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Abstract. Search engines operate under a strict time constraint as
a fast response is paramount to user satisfaction. Thus, neural re-
ranking models have a limited time-budget to re-rank documents.
Given the same amount of time, a faster re-ranking model can incor-
porate more documents than a less efficient one, leading to a higher
effectiveness. To utilize this property, we propose TK (Transformer-
Kernel): a neural re-ranking model for ad-hoc search using an effi-
cient contextualization mechanism. TK employs a very small number
of Transformer layers (up to three) to contextualize query and docu-
ment word embeddings. To score individual term interactions, we use
a document-length enhanced kernel-pooling, which enables users to
gain insight into the model. TK offers an optimal ratio between ef-
fectiveness and efficiency: under realistic time constraints (max. 200
ms per query) TK achieves the highest effectiveness in comparison
to BERT and other re-ranking models. We demonstrate this on three
large-scale ranking collections: MSMARCO-Passage, MSMARCO-
Document, and TREC CAR. In addition, to gain insight into TK,
we perform a clustered query analysis of TK’s results, highlighting
its strengths and weaknesses on queries with different types of in-
formation need and we show how to interpret the cause of ranking
differences of two documents by comparing their internal scores.

1 Introduction

The importance of efficient and fast search engines is well estab-
lished [19]. Therefore, the time spent on each part of the Information
Retrieval (IR) pipeline has to be managed with time-constraints. Nat-
urally, re-ranking models, which improve the effectiveness of initial
rankings, need to stay within a certain time-budget to be deployable
to a user facing search engine. In recent years neural network based
re-ranking models matured and a distinct trade-off emerged between
a neural re-ranking model’s effectiveness and its efficiency. While
IR-specific networks are reasonably fast [36, 5, 15], large Trans-
former based models [32], such as BERT [6], show substantially bet-
ter effectiveness at the cost of orders of magnitude longer inference
time [12, 20, 25]. Given the same amount of limited time, a faster re-
ranking model can incorporate more documents than a less efficient
one, leading to a higher effectiveness.

In this paper, we present TK – an interpretable neural re-ranking
model for ad-hoc retrieval with a focus on a good ratio between ef-
ficiency and effectiveness, which is particularly suited for a time-
constrained environment. TK is short for Transformer-Kernel – the
two main components of our model (Section 3).

TK brings two main contributions in terms of efficiency and ex-
plainability. First, we show how a small number of lightweight Trans-
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former layers [32] (we evaluate up to three) can effectively contex-
tualize query and document word embeddings. TK’s second contri-
bution is a network structure built for explainability. In contrast to
BERT-based approaches, we contextualize query and document se-
quences independent from each other and distill the interactions be-
tween terms in a single interaction match matrix, followed by soft-
histogram scoring based on kernel-pooling [36]. This allows us to
explain scoring reasons by probing the model at the point of the in-
formation bottleneck to analyze contextualized term representations
and interaction patterns.

We conduct experiments on three large retrieval collections:
MSMARCO-Passage [2], MSMARCO-Document [2], and TREC
CAR 2017 [7]. We evaluate a broad range of traditional and neural
ranking models. We introduce time-budget aware evaluation, which
varies the re-ranking depth according to the available time and speed
of each neural model. Our experiments show that TK is the best
model choice for an average re-ranking budget per query under 200
ms for MRR, 500 ms for Recall, and 250 ms for nDCG. At 100 ms
per query TK’s MRR is 10% higher, Recall is 40% higher, and nDCG
is 19% higher than BERT (Section 5).

To further understand our novel model, we conduct a query-level
analysis of TK’s effectiveness and explain the cause of ranking differ-
ences of two documents. We cluster queries based on their contextu-
alized embeddings and inspect the cluster’s median reciprocal rank.
This allows us to robustly identify the strengths and weaknesses of
our model on different types of the user’s information need (Section
5.3). We demonstrate the interpretation capability of the TK model
using the scenario in which a user would like to understand, for a
given query, why two documents are ranked differently. We visualize
word-level similarities (interaction features) and we report interme-
diate results of important kernels (Section 6).

