXPTIME-complete in [2] by using sub-
routines to solve decision problems for alternating vector addition
systems with states (AVASS), see, e.g., [18, 26, 1]. The 2EXPTIME-
completeness is also pushed further for RB±ATL∗, the extension of
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RB±ATL in which path formulae are arbitrary LTL formulae, in the
same way the temporal logic CTL∗ extends CTL (see, e.g. [19, Chap-
ter 7]). Consequently, every logic between RB±ATL and RB±ATL∗

admits a 2EXPTIME-complete model-checking problem and this also
applies to RB±ATL+, the extension of RB±ATL in which path for-
mulae are arbitrary Boolean combinations of LTL formulae of tem-
poral depth one, in the same way the temporal logic CTL+ ex-
tends CTL (see, e.g., [22]). Though the model-checking problem
for CTL (resp. CTL+, CTL∗) is known to be PTIME-complete (resp.
Δp

2-complete, PSPACE-complete) and the one for ATL (resp. ATL+,
ATL∗) PTIME-complete [11] (resp. PSPACE-complete [15, 24], 2EX-
PTIME-complete [11]), there is no difference in complexity for
RB±ATL, RB±ATL+ and RB±ATL∗, as far as worst-case complex-
ity of the whole logics is concerned.
Our motivations. To identify fragments of RB±ATL∗ of tractable
complexity, with the intention to implement model-checking al-
gorithms in existing tools [30], it may happen that RB±ATL,
RB±ATL+ and RB±ATL∗ have distinct complexity when their frag-
ments are considered, typically by restricting the number of re-
sources or the number of agents. It is commonly accepted that the
design of fragments is essential to find a good compromise between
the expressive power of the logical language and the computational
complexity of the reasoning tasks. That is why the quest for sub-
problems of RB±ATL∗ obtained by limiting the temporal expressiv-
ity, or the number of resources is important for practical use. In this
paper, we study the complexity of the model-checking problem for
RB±ATL+ (strict syntactic fragment of RB±ATL∗) restricted to a
bounded number of resources, with a special attention to the case
with a single resource. It is also worth noting that as the path formu-
lae in CTL+ (and therefore in ATL+ and in RB±ATL+) are Boolean
combinations of LTL formulae of temporal depth one, this provides
a generic and natural way to design linear-time constraints. Surpris-
ingly, this specific viewpoint considering fragments of RB±ATL+

will happen to be fruitful, not only for the identification of interesting
fragments of lower complexity, but also in terms of proof techniques
to solve the model-checking problem.
Our contribution. First, we introduce the logic RB±ATL+, simi-
larly to the way ATL+ (resp. CTL+) extends ATL (resp. CTL), and
we show interesting features in terms of expressivity. We prove that
the model-checking problem for RB±ATL+ restricted to a single
agent and to a single resource is Δp

2-complete (Theorem 2). The
lower bound is inherited from CTL+ [28], whereas the upper bound
Δp

2 combines ingredients for model-checking CTL+ with procedures
in PTIME for decision problems for vector addition systems with
states (VASS) [27] restricted to one counter, newly introduced in this
paper. This analysis substantially generalises [12, Section 3]. In par-
ticular, we introduce the new generalised control state reachability
problem for VASS and we show that it is in PTIME, when restricted
to VASS with one counter (Theorem 1). The same problem with
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an unrestricted number of counters can be shown to be EXPSPACE-
complete, but its PTIME subproblem with one counter is instrumental
to get the Δp

2-completeness result. Since model checking CTL+ is
also Δp

2-complete, the enhanced expressivity provided by reasoning
about resource comes at no extra computation cost.

Furthermore, we show that the model-checking problem for
RB±ATL+ restricted to r resources (for a fixed r) can be solved in
EXPTIME (Theorem 3) by reduction to the parity game problem for
AVASS [17]. Remarkly, the number of locations in the target AVASS
is exponential in the input size, which makes a substantial difference
with what is done in [2] for RB±ATL∗. Hence, the model-checking
problem for RB±ATL+ restricted to one resource is PSPACE-hard
(inherited from ATL+ [15, 24]) and in EXPTIME. Apart from the
new complexity results that improve our understanding of fragments
of RB±ATL∗, we present reductions to the parity game problem to
AVASS that can be of interest for its own sake.

2 Preliminaries

Our presentation follows closely [2, 12]. In the rest of the paper,
N (resp. Z) is the set of natural numbers (resp. integers) and for
m,m′ ∈ Z, [m,m′] is the set {j ∈ Z | m ≤ j ≤ m′}. For a
finite or infinite sequence u ∈ X∗ ∪Xω of elements in some set X ,
we write ui or u[i] for the (i+1)-th element of u, i.e., u = u0u1 . . ..
For i ≥ 0, u≤i = u0u1 . . . ui is the prefix of u of length i+1, while
u≥i = uiui+1 . . . is a suffix of u. The length of a finite or infinite se-
quence u ∈ Xω ∪X∗ is denoted as |u|, where |u| = ω for u ∈ Xω .

2.1 RB±ATL+: strategic reasoning and resources

Syntax. In the rest of the paper we assume a countably infinite set
AP of atomic propositions. Given a finite non-empty set Ag of
agents and a number r ≥ 1 of resources (often called “resource
types” in the literature), we write RB±ATL+(Ag, r) to denote the
resource-bounded logic with agents from Ag and r resources.

Definition 1 (RB±ATL+ formulae) State formulae φ and path for-
mulae Ψ are built according to the following BNF, where p ∈ AP,
A ⊆ Ag, and�b ∈ (N ∪ {ω})r:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A�b〉〉Ψ Ψ ::= ¬Ψ | Ψ ∧Ψ | Xφ | φUφ

The formulae in RB±ATL+(Ag, r) are all and only the state formu-
lae. RB±ATL(Ag, r) is the fragment of RB±ATL+(Ag, r) in which
path formulae have no outermost Boolean connective but with a new
clause Gφ. We write RB±ATL+(r) to denote the set of formulae in
RB±ATL+(Ag, r), for some non-empty set Ag of agents.

As will become clear, RB±ATL+ extends ATL+ from [11] by
indexing the strategic operator 〈〈A〉〉 with tuples �b, whose intuitive
meaning is that coalition A can achieve their goal with an initial bud-
get�b. The value ω accounts for an infinite supply of the resource. The
linear-time operators X and U have their standard readings; while ∨,
⇒, and the temporal operator always G are introduced as usual. For
instance, 〈〈A(8,ω)〉〉((p1 U q1) ⇒ G r1 ∧ (p2 U q2) ⇒ G r2) is an
RB±ATL+(Ag, 2) formula but not an RB±ATL(Ag, 2) formula.
Semantics. We interpret the formulae by using resource-bounded
concurrent game structures [9, 2], endowed a weight function that
assigns an integer to every action (herein understood as a gain).