We publish the source code of our work at github.com/sebastian-
hofstaetter/transformer-kernel-ranking. The repository contains all
pre-processing and evaluation code, as well as clear and docu-
mented neural network implementations using PyTorch [27] and Al-
lenNLP [10].

In summary, the main contributions of this work are as follows:

• We propose TK: a re-ranking model using contextualized repre-
sentations for time-constrained applications.
– Efficiency: We show that a small number of low-dimensional

Transformers contextualize efficiently and effectively.
– Interpretability: TK’s architecture allows to extract and analyze

the full information flow at a single point
• We introduce time-budget & re-ranking depth aware

evaluation of neural IR models.
• We conduct a robust query-level analysis and

demonstrate the interpretability of TK.
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2 Related Work

The short history of neural re-ranking models already saw three
waves of architectures: representation, interaction, and contextual-
ized interaction models [11]. The first representation-focused neural
IR models unsuccessfully tried to match single vector representa-
tions per query and document [21]. Then, interaction-focused mod-
els moved to a more fine-grained modelling of query-document inter-
actions based on a match-matrix. Now, contextualization in various
forms offers the most effective approaches.

The core of interaction approaches are term by term similarities.
A key success factor are fine-tuned word representations, covering
most of the indexed vocabulary [13]. Various approaches exist to re-
duce the match-matrix of term similarities to the matching score: us-
ing stacked Convolutional Neural Networks (CNN) [26, 22], parallel
single-layered CNNs for n-gram interaction modelling [15], recur-
rent neural networks [8], and position independent counting meth-
ods. Guo et al. [11] showed the promise of counting interactions
with the histogram-based DRMM model. However, it suffered from
the non-differentability of a hard histogram method and the resulting
lack of fine-tuned word representations. Xiong et al. [36] improve
on the idea and propose the kernel-pooling technique as part of the
KNRM model. Conceptually, it approximates a histogram with a set
of Gaussian kernel functions for different similarity ranges instead
of a hard binning. The kernel-pooling offers a solid foundation for
analysis and interpretability [30], whereas pattern-based methods are
harder to interpret post-hoc [9].

Contextualization allows neural IR models to vary the importance
of otherwise identical term matches. The neural CO-PACRR model
[16] provides a lightweight contextualization. It averages word vec-
tors with a sliding window and appends their similarities to the non-
contextualized similarities of the PACRR [15] model. The CONV-
KNRM model [5] extends KNRM by adding a CNN layer on top
of the word embeddings, enabling word-level n-gram representation
learning – a local contextualization, fixed by the n-gram size hyper-
parameter.

Vaswani et al. [32] proposed the Transformer architecture in the
context of language translation. Their encoder-decoder is built of
Transformer layers, each containing multi-head self attention. These
Transformer layers are the building blocks of versatile multi-task ar-
chitectures, such as BERT [6] and XLNet [39]. These models rely
on a computationally intensive pre-training. Publicly available pre-
trained models can then be fine-tuned for various tasks, including
pairwise sequence classification. Nogueira et al. [24, 25] first showed
the applicability of BERT for re-ranking and the resulting substantial
effectiveness gains. MacAvaney et al. [20] show that it is beneficial to
combine BERT’s classification label with the output of interaction-
based neural IR models. Both note that using BERT comes at a sub-
stantial performance cost – BERT taking two orders of magnitude
longer than a simple word embedding.

In traditional learning-to-rank the trade-off between effectiveness
and efficiency has been thoroughly studied [34, 35, 37, 4]. This in-
cludes applying a temporal constraint on the number of features that
are selected for a re-ranking model [35], incorporating an efficiency
metric in the training of linear rankers [34], and comparing the effec-
tiveness and efficiency of various learning-to-rank algorithms [4]. In
web search the speed of a response is crucial as determined by Ko-
havi et al. [19] in a large scale experiment, however, in some expert
tasks, users are willing to wait longer for better results, so that the
best model choice becomes task dependent [31].