Definition 2 (RB-CGS) A resource-bounded concurrent game
structure is a tuple M = 〈Ag, r, S,Act, act, wf, δ, L〉 such that

• Ag is the finite, non-empty set of agents (by default Ag = [1, k]
for some k ≥ 1); r ≥ 1 is the number of resources;

• S is a finite, non-empty set of states;
• Act is a finite, non-empty set of actions;
• act : S ×Ag → ℘(Act) \ {∅} is the protocol function;
• wf : S × Ag × Act → Z

r is the (partial) weight function; that
is, wf(s, a, a) is defined only when a ∈ act(s, a);

• δ : S× (Ag → Act) → S is the (partial) transition function such
that δ is defined for state s and joint action f : Ag → Act only if
for every agent a ∈ Ag, f(a) ∈ act(s, a);

• L : AP → ℘(S) is the labelling function.

Intuitively, a resource-bounded CGS describes the interactions of
a group Ag of agents, who perform the actions in Act according to
the protocol function act. The execution of a joint action generates
a transition in the system, as specified by the transition function δ.
Moreover, on each transition the values of the r resources are updated
according to the weight of the joint action. It is worth noting that in
Definition 2 we do not assume the existence of an idle action (with
zero weight). It is introduced in [5, 7] and it is often advantageous
in terms of computational complexity (see e.g. [4, 2]). In this paper,
we do not rely on the action idle to establish our complexity results,
but of course, nothing prevents us from having such a distinguished
action in our instances of the model-checking problem.

An RB-CGS M is finite whenever L is restricted to a finite subset
of AP. The size |M | of a finite RB-CGS M is the size of its encoding
when integers are encoded in binary and maps and sets are encoded
in extension using a reasonably succinct encoding.

Given a coalition A ⊆ Ag and a state s ∈ S, a joint action avail-
able to A in s is a map f : A → Act such that for every agent
a ∈ A, f(a) ∈ act(s, a). The set of all such joint actions is de-
noted by DA(s). We write f � g if Dom(f) ⊆ Dom(g), and
for every agent a ∈ Dom(f), g(a) = f(a). Given a joint action
f ∈ DA(s), we write out(s, f) to denote the set of immediate out-
comes: out(s, f) def

= {δ(s, g) | for some g ∈ DAg(s), f � g}.
Given a joint action f ∈ DA(s) and s ∈ S, the weight of a tran-
sition from s by f (w.r.t. coalition A) is defined as wfA(s, f)

def
=∑

a∈A wf(s, a, f(a)). A computation λ is a finite or infinite se-

quence s0
f0−→ s1

f1−→ s2 . . . such that for all 0 ≤ i < |λ| − 1 we
have si+1 = δ(si, fi). To provide a formal semantics to RB±ATL+

based on RB-CGS, we need a notion of resource-bounded strategy
for the interpretation of the strategic operator 〈〈A�b〉〉.

Definition 3 (Strategy) A (memoryful) strategy FA for coalition A
is a map from the set of finite computations to the set of joint actions

of A such that FA(s0
f0−→ s1 . . . sn−1

fn−1−−−→ sn) ∈ DA(sn).

A computation λ = s0
f0−→ s1

f1−→ s2 . . . respects strategy FA iff for

all i < |λ|, si+1 ∈ out(si, FA(s0
f0−→ s1 . . . sn−1

fi−1−−→ si)).

A computation λ that respects FA is maximal if it cannot be ex-
tended further while respecting FA. Herein, maximal computations
starting in state s and respecting FA are infinite, and we denote the
set of all such maximal computations by Comp(s, FA).

Given a bound �b ∈ (N ∪ {ω})r and a computation λ = s0
f0−→

s1
f1−→ s2 . . . in Comp(s, FA), let the resource availability �vi at

step i < |λ| be defined as: �v0 = �b and for all i ≥ 0, �vi+1 =
wfA(si, fi)+�vi (assuming n+ω = ω for every n ∈ Z). Then, λ is
�b-consistent iff for all i < |λ|, �vi ∈ (N ∪ {ω})r . Since the resource
availability depends only on the agents in A, this is called the pro-
ponent restriction condition (see, e.g., [3, 2]). A �b-strategy FA with

F. Belardinelli and S. Demri / Reasoning with a Bounded Number of Resources in ATL+ 625



respect to s is a strategy such that all the maximal computations in
Comp(s, FA) are �b-consistent. We define the satisfaction relation |=
for a state s ∈ S, an infinite computation λ, p ∈ AP, a state formula
φ, and a path formula Ψ as follows (clauses for Boolean connectives
are standard and thus omitted):

(M, s) |= p iff s ∈ L(p)

(M, s) |= 〈〈A�b〉〉Ψ iff for some�b-strategy FA w.r.t. s,
for all λ ∈ Comp(s, FA), (M,λ) |= Ψ

(M,λ) |= Xφ iff (M,λ≥1) |= φ
(M,λ) |= φUφ′ iff for some i ≥ 0, (M,λ≥i) |= φ′, and

for all 0 ≤ j < i, (M,λ≥j) |= φ

In the sequel, we consider the following decision problem.

Definition 4 (Model Checking) Let k, r ≥ 1, φ be a formula in
RB±ATL+([1, k], r), M be a finite RB-CGS for Ag = [1, k] and r
resources, and let s be a state in M . The model checking problem
amounts to decide whether (M, s) |= φ.

In the sequel, given a logic L, we write MC(L) to denote the
corresponding model-checking problem. Below, we summarize
known complexity results for subproblems of MC(RB±ATL+)
obtained by bounding the number of agents or resources and we
identify the contributions made in this paper.

r\|Ag| ∞ ≥ 2 1

∞ 2EXPTIME-c. [2, Th. 2 and 3] EXPSPACE-c. [2, Th. 4]

≥ 4
in EXPTIME [this paper]

EXPTIME-h. [2, Th. 2 and 3]
PSPACE-c [2, Cor. 2] [15]

3 in EXPTIME [this paper]
2 PSPACE-h. [15]

1
in EXPTIME [this paper] in Δp

2 [this paper]

PSPACE-h. (from ATL+ [15]) Δp
2 -h. (from CTL+ [28])

Remark 1 When Ag = {1}, the only strategy modalities are
〈〈Ag

�b〉〉 and 〈〈∅�b〉〉. Whereas 〈〈∅�b〉〉 behaves as universal path quanti-
fier A in CTL+ (and the weights in the RB-CGS are ignored because
of the proponent restriction condition), the modality 〈〈Ag

�b〉〉 amounts
to quantify existentially on a path satisfying a temporal goal (but this
time, the weights are taken into account). Hence, RB±ATL+({1}, r)
can be thought of as a resource-bounded version of CTL+ with r re-
sources. Finally, to stick to the definition of the original version of
RB±ATL from [5] and to provide more flexibility to the specification
language, we have kept the bound ω but the way to handle it con-
sists in reducing the dimension (eliminate the components where it
appears as it does not bring any quantitative constraint), which can
be easily performed.