Recently, the issue of efficiency gained traction in the neural IR
community. Hofstätter et al. [12] establish efficiency baselines for

common neural IR models (including BERT) and propose to incor-
porate speed metrics in replicability campaigns and public leader-
boards. One way to make neural IR models faster at query time is to
offload computation to the indexing phase, either by assuming query
term independence [23] or by approximating interaction similarities
[17]. When a large number of pre-trained Transformer layers is in-
volved, inference can be sped up by removing later layers and scor-
ing the intermediate results instead [20] or by pruning unnecessary
attention-heads [33]. In this work we speed up Transformer contex-
tualization by using very small and few Transformer blocks.

3 TK: Transformer-Kernel Model

In this section, we present TK, our Transformer-Kernel neural re-
ranking model. In the following, we describe how we learn contex-
tualized term representations (Section 3.1) and how we transparently
score their interactions (Section 3.2). Figure 1 gives an overview of
the TK architecture.

3.1 Contextualized Term Representation

TK uses a hybrid contextualization approach. The base representa-
tions are single-vector-per-word embeddings [28]. We chose a sim-
ple word embedding structure over more complex methods – such as
FastText [3] or ELMo [29] – as it offers many benefits in practice.
Word embeddings are easy to pre-train on domain specific data [14].
They require only one id per term, making the index consume less
disk space, once prepared for re-ranking. Most importantly, at query
time, their selection is a fast memory lookup.

In the contextualization phase of the TK model, we process query
q1:m and document sequences d1:n separately, however the learned
parameters are shared. The input consists of two sequences of query
and document ids. We employ the lookup based word embedding to
select non-contextualized representations for each term. The hybrid-
contextualized representation t̂i of a term with word embedding ti
over its whole input sequence t1:n is defined as:

t̂i = ti ∗ α+ context(t1:n)i ∗ (1− α) (1)

We regulate the influence of the contextualization by the end-to-
end learned α parameter. This allows the model to decide the inten-
sity of the contextualization. We calculate the context(t1:n) with a
set of Transformer layers [32]. First, the input sequence is fused with
a positional encoding to form p1:n, followed by a set of l Transformer
layers:

Transformerl(p1:n) = MultiHead(FF(p1:n)) + FF(p1:n) (2)

Here, FF is a two-layer fully connected feed-forward layer in-
cluding a non-linear activation function. The MultiHead module
projects the input sequence (via W ∗

i ) to query, key, and value inputs
of the scaled dot-product attention for each attention head. Then the
results of the attention heads are concatenated and projected to the
output (via WO):

MultiHead(p1:n) = Concat(head1, ..., headh)W
O

where headi = softmax

(
(p1:nW

Q
i )(p1:nW

K
i )T√

dk

)
(p1:nW

V
i )

(3)
We select Transformers for contextualization, because their po-

sitional encoding and sequence wide self-attention allows for local
and global contextualization at the same time. This makes TK more
powerful than previous local-only contextualization methods used in
CONV-KNRM [5] and CO-PACRR [16].
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Figure 1. The TK model architecture: 1© We contextualize query and document sequences individually. 2© The interaction match-matrix is created with
pairwise cosine similarities. 3© Each kernel creates a new feature matrix. Then, the document dimension is summed and we normalize each query-term feature

by logarithm and document length. 4© We combine log- and length-normalized scores with a single feed-forward (FF) layer to form the final result score.

3.2 Interaction Scoring

After the contextualization, we match the query sequence q̂1:m
and document sequence d̂1:n together in a single match-matrix
M ∈ R

qlen×dlen with pairwise cosine similarity as interaction ex-
tractor:

Mi,j = cos(q̂i, d̂j) (4)

Then, we transform each entry in M with a set of RBF-kernels
[36]. Each kernel focuses on a specific similarity range with center
μk. The size of all ranges is set by σ. In contrast to Xiong et al.
[36] we do not employ an exact match kernel – as contextualized
representations do not produce exact matches. Each kernel results in
a matrix K ∈ R

qlen×dlen :

Kk
i,j = exp

(
− (Mij − μk)

2

2σ2

)
(5)

Now, we process each kernel matrix in parallel, and we begin by
summing the document dimension j for each query term and kernel:

Kk
i =

∑
j

Kk
i,j (6)

At this point – as shown in Figure 1 – the model flow splits into
two paths: log normalization and length normalization. The log nor-
malization applies a logarithm with base b to each query term before
summing them up:

sklog =
∑
i

logb

(
Kk

i

)
(7)

To incorporate the notion of different document lengths into the
model we enhance the pooling process with document length nor-
malization. We dampen the magnitude of each query term signal by
the document length:

sklen =
∑
i

Kk
i

dlen
(8)

Now, the set of kernel scores (one value per kernel) is weighted
and summed up with a simple linear layer (Wlog,Wlen) to produce
a scalar, for both the log-normalized and length normalized kernels:

slog = sklogWlog slen = sklenWlen (9)

Finally, we compute the final score of the query-document pair
as a weighted sum of the log-normalized and the length-normalized
scores:

s = slog ∗ β + slen ∗ γ (10)

We employ kernel-pooling, because it makes inspecting tempo-
rary scoring results more feasible compared to pattern based scoring
methods (for example PACRR [15]). Each kernel is applied to the
full document and the row-wise and the column-wise summing of
the match-matrix allow to inspect individual matches independent
from each other.

3.3 Difference to Related Work

The main differences of TK in comparison to BERT [24] are:

• TK’s contextualization uses fewer and lower dimensional Trans-
former layers with less attention heads. This makes the query-time
inference of TK with 2 layers 40 times faster than BERT-Base with
12 layers.

• TK contextualizes query and document sequences independently;
each contextualized term is represented by a single vector (avail-
able for analysis). BERT operates on a concatenated sequence of
the query and the document, entangling the representations in each
layer.

• The network structure of TK makes it possible to analyze the
model for interpretability and further studies. TK has an informa-
tion bottleneck built in, through which all term information is dis-
tilled: the query and document term interactions happen in a single
match matrix, containing exactly one cosine similarity value for
each term pair. BERT on the other hand has a continuous stream
of interactions in each layer and each attention head, making a
focused analysis unfeasible.

The differences of TK to previous kernel-pooling methods are:

• KNRM [36] uses only word embeddings, therefore a match does
not have context or positional information.

• CONV-KNRM [5] uses a local-contextualization with limited po-
sitional information in the form of n-gram learning with CNNs.
It cross-matches all n-grams in n2 match matrices, reducing the
analyzability.
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4 Experiment Setup

For the first stage indexing and retrieval we use the Anserini toolkit
[38] to compute baselines as well as the initial ranking lists, which
we use to generate training and evaluation inputs for the neural
models. For our neural re-ranking training and inference we use
PyTorch [27] and AllenNLP [10]. For BERT support we use the
pytorch-transformer library4. We train all neural models with a pair-
wise hinge loss. We conduct our experiments and report timings with
an NVIDIA GTX 1080 TI (11GB memory) GPU.

4.1 Baselines

We use tuned BM25, Language Modelling with Dirichlet smoothing
(LM), and RM3 [1] as traditional retrieval method baselines. In the
following we give an overview over our neural baselines:

MatchPyramid [26] applies several stacked CNN layers with
max-pooling on top of a term-by-term interaction matrix. The pool-
ing sizes become smaller with each layer – like a pyramid.

DUET [22] is a hybrid model which applies CNNs to local term-
by-term interactions and it learns a single representation for query
and document and then measures the similarity between the two vec-
tors. The two paths are combined an jointly scored.

PACRR [15] applies different sized CNNs on the match matrix
followed by a max pooling. In contrast to MatchPyramid, the single
CNN layer focuses on different n-gram sizes.

CO-PACRR [16] extends the PACRR model with additional con-
textualized similarities (via fixed window neighborhood mean vec-
tors) and improves the robustness of PACRR’s pooling strategy with
randomization during training.