Example 1 We illustrate the formal machinery introduced so far
with a toy example. We consider a scenario in which two drones,
d1 and d2, have to deliver two parcels to addresses (X1, Y1) and
(X2, Y2) on a [−M,M ]2 grid for some M > 0. We assume that they
both start from location (0, 0). At any time, each drone can choose
between two modes: either it moves in one of the four directions (N,
S, E, W) or it recharges its battery through a solar panel (charge),
but it cannot do both actions at the same time. Moving around con-
sumes one energy unit at every time step; whereas the drone can
recharge one unit at a time. Each drone can carry one parcel at a
time, and they can only pick them up from location (0, 0).

This scenario can be modelled as a resource-bounded CGS
M = 〈{d1, d2}, 1, [−M,M ]2, {N,S,E,W,charge}, act, wf,
δ, L〉 where in every state s, for i ∈ {1, 2} and Di ∈ {N,S,E,W}:

• act(s, di) = {N,S,E,W,charge};

• wf(s, di,Di) = −1 and wf(s, di,charge) = +1;
• δ(((x1, y1), (x2, y2)), (D1,D2)) = ((x′

1, y
′
1), (x

′
2, y

′
2)), where

(x′
i, y

′
i) is obtained from (xi, yi) by decrementing/incrementing

either xi or yi depending on Di (notice that on the
frontier, movement in some directions has no effect), and
δ(s, (charge,charge)) = s.

• AP = {charge1, charge2, del1, del2} and L(deli) =
{(Xi, Yi)}, while a state is labelled with chargei if drone di has
charged as previous action (we can keep track of this information
with an extra bit of memory in the system state).

Even in such a simple scenario we can express interesting strate-
gic properties in RB±ATL+({d1, d2}, 1). Consider a budget b =
max{(|X1| + |Y1|), (|X2| + |Y2|)} that allows any drone d to de-
liver a single parcel to the farthest address. We can check that in
location (0, 0) the following formulae are true:

1. With budget b, every drone di, for i ∈ {1, 2}, can deliver parcel 1
and can deliver parcel 2, without charging in the meantime:

〈〈{di}b〉〉(¬chargeU del1) ∧ 〈〈{di}b〉〉(¬chargeU del2) (1)

2. With budget 2b, neither drone can deliver both parcel 1 and 2,
without charging in the meantime (recall that drones have to pick
parcels in location (0, 0)):

¬〈〈{di}2b〉〉((¬chargeU del1) ∧ (¬chargeU del2)) (2)

(1) belongs to RB±ATL, but we make use of Boolean combina-
tions of goals and the expressivity of RB±ATL+ to formalize (2).

2.2 Correspondence between RB-CGS and AVASS

In this section, we recall the notion of alternating vector addition
systems with states (AVASS), as well as relevant related decision
problems. Indeed, AVASS are closely related to the model-checking
problem for RB±ATL-like logics, as explained below (see also [2]).
First, we need to introduce some preliminaries.

A binary tree T , which may contain nodes with a single child, is
a non-empty subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and
i ∈ {1, 2}, n · i ∈ T implies n ∈ T and, n · 2 ∈ T implies n · 1 ∈ T .

Definition 5 (AVASS [18]) An alternating VASS is a tuple A =
(Q, r,R1, R2) such that Q is a finite set of locations, r ≥ 0 is the
number of resources, R1 is a finite subset of Q × Z

r × Q (unary
rules) and R2 is a subset of Q3 (fork rules).

Standard VASS [27] (known to be equivalent to Petri nets) are
AVASS with no fork rules (i.e., R2 = ∅). A derivation skeleton in A
is a labelling D : T → (R1∪R2∪{⊥}) such that T is a binary tree,
and if n has one child (resp. has two children, is a leaf) in T , then
D(n) ∈ R1 (resp. D(n) ∈ R2, D(n) =⊥). A derivation in A based
on D is a labelling D̂ : T → Q× Z

r such that:

• if n has one child n′ in T , D(n) = (q, �u, q′) and D̂(n) = (q, �v),
then D̂(n′) = (q′, �v + �u);

• if n has two children n′ and n′′ in T , D(n) = (q, q1, q2) and
D̂(n) = (q, �v), then D̂(n′) = (q1, �v) and D̂(n′′) = (q2, �v).

So, the fork rules do not update the value of resources. Hence,
there is an asymmetry between unary and fork rules. Unlike branch-
ing VASS (see, e.g., [38, 20, 23]), fork rules have no effect on the
counter values. A derivation D̂ is admissible (or a proof ) whenever
only natural numbers occur in it.
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....
(q3, (9, 9))

(q2, (5, 5))

....
(q1, (3, 8))

....
(q2, (3, 8))

(q0, (3, 8))

(q1, (5, 5))

(q0, (5, 5))

(q1, (7, 2))

By way of example, a proof can
be found left (with the root at the
bottom).

R1 = {q1 (−2,3)−−−→ q0, q2
(4,4)−−→ q3}

R2 = {q0 −→ q1, q2}.

Hereafter, we consider the following decision problem pertaining
to AVASS. Given an AVASS A = (Q, r,R1, R2), a colouring col is
defined as a map Q → [0, p− 1] for some number p ≥ 1 of colours.
The parity game problem is defined as follows:

Parity game problem for AVASS: given A, q0, �b ∈ N
r and col,

is there a proof with root labelled by (q0,�b), all the maximal
branches are infinite, and the maximal colour occurring infinitely
often is even?

By [17, Corollary 5.7] on the parity energy game problem with
initial credit, and by [1, Lemma 4] relating the parity game problem
for single-sided VASS – a.k.a. AVASS – and the parity energy game
problem, the former can be solved in time

(|Q| × ||R1||)2
O(r×log(r+p))

+O(r × log||�b||),

where ||�b|| def
= max{| �b[i] | : i ∈ [1, r]} and ||R1|| def

= max{||�u|| :

q
�u−→ q′ ∈ R1}. When r and p are bounded, the problem is there-

fore in EXPTIME. Indeed, the expression 2O(r×log(r+p)) and r are
bounded whereas ||R1|| is at most exponential in the size of the in-
put (the integers are encoded in binary).