KNRM [36] uses a soft-histogram (differentiable Gaussian kernel
functions) on top of the interaction matrix of query and document
embeddings – summing the interactions by their similarity.

CONV-KNRM [5] applies a CNN over the query and document
word embeddings, resulting in word-level n-gram representations.
CONV-KNRM cross-matches n-grams and subsequently scores the
interactions with n KNRM instances.

BERT[CLS] [6] is a multi-task Transformer based NLP model. Pre-
trained instances are commonly available in large and small sizes –
we experiment with both. We follow Nogueira et al. [24] and first
concatenate the query and document sequences. To score the pair,
we use the representation of BERT’s [CLS] token and a linear layer.

4.2 Datasets & Resources

We train and evaluate our models on three web-focused test collec-
tions. The size statistics are shown in Table 1 and in the following we
describe the collections in more detail:

MSMARCO [2] collections are based on real Bing queries and
results. We use both the Passage and the Document version with dif-
ferent sets of queries. Originally purposed for the question answering
task, the annotation data is now used to provide ranking labels for re-
trieval results5. If a passage contains the answer to a query (judged
by a human annotator) it is deemed relevant in the retrieval task as
well as the document containing it.

TREC CAR [7] is created as part of the TREC Complex Answer
Retrieval (CAR) task in 2017. It is based on Wikipedia sections: the
heading is used as the query and the section body is the deemed rel-
evant paragraph in the automatic annotations.

4 https://github.com/huggingface/pytorch-transformers
5 https://github.com/microsoft/MSMARCO-Passage-Ranking

In addition to the collections, we use pre-trained GloVe [28] word
embeddings with 300 dimensions6 for all non-BERT neural models
and pre-trained weights for BERT from pytorch-transformer.

Table 1. Collection statistics

Collection # Docs. # Terms
# Queries

Val. Test

MS-Passage 8,841,823 1,834,055 6,980 48,598
MS-Document 3,213,835 44,991,958 5,000 5,193
TREC CAR 29,794,697 6,682,592 5,000 2,254

4.3 Parameter Settings

We cap the query length at 30 tokens and the document length at
200 tokens. For MSMARCO-Passage and TREC CAR this only re-
moves a modest amount of outliers, however, for the MSMARCO-
Document collection a majority of documents is longer than 200 to-
kens. Increasing the cap to fully include most documents would ren-
der all evaluated neural IR models less effective or unfeasible for
efficiency reasons. Addressing this issue is out of scope of this work,
although we plan to address it in future work. We use the Adam [18]
optimizer with a learning rate of 10−4 for word embeddings and con-
textualization layers, 10−3 for all other non-BERT network layers,
and 10−6 for BERT fine-tuning. We employ early stopping, based
on the best MRR@10 value of the validation set. We use a training
batch size of 64. For evaluation we use a batch size of 256 for all
non-BERT models and a batch size of 4 for BERT. We use a vo-
cabulary of all terms with a minimum collection occurrence of 5 for
MSMARCO-Passage and TREC CAR; and a collection minimum of
10 for MSMARCO-Document as it contains more unique terms.

Regarding model-specific parameters, for the Transformer lay-
ers in TK we evaluate 1, 2, and 3 layers, each with 16 attention
heads with size 32 and a feed-forward dimension of 100. For log-
normalization in TK we use a base of 2. For kernel-pooling (in TK,
KNRM, CONV-KNRM) we set the number of kernels to 11 with the
mean values of the Gaussian kernels varying from −1 to +1, and
standard deviation of 0.1 for all kernels (KNRM & CONV-KNRM
use 0.0001 for exact matching on the first kernel). CONV-KNRM’s
n-gram size is set to 3 and the CNN features are set to 128. In the
MatchPyramid model, we set the number of CNN layers to 5, each
with kernel size 3 × 3 and 16 convolution channels. We use DUET
without dropout and a document pooling width of 100. For PACRR
and CO-PACRR we use a maximum n-gram size of 3, 32 CNN fea-
tures, and a k-max pooling of 5. For the traditional retrieval models
we use the tuned parameters from the Anserini documentation.