We now briefly recall the correspondence established in [2] be-
tween strategies in RB±ATL-like logics and proofs in AVASS. As
we use it in the paper, we explain it in detail for the reader’s benefit.
Below, we consider AVASS with fork rules in

⋃
β≥2 Q

β (arbitrary ar-
ity), and where the proofs are trees with nodes labelled by elements
in Q × N

r . Let M be a finite RB-CGS, A ⊆ Ag be a coalition,
and s� be one of its states. We construct the AVASS AM,A,s� such
that the set of computations in M starting in s� and respecting strat-
egy FA corresponds to the derivation skeleton whose root is labelled
by a unary rule with first state s�. Hence, we leverage on the fact
that a �b-strategy generates a set of maximal computations that can
be arranged as a finitely-branching tree with only infinite branches,
and such infinite trees can be viewed precisely as infinite proofs on
AM,A,s� . Given M = (Ag, r, S,Act, act, wf, δ, L) and s� ∈ S,
the AVASS AM,A,s�

def
= (Q, r,R1, R2) is built as follows:

Q
def
= {s�} ∪ {(s, f) | s ∈ S, f ∈ DA(s)} ∪

{(g, s′) | s′, s′′ ∈ S, g ∈ DAg(s
′′), δ(s′′, g) = s′}.

Every location in Q is attached to a state in S and contains a finite
piece of information: in (s, f), f is a joint action available to A im-
plementing its strategy whereas in (g, s′), we remember the global
joint action to reach s′.

• The set R1 of unary rules contains the following elements:

– (s�, wfA(s
�, f), (s�, f)), for all f ∈ DA(s

�). Indeed, the lo-
cations in Q attached to s� have a special treatment.

– ((g, s), wfA(s, f), (s, f)), for all (g, s) ∈ Q and f ∈ DA(s).

• The set R2 of fork rules contains the following elements.

– For (s, f) ∈ Q, let {(g1, s1), . . . , (gα, sα)} = {(g, s′) ∈
S | s′ = δ(s, g), g ∈ DAg(s), f � g}. This
set is non-empty because the protocol function always re-
turns a non-empty set of actions. We add the α-ary fork rule
((s′, f), (g1, s1), . . . , (gα, sα)). The joint actions available for
the opponent coalition (Ag \ A) determine which locations
(g1, s1), . . . , (gα, sα) can be reached. It is the proponent re-
striction condition that guarantees that using fork rules in this
place (i.e. without updating the counter values) is correct.

Given an infinite computation λ = s0
g1−→ s1

g2−→ s2 . . . starting
in s� = s0 and respecting FA, we can associate it with an infinite
sequence (which we call an extended computation)

ext(λ, FA)
def
= s0

�u0−→ (s0, f0) −→ (g1, s1)
�u1−→ (s1, f1) −→ · · ·

where s0 = s�, and for all n ≥ 0, FA(s0
g1−→ s1 . . .

gn−→ sn) = fn
and wfA(sn, fn) = �un.

Further, transitions in M can be viewed as triples (s′, g, s′′) such
that δ(s′, g) = s′′, also written as s′

g−→ s′′. The finite set of
such transitions is denoted by ΣM . An infinite computation λ =

s0
g1−→ s1

g2−→ s2 . . . can be represented by the ω-word (s0
g1−→

s1) · (s1 g2−→ s2) · (s2 g3−→ s3) · · · in Σω
M . Given an infinite branch

of the proof in AM,A,s� corresponding to the extended computation

s0
�u0−→ (s0, f0) −→ (g1, s1)

�u1−→ (s1, f1) −→ · · · , its ΣM -projection
is defined as the sequence (s0

g1−→ s1) · (s1 g2−→ s2) · (s2 g3−→ s3) · · ·
Formal correspondences between M and AM,A,s� are below.

Proposition 1 ([2, Lemma 4]) Let L ⊆ Σω
M and �b ∈ N

r . There
is a �b-strategy FA w.r.t. s� in M such that the set of computations
Comp(s�, FA) is included in L iff there is a proof in AM,A,s� with
root labelled by (s�,�b), every maximal branch is infinite and its ΣM -
projection is in L.

By way of example, let Sφ be the set of states in S satisfying the
(state) formula φ (S is from some RB-CGS M ) and Lφ be the restric-
tion of Σω

M to ω-words involving only states from Sφ. By Proposi-
tion 1, (M, s�) |= 〈〈A�b〉〉Gφ iff there is a proof in AM,A,s� re-
stricted to locations involving only states in Sφ whose root is labelled
by (s�,�b) and every maximal branch is infinite.

3 Model-checking Problem for RB±ATL+ ({1}, 1)
To show that MC(RB±ATL+({1}, 1)) is PTIME-complete, we intro-
duce a new decision problem for vector addition systems with states
(VASS), and we show that when restricted to a single counter, it can
be solved in PTIME, generalising Theorems 3.3 and 3.5 from [12].
We recall that a VASS is an AVASS with an empty set R2 of fork
rules: it is a structure V = (Q, r,R), where R is a finite subset
of Q × Z

r × Q. A configuration of a VASS V is defined as a pair
(q, �x) ∈ Q× N

r . Given (q, �x), (q′, �x′) and a transition t = q
�u−→ q′,

we write (q, �x)
t−→ (q′, �x′) whenever �x′ = �u + �x. A run is defined

as a sequence (q0, �x0)
t1−→ (q1, �x1)

t2−→ (q2, �x2) · · · A simple run ρ
is a finite run such that no control state appears twice. A simple path
is a sequence of contiguous transitions t1 . . . tk such that no control
state occurs more than once. A simple loop is a sequence of contigu-
ous transitions t1 . . . tk such that the first control state of t1 is equal
to the second control state of tk (and it occurs nowhere else) and no
other control state occurs more than once. An r-VASS is a VASS
with r ≥ 1 counters. By convention, a 0-VASS is a finite digraph.
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3.1 Generalised control state reachability problem

We now present a new decision problem on VASS that plays a crucial
role in solving MC(RB±ATL+({1}, 1)).
Generalised control state reachability problem GREACH(VASS):

Input: a VASS V , (q0, �x0), a sequence (X1, h1), . . . , (Xα, hα) for
some α ≥ 0 s.t. Xα ⊆ · · · ⊆ X1 ⊆ Q and {h1, . . . , hα} ⊆ Q.

Question: is there an infinite run (q0, �x0) −→ (q1, �x1) −→
(q2, �x2) · · · such that there are 0 < i1 < i2 < · · · < iα with
for all j ∈ [1, α], qij = hj and {qk | k < ij} ⊆ Xj?

Here is an illustration of the witness run when α = 2.
{q0,...,qi1−1}⊆X1

︷ ︸︸ ︷

(q0, �x0) · · · (qi1−1, �xi1−1) −→ (qi1 , �xi1 ) · · · (qi2−1, �xi2−1)
︸ ︷︷ ︸

{q0,...,qi2−1}⊆X2

−→ (qi2 , �xi2 ) −→ · · ·

When α = 0, the question is about the existence of an infinite run
from (q0, �x0), which is in PTIME when r = 1 (see, e.g., [12]).
Similarly, GREACH(VASS) restricted to 0-VASS (say GREACH(0-
VASS)) is NLOGSPACE-complete as the Graph Accessibility Prob-
lem (GAP) can be reduced to it and the NLOGSPACE upper bound
can be established by showing that a positive instance requires the
existence of a path of length at most |Q|× (α+1) whose constraints
can be checked on-the-fly in NLOGSPACE. Unlike for 0-VASS, the
addition of counters forbids a similar reduction of an instance of
GREACH(VASS) to reachability questions on finite graphs.

We introduce a few more notions. Given an RB-CGS M =
({1}, S, Act, 1, act, wf, δ, L) with a single agent and a single re-
source, let us define the 1-VASS VM = (S, 1, RV ) such that q u−→
q′ ∈ RV iff there is some action a ∈ act(q, 1) such that δ(q, a) = q′

and wf(q, 1, a) = u. Similarly, we write KM = (S,R,LK) to de-
note the Kripke-style structure such that q R q′ iff there is some ac-
tion a ∈ act(q, 1) such that δ(q, a) = q′ and LK = L. We introduce
Kripke-style structures as the modality 〈〈{1}ω〉〉 amounts to forget-
ting about weights in M , and therefore M can be understood as the
Kripke-style structure KM , and model checking reduces to CTL+

model checking. Similarly, the strategy modality 〈〈∅b〉〉 behaves as
the universal path quantifier A in weight-free transition systems, and
therefore model-checking reduces again to CTL+ model-checking.
Given S1 ⊆ S, we write V S1

M (resp. KS1
M ) to denote the restriction

of VM (resp. KM ) to the locations/states in S1 only.
Let V , (q0, �x0) and (X1, h1), . . . , (Xα, hα) be an instance of

GREACH(1-VASS). W.l.o.g., we assume that q0 �= h1. If α = 0,
then it is a positive instance of GREACH(1-VASS) iff V , (q0, �x0)
is a positive instance of the non-termination problem for 1-VASS,
known to be in PTIME (see, e.g., [12, Theorem 3.5]). When α > 0,
one can show that the instance is positive iff either (A) or (B) holds.

(A) The following conditions hold:

(a) For N ≥ 0, there is a run (q0, z0) · · · (qn, zn) with (q0, z0) =
(q0, x0), qn = h1, zn ≥ N , and {q0, . . . , qn−1} ⊆ X1.

(b) V ′, h1 and (X2, h2), . . . , (Xα, hα) is a positive instance of
GREACH(0-VASS) where V ′ is the directed graph underlying
V (integers on transitions are simply removed).

(c) There a simple path from hα to some location q′ and there is a
simple loop from q′ with positive overall effect.

(B) (a) above cannot be satisfied and there is a simple run
(q0, x0), . . . , (qk, xk) in V X1∪{h1} with qk = h1 and V ,
(h1, xmax) and (X2, h2), . . . , (Xα, hα) is a positive instance
of GREACH(1-VASS) with xmax the maximal counter value for
reaching h1 among all the simple runs from (q0, x0).

The condition “(A) or (B)” can be rewritten as “((a) and Φ) or (not
(a) and Φ′)”, which implies “Φ or Φ′” but is not logically equivalent
to it. Moreover, Φ′ makes sense only when (a) does not hold, whence
the current form of (A) and (B).

Lemma 1 Let V , (q0, x0) and (X1, h1), . . . , (Xα, hα) be an in-
stance of GREACH(1-VASS) with α > 0. It is a positive instance iff
either (A) or (B) holds.

We briefly explain why the characterisation is correct and leads
to PTIME. When (a) holds, one can reach the control state h1 with
a counter value as large as we want. The constraints from the sub-
sequence (X2, h2), . . . , (Xα, hα) induce only reachability ques-
tions in the underlying directed graph V ′. Otherwise, when (a) can-
not be satisfied, the instance is positive only if there is a run ρ =
(q0, x0), . . . , (qk, xk) in V X1∪{h1} with qk = h1 and V , (h1, xk)
and (X2, h2), . . . , (Xα, hα) is a positive instance of GREACH(1-
VASS). However, not (a), we can assume that ρ is a simple run and
the best we can do is to pick xk equal to the maximal counter value
for reaching h1 among all the simple runs from (q0, x0) visiting only
states in X1. Checking (a), (b) or (c) can be done in PTIME (see the
proof of [12, Theorem 3.3]) using dynamic programming. Similarly,
computing xmax in (B) can be done in PTIME too.

Theorem 1 The problem GREACH(1-VASS) is in PTIME.

The bound PTIME in Theorem 1 is a drastic drop compared to the
complexity for GREACH(VASS). Indeed, GREACH(VASS) is EX-
PSPACE-hard as the control-state reachability problem for VASS can
be reduced to it (and then we use [29]). GREACH(VASS) is defi-
nitely in EXPSPACE by [25, Theorem 5.4] dealing with the linear-
time μ-calculus on VASS. Besides, for all r ≥ 1, model-checking
r-VASS with linear-time μ-calculus has been shown in PSPACE [25,
Theorem 4.1] (PSPACE-hardness still holds with a unique counter,
inherited from LTL model-checking [36]). Herein, we establish that
GREACH(1-VASS) behaves even better as it can be solved in poly-
nomial time only.

3.2 The model-checking algorithm

To solve MC(RB±ATL+({1}, 1)), there is an essential case to con-
sider, namely how to verify whether (M, s) |= 〈〈{1}b〉〉Ψ (this is the
key case that needs to be solved in a satisfactory way, complexity-
wise). With a single agent in M , this amounts to checking the exis-
tence of a computation λ starting from s, with initial budget b ∈ N,
satisfying Ψ. This is the place where GREACH(1-VASS) helps.

Lemma 2 Let Ψ be a Boolean formula built over path formulae of
the form X p or pU q, where p, q are propositional variables. Let M
be an RB-CGS, s be one of its states and b ∈ N. The problem of
checking (M, s) |= 〈〈{1}b〉〉Ψ (in RB±ATL+({1}, 1)) is in NP.

Hence, the whole model-checking algorithm for
RB±ATL+({1}, 1) can be shown in Δp

2 as it uses a polyno-
mial amount of instances of the problem in Lemma 2. Each instance
can be solved in NP since GREACH(1-VASS) is in PTIME.

Theorem 2 MC(RB±ATL+({1}, 1)) is Δp
2-complete.