5 Results

We first present the highest achievable effectiveness results for our
evaluated models without any time limit (Section 5.1). Then, we
present a novel time-budget evaluation, which is based on the re-
alistic assumption that we trade effectiveness for efficiency and that
users expect fast search results (Section 5.2).

5.1 Effectiveness Evaluation

In Table 2 we show the highest achievable effectiveness results per
model, without a time-constraint. The first section contains the tradi-
tional baselines; the second contains the neural re-ranking baselines;
in the third section we report the results of our TK model with three
different Transformer layer settings. Beside the effectiveness mea-
sures (MRR@10, Recall@10, nDCG@10 – higher is better) we also

6 42B CommonCrawl lower-cased: https://nlp.stanford.edu/projects/glove/
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Table 2. Unconstrained effectiveness results on the test sets. Each measure is using a cutoff of 10. Depth refers to the re-ranking depth (which is tuned on
MRR@10 on the validation set and the number shown per model is applied on the test set)

Model
MSMARCO-Passage MSMARCO-Document TREC CAR Average

MRR Recall nDCG Depth MRR Recall nDCG Depth MRR Recall nDCG Depth Docs./ms

BM25 0.194 0.402 0.241 - 0.252 0.500 0.311 - 0.221 0.259 0.190 - -
LM 0.171 0.358 0.213 - 0.202 0.423 0.254 - 0.190 0.222 0.166 - -
RM3 0.169 0.388 0.219 - 0.156 0.367 0.206 - 0.220 0.253 0.189 - -

MatchPyramid 0.249 0.476 0.301 71 0.286 0.531 0.344 15 0.238 0.279 0.205 40 27
DUET 0.248 0.468 0.299 42 0.266 0.520 0.327 15 0.233 0.272 0.199 39 14
PACRR 0.259 0.493 0.313 619 0.283 0.536 0.344 15 0.210 0.257 0.181 24 22
CO-PACRR 0.273 0.514 0.328 987 0.284 0.543 0.345 19 0.224 0.267 0.193 23 14
KNRM 0.235 0.465 0.288 127 0.261 0.519 0.323 14 0.191 0.213 0.163 6 49
CONV-KNRM 0.277 0.519 0.332 967 0.283 0.542 0.345 19 0.223 0.275 0.194 30 10
BERT-Base 0.376 0.639 0.437 997 0.352 0.623 0.417 58 0.388 0.426 0.333 650 0.1
BERT-Large 0.366 0.627 0.426 997 0.350 0.630 0.417 93 0.444 0.475 0.385 650 0.03

TK – 1 Layer 0.303 0.560 0.361 997 0.305 0.572 0.369 29 0.285 0.312 0.241 63 6
TK – 2 Layer 0.311 0.564 0.369 997 0.312 0.577 0.375 29 0.305 0.329 0.258 86 4
TK – 3 Layer 0.314 0.570 0.373 997 0.316 0.586 0.380 31 0.307 0.328 0.259 72 2

report the best re-ranking depth per model, tuned on the validation
set. We view this tuned parameter as a good indicator of a model’s
robustness on a collection and a useful analytical tool for the degree
of difficulty of a collection. To incorporate the efficiency in the anal-
ysis, we report the average number of documents each model is able
to re-rank per millisecond.

Of the three collections, the neural re-ranking models deliver the
best results on MSMARCO-Passage, both in terms of effectiveness
and re-ranking depth. Even simple neural baselines like KNRM and
PACRR show significant effectiveness increases to the initial ranking
baselines. TK and BERT show very strong results, especially on Re-
call@10, as they are able to incorporate almost all 1000 documents
per query that we evaluated. Naturally, the more documents are re-
ranked the higher is the potential for the Recall, as the Recall@10
is bound by the Recall of the first stage at the re-ranking depth. The
more Transformer layers we use to contextualize embeddings in TK,
the better the effectiveness becomes across all three measures, how-
ever, the differences are small.