Proof: (sketch.) As regards the lower bound, it follows from the
Δp

2-hardness of MC(CTL+) [28]. As for the upper bound, let M =
({1}, 1, S, Act, act, wf, δ, L) be an RB-CGS, and φ be a formula in
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RB±ATL+({1}, 1). Let us present Algorithm 1 that computes the
finite set {s ∈ S | (M, s) |= φ}, where we assume that b ∈ N and
Ψ is a Boolean formula in NNF built over atomic path formulae of
the form Xφ or φUφ′, for state formulae φ, φ′. Moreover, let us as-
sume that the maximal state formulae occurring in Ψ are φ1, . . . , φN

and the model-checking algorithm has already determined that they
hold true exactly on the states in S�

1 , . . . , S
�
N , respectively. Let Ψ� be

the formula obtained from Ψ by replacing each φi by a fresh propo-
sitional variable pi, and M� be the RB-CGS obtained from M by
modifying the labelling function as follows: L�(pi)

def
= S�

i . We have
the following equivalences: (M, s) |= 〈〈∅b〉〉Ψ iff (KM� , s) |= AΨ�

in CTL+, and (M, s) |= 〈〈{1}ω〉〉Ψ iff (KM� , s) |= EΨ� in CTL+.
Concerning the case (M, s) |= 〈〈{1}b〉〉Ψ with b ∈ N, we have
(M, s) |= 〈〈{1}b〉〉Ψ iff (M�, s) |= 〈〈{1}b〉〉Ψ�, which can be
checked in NP by Lemma 2. By structural induction, one can show

Algorithm 1 – RB±ATL+({1}, 1) model checking –
1: procedure MC(M,φ)
2: case φ of

3: p: return {s ∈ S | s ∈ L(p)}
4: ¬ψ: return S\ MC(M,ψ)
5: φ1 ∧ φ2: return MC(M,φ1)∩ MC(M,φ2)
6: 〈〈∅b〉〉Ψ/〈〈∅ω〉〉Ψ: return {s | (KM� , s) |= AΨ� in CTL+}
7: 〈〈{1}ω〉〉Ψ: return {s | (KM� , s) |= EΨ� in CTL+}
8: 〈〈{1}b〉〉Ψ: return {s | (M�, s) |= 〈〈{1}b〉〉Ψ� with the

algorithm in the proof of Lemma 2 }
9: end case

10: end procedure

that (M, s) |= φ iff s ∈ MC(M,φ). As far as complexity is con-
cerned, MC(M,φ) is computed with a recursion depth linear in the
size of φ and a polynomial number of NP requests. More precisely,
for each occurrence of a subformula ψ of φ, MC(M,ψ) can be
computed only once, which guarantees the overall number of calls
of the form MC(M,ψ): it is sufficient to take advantage of dy-
namic programming and to work with a table to remember the values
MC(M,ψ) already computed (omitted in the present algorithm). We
recall that Δp

2 , a.k.a. PTIMENP, is precisely the class of problems that
can be solved in polynomial time with an oracle in NP. We also take
advantage of the fact that the model-checking problem for CTL+ is
in Δp

2 (see, e.g., [19]). �
It is natural to wonder whether the model-checking problem for

the Parity-Energy ATL, also called pe-ATL in [33], when the energy
bound is bounded below and unbounded above can be used to analyse
the complexity of MC(RB±ATL+(1)). MC(pe-ATL) is in Δp

2 [33]
and it seems hopeless to take advantage of this bound3 to solve ef-
ficiently MC(RB±ATL+(1)) since MC(ATL+) is already PSPACE-
hard [15]. A notable difference between RB±ATL+(1) and pe-ATL,
is that the parity condition in pe-ATL is actually a global fairness
condition for all the computations of the CGS.

Besides, we observe that the decision procedure we propose for
solving the model-checking problem for RB±ATL+({1}, 1) in-
vokes the subroutine for the model-checking problem for CTL+

with one counter, which we can solve optimally thanks to
Lemma 2. The existence of a polynomial-time reduction be-
tween MC(RB±ATL+({1}, 1)) and the model-checking problem
for CTL+ is guaranteed, as both problems are Δp

2-complete. How-

3 We thank Dario Della Monica for checking that the NP upper bound stated
in [33, Theorem 5.1] is actually an Δp

2 upper bound in view of the algorithm
developped in [33, Section 4]

ever, in Algorithm 1, we rather use a Turing reduction using as
subroutines MC(CTL+) on finite transition systems and model-
checking for CTL+ on 1-VASS. The question about the encoding
of MC(RB±ATL+({1}, 1)) into plain CTL+ is certainly interest-
ing and solving Condition (A) and (B) used in Lemma 1, actually
amounts to detect graph-theoretical properties on the 1-VASS, so a
direct encoding is plausible.

4 Model-checking RB±ATL+(r)

In [2], the 2EXPTIME upper bound for MC(RB±ATL) is obtained
with a decision procedure calling subroutines to solve the non-
termination and the control state reachability problems for AVASS
on instances of the form AM,A,s� , as described in Section 2.2.
On the other hand, to obtain the 2EXPTIME upper bound for
MC(RB±ATL∗) also in [2], the decision procedure calls a subrou-
tine for solving the parity game problem for AVASS (see Section 2.2)
but, in the worst-case, on systems with a doubly-exponential number
of locations in the size of the input formula. Indeed, synchronised
products are considered between deterministic parity automata (on
ω-words) and systems of the form AM,A,s� . This is due to the fact
that given an LTL formula, an equivalent deterministic parity automa-
ton might have a doubly-exponential number of states in the size of
the input LTL formula (see e.g. [37, 35]). Hence, even when the num-
ber of resources r is fixed (which is an assumption made in this sec-
tion), solving MC(RB±ATL+(r)) by using the method in [2], would
lead to an 2EXPTIME upper bound.

In this section, we explain how to reduce one exponential by
providing a decision procedure that solves MC(RB±ATL+(r)) in
exponential time, when r is fixed (this is optimal as soon as
r ≥ 4). Such an improvement can be explained by the fact
that reasoning about LTL formulae of temporal depth one is usu-
ally simpler than for arbitrary LTL formulae (see, e.g., [21, Sec-
tion 7.3]). Apart from our new EXPTIME bound, this section can
be viewed as providing an alternative decision procedure for solv-
ing MC(RB±ATL+) without going through the determinisation of
Büchi automata, or as generalising the reduction used to decide
RB±ATL [2], but at the cost of building AVASS with an exponen-
tial number of locations (which is strictly more expensive than for
RB±ATL, but strictly less than for RB±ATL∗). As CTL+ is expo-
nentially more succinct than CTL [39], which entails that some ATL+

(resp. RB±ATL+(Ag, r)) formulae can be exponentially more suc-
cinct than ATL (resp. RB±ATL(Ag, r)) formulae, this extra cost for
MC(RB±ATL+(r)) is most likely the best we can hope for.

4.1 Carefully constructing AVASS

In this section, we assume that Ag = [1, k] for some k ≥ 1
and we explain how to handle the verification of the satisfaction of
(M, s�) |= 〈〈A�b〉〉Ψ, for A ⊆ Ag and �b ∈ N

r . To fix notations, let
M = 〈Ag, r, S,Act, act, wf, δ, L〉. As in Section 3, without loss
of generality, we assume that Ψ is a Boolean formula in NNF built
over atomic formulae of the form X p or pU q where p, q are atoms.
To determine the satisfaction of (M, s�) |= 〈〈A�b〉〉Ψ, we construct
an AVASS A� = (Q�, r, R�

1, R
�
2), a colouring col� : Q� → [0, 1]

(defining a co-Büchi condition), and q� ∈ Q� such that

1. (M, s�) |= 〈〈A�b〉〉Ψ iff there is a proof with root labelled by
(q�,�b) such that all the maximal branches are infinite and the max-
imal colour that appears infinitely often is 0.
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2. |Q�| is (only) exponential in |M | + |Ψ| and ||R�
1|| ≤ k ×

max(||wf(s, a, a)|| : s ∈ S, a ∈ Ag, a ∈ Act).

In Section 2.2, we show how to define an AVASS AM,A,s� =
(Q, r,R1, R2) from M , A and s�. The AVASS A� is made of copies
of AM,A,s� so that the general behavior of AM,A,s� is preserved,
but we decorate the locations with a finite memory taking care of the
satisfaction of the path formula Ψ or those generated from it.

Let us provide a few more definitions. W.l.o.g., we assume that Ψ
is a positive Boolean combination of atomic path formulae of one
of the following forms: G �, �U �′, �U(�′1 ∧ �′2), X � where the �’s
are literals. Notice that the transformation to obtain this shape can be
performed in linear time.

Let s be in S and Φ be a Boolean combination of atomic path
formulae of the above form. We write s(Φ) to denote the path for-
mula obtained from Φ according to clauses (1)–(4) below. Intuitively,
when Φ is a path formula to be satisfied on the extension of a cur-
rent finite computation and s is visited next, the path formula s(Φ) is
obtained from Φ by replacing the atomic path formulae in Φ that are
definitely true or false by � or ⊥, respectively.

1. If G � occurs in Φ and (M, s) �|= �, then replace every occurrence
of G � by ⊥.

2. If �U �′ occurs in Φ and (M, s) |= �′ (resp. (M, s) �|= �′ ∨ �) ,
then replace every occurrence of �U �′ by � (resp. by ⊥).

3. The clauses for handling �U(�′1 ∧ �′2) are similar.
4. If X � occurs in Φ and (M, s) |= � (resp. (M, s) �|= �), then re-

place every occurrence of X � by � (resp. by ⊥).

The final value for s(Φ) is obtained by using simplification rules
to eliminate � or ⊥, if possible. Hence, s(Φ) may take the values ⊥
or � (not strictly speaking path formulae, but we assume so below).
We write S(Ψ) to denote the set of path formulae obtained from Ψ
by successive applications of s(·) for some s ∈ S. Here are its main
properties.

Lemma 3 Let Ψ be a path formula as above, M be an RB-CGS and
λ be one of its computations.

(correctness) M,λ |= Ψ implies M,λ≥1 |= s(Ψ) with λ[0] = s.
(small size) Ψ ∈ S(Ψ) and |S(Ψ)| is in O(2|Ψ|).
(stabilisation) There is i ≥ 0 such that for all j ≥ i, we have

λ[j](· · · (λ[0](Ψ)) · · · ) = λ[i](· · · (λ[0](Ψ)) · · · ).

The proof is by an easy verification. Let us return to the construction
of Q�. By definition, Q� is equal to S(Ψ)×Q so that each Φ ∈ S(Ψ)
has its copy of AM,A,s� . A location (Φ, q) is intended to follow the
rules of AM,A,s� to satisfy the path formula Φ. In order to update
Φ, when the proof visits a next location q′ attached to the state s′ ∈
S, the next location in Q� becomes (s′(Φ), q′). The location q� is
defined as the pair (s�(Ψ), s�), where s�(Ψ) is built from the first
three clauses only for defining s(·) (i.e., the atomic path formulae of
the form X � are exceptionnally ignored to start with). Let us explain
now how to define the unary and fork rules when only locations in
S(Ψ)×Q are involved (Φ ∈ S(Ψ)).

• If (s�, �u, (s�, f)) ∈ R1, then ((Φ, s�), �u, (Φ, (s�, f))) ∈ R�
1

and if ((g, s), �u, (s, f)) ∈ R1, then ((Φ, (g, s)), �u, (Φ, (s, f))) ∈
R�

1 . The unary rules (related to the actions of the coalition A) do
not update the first argument Φ as no next location is reached.

• If ((s, f), (g1, s1), . . . , (gα, sα)) ∈ R2, then
((Φ, (s, f)), (s1(Φ), (g1, s1)), . . . , (sα(Φ), (gα, sα))) ∈ R�

2 .

Consequently, a proof involving locations in S(Ψ) × Q leads to
a proof in AM,A,s� when the first component in (Φ, q) is re-
moved. For all (Φ, q) in Q�, we have col�((Φ, q))

def
= 0 if

{G �1, . . . ,G �n} |=PROP Φ, where G �1, . . . , G �n are the G-
formulae in Φ and |=PROP is the propositional entailment (which
can be checked in LOGSPACE [31]). Otherwise, col�((Φ, q)) def

= 1. In
particular, by definition, col�((⊥, q)) = 1 and col�((�, q)) = 0.
The rationale for the definition of col� is simply that an infinite
branch of a derivation in A�, at some point Φ stabilises and all the
states in S attached to the locations on that branch satisfies all the
G-formulae in Φ (otherwise some of them would be replaced by ⊥).
The colour zero is attached only to locations in Q� for which the sat-
isfaction of all the G-formulae entails the satisfaction of the terminal
path formula Φ. Correctness of the construction is stated below.

Lemma 4 Let�b ∈ N
r . Then, (M, s�) |= 〈〈A�b〉〉Ψ iff there is a proof

whose root is labelled by (q�,�b) and all the maximal branches are
infinite and the maximal colour that appears infinitely often is 0.

The tedious proof combines advantageously the properties of
AM,A,s� [2] and the ones for A� related to the satisfaction of path
formulae. As |Q| is in O(|M |2), we have |Q�| is in O(2|Ψ|×|M |2).
The value ||R�

1|| is bounded by k × max(||wf(s, a, a)|| : s ∈
S, a ∈ Ag, a ∈ Act), which is bounded by |M |2 (direct con-
sequence of the construction of AM,A,s� ). By using the expres-
sion (|Q| × ||R1||)2O(r×log(r+p))

+ O(r × log||�b||) for the parity
game problem for AVASS (see Section 2.2), when r is fixed and
p = 2, (M, s�) |= 〈〈A�b〉〉Ψ can be checked in exponential time in
|M |+ |〈〈A�b〉〉Ψ|.

4.2 The model-checking algorithm

We immediately state the main result of the section.

Theorem 3 For all r ≥ 1, MC(RB±ATL+(r)) is in EXPTIME.

The proof of Theorem 3 uses a labelling algorithm, very similarly
to the one in the proof of Theorem 2. However, to decide whether
(M, s�) |= 〈〈A�b〉〉Ψ, for �b ∈ (N ∪ {ω})r , we first perform a reduc-
tion of the dimension by identifying the component in �b equal to ω.
Then, we take advantage of Lemma 4 in order to check an instance
of the corresponding parity game problem for AVASS, which can
be done in exponential time. As the number of such requests is only
polynomial in the size of the input formula, the whole algorithm runs
in exponential time. Based on [18, 2], we get the following corollary.

Corollary 1 Let r ≥ 4 and |Ag| ≥ 2.
Then, MC(RB±ATL+(Ag, r)) is EXPTIME-complete

The EXPTIME lower bound follows from [2, Corollary 1]. Specif-
ically, in the proof of [2, Theorem 3] (by reduction from the control
state reachability for AVASS [18]) RB-CGS can be restricted to two
agents. The EXPTIME upper bound is from Theorem 3. In the case of
a single resource, we obtain the following bounds.

Theorem 4 MC(RB±ATL+(1)) is PSPACE-hard and in EXPTIME.

PSPACE-hardness follows from the PSPACE-hardness
of MC(ATL+) [15]. Though establishing an EXPTIME upper
bound for MC(RB±ATL+(1)) reveals a substantial improve-
ment in complexity compared to the 2EXPTIME-completeness of
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MC(RB±ATL∗) [2], the exact complexity remains open and seems
quite challenging. It is still unclear to us whether the developments
in [15, Section 3.2] or in [24] about MC(ATL+) could be adapted to
obtain an optimal upper bound.

5 Conclusion

We proved that the model checking problem for RB±ATL+({1}, 1)
is in Δp

2 (Theorem 2) by essentially introducing the generalised
reachability problem for 1-VASS, and showing it to be in PTIME

(Theorem 1). Hence, MC(RB±ATL+({1}, 1)) is no more complex
than MC(CTL+), despite the greater expressive power due to the
presence of one resource. For r ≥ 1, MC(RB±ATL+(r)) is proved
to be in EXPTIME, with an identical upper bound for its subproblem
MC(RB±ATL(r)). To show this, we presented a reduction to the par-
ity game problem for AVASS that is optimal complexity-wise, so that
we avoid the doubly-exponential blow-up observed when defining
the reduction from MC(RB±ATL∗) in [2]. When r ≥ 4, we obtain
EXPTIME-completeness (Corollary 1).

Though we managed to lower the complexity of
MC(RB±ATL+(Ag, 1)) by one exponential (EXPTIME for
|Ag| ≥ 2), it is an open problem whether there is a procedure
running in polynomial space (notice that MC(ATL+) is known to be
PSPACE-hard [15]). To this end, refined analyses from [16, 32, 17]
might help. Besides, we know that CTL and CTL+ are equally
expressive [22], and this result extends to ATL and ATL+ [15]. In
both cases, the characterisation of the complexity for the respective
model-checking problem differs. It is an open problem whether
RB±ATL(Ag, r) and RB±ATL+(Ag, r), for |Ag| ≥ 2 and r ≥ 1,
are equally expressive.

Acknowledgments. We would like to thank the anonymous refer-
ees for their suggestions and comments that helped us to improve
the quality of the paper. Besides, F. Belardinelli acknowledges the
support of the ANR JCJC Project SVeDaS (ANR-16-CE40-0021).

REFERENCES

[1] P.A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston, ‘Solving Parity
Games on Integer Vectors’, in CONCUR’13, volume 8052 of LNCS,
pp. 106–120. Springer, (2013).

[2] N. Alechina, N. Bulling, S. Demri, and B. Logan, ‘On the complexity
of resource-bounded logics’, TCS, 750, 69–100, (2018).

[3] N. Alechina, N. Bulling, B. Logan, and H.N. Nguyen, ‘On the bound-
ary of (un)decidability: Decidable model-checking for a fragment of re-
source agent logic’, in IJCAI’15, pp. 1494–1501. AAAI Press, (2015).

[4] N. Alechina, N. Bulling, B. Logan, and H.N. Nguyen, ‘The virtues of
idleness: A decidable fragment of resource agent logic’, Artificial Intel-
ligence, 245, 56–85, (2017).

[5] N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi, ‘Decidable
model-checking for a resource logic with production of resources’, in
ECAI’14, pp. 9–14, (2014).

[6] N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi, ‘Symbolic
model checking for one-resource RB+-ATL’, in IJCAI’15, pp. 1069–
1075. AAAI Press, (2015).

[7] N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi, ‘Model-
checking for resource-bounded ATL with production and consumption
of resources’, JCSS, 88, 126–144, (2017).

[8] N. Alechina, B. Logan, H.N. Nguyen, and A. Rakib, ‘A logic for coali-
tions with bounded resources’, in IJCAI’09, pp. 659–664, (2009).

[9] N. Alechina, B. Logan, H.N. Nguyen, and A. Rakib, ‘Resource-
bounded alternating-time temporal logic’, in AAMAS’10, pp. 481–488.
IFAAMAS, (2010).

[10] R. Alur, L. de Alfaro, T. Henzinger, S. Krishnan, F. Mang, S. Qadeer,
S. Rajamani, and S. Tasiran, ‘MOCHA user manual’, Technical report,
University of California at Berkeley, (2000).

[11] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time tempo-
ral logic’, Journal of the ACM, 49(5), 672–713, (2002).

[12] F. Belardinelli and S. Demri, ‘Resource-bounded ATL: the quest for
tractable fragments’, in AAMAS’19, pp. 206–214, (2019).

[13] N. Bulling and B. Farwer, ‘On the (Un-)Decidability of Model-
Checking Resource-Bounded Agents’, in ECAI’10, pp. 567–572,
(2010).

[14] N. Bulling and V. Goranko, ‘How to be both rich and happy: Combin-
ing quantitative and qualitative strategic reasoning about multi-player
games (extended abstract)’, in Proceedings 1st International Workshop
on Strategic Reasoning (SR’13), volume 112 of EPTCS, pp. 33–41,
(2013).

[15] N. Bulling and W. Jamroga, ‘Verifying agents with memory is harder
than it seemed’, AI Communications, 23(4), 389–403, (2010).

[16] K. Chatterjee and L. Doyen, ‘Energy parity games’, TCS, 458, 49–60,
(2012).
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