TK performs similar on the MSMARCO-Document collection as
on the passage collection, however in general the results are closer
together. The classic baselines are stronger as well as the non-BERT
neural models. On the other hand both BERT results are reduced in
comparison to their passage result. Overall, all neural models stag-
nate or reduce their effectiveness with a deeper re-ranking depth.

While BERT shows strong results on TREC CAR, it is especially
challenging for non-BERT approaches. Except for MatchPyramid
and DUET all non-BERT baselines fail to improve MRR@10 and
nDCG@10 significantly. TK is the first non-BERT model offering
strong improvements over the initial ranking baselines.

In conclusion, given unlimited time, BERT is the best re-ranking
model, followed by TK, across all three collections. However, taking
into consideration the average time a model spends on re-ranking
a document it becomes apparent that utilizing BERT to its best re-
ranking depth is prohibitively slow for most search applications.

5.2 Time-Budget Evaluation

Now we focus on the relationship between efficiency and effective-
ness. It would be easy – yet unfair – to discard BERT as unfeasibly
slow, based on the assumption that one always has to re-rank a thou-
sand documents. Similarly, it would be unwise to solely judge the
neural re-ranking models based on their unconstrained effectiveness
results from the previous section.

We take a fine-grained approach to evaluate efficiency and effec-
tiveness together, by starting from the assumption that search appli-
cations set a time-budget for various stages of the retrieval pipeline.
Neural re-ranking models are a part of a larger system and therefore
have to adhere to a maximum time-budget. We use the re-ranking
depth to control the time spent by each model. We believe this to be
a fair comparison, as we give each model the same time. The tim-
ings we measured exclude any pre-processing and solely focus on
the time spent computing the scores on the GPU. We evaluated each
model once and then pruned the documents, based on their first stage
rank, to obtain results for every re-ranking depth. We average the
documents per millisecond metric over all validation runs during the
training, to obtain a noise reduced value. In a pilot study, we ensured
that different validation batch sizes do not contradict the analytical
results presented here.

Figure 2 shows the time-budget aware results for every collec-
tion on MRR@10, Recall@10, and nDCG@10. The x-axes show
the available time in milliseconds (up to 300ms for MRR and nDCG;
600 ms for Recall) and each y-axis represents the effectiveness re-
sults. We selected TK with 2 layers as a good compromise between
effectiveness and speed. Additionally, we report the results for both
BERT sizes and the two best non-BERT neural baselines.

On the MSMARCO-Passage collection all fast models reach large
re-ranking depths, except for BERT, where the base version only
reaches 32 documents after 300 ms and the large version is only able
to process 8 documents. TK is the best choice, after the first few ms
of noise up to 190ms for MRR@10, 600 ms for Recall@10 and 300
ms for nDCG@10. BERT-Base overtakes the other neural baselines
in around half the time it needs to be better than TK. If we choose
a generous time-budget of 100 ms, TK’s MRR@10 is 10% higher,
Recall@10 is 40% higher, and nDCG@10 is 19% higher than BERT-
Base. BERT-Base can only re-rank 10 documents in 100 ms, leaving
it at the same Recall@10 as BM25. Even at 250 ms, when TK fin-
ished all thousand documents it has a 12 % higher Recall@10 than
BERT-Base and is 9% above CONV-KNRM.

The MSMARCO-Document and TREC CAR collection are more
challenging for non-BERT models, as their best re-ranking depth is
shallow and more time would not yield better results. In Figure 2 this
is shown as the colored dotted line. However, this does not change
the time BERT needs to cross the best result of the other models.
TK is the best choice for MSMARCO-Document up to 200ms for
MRR@10, 550 ms for Recall@10 and 260 ms for nDCG@10. For
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(b) MSMARCO-Document

1 50 100 150 200 250 300
Time budget (ms)

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

M
RR

@
10

84

27

28

32

8

TK
MatchPyramid
DUET
BERT-Base
BERT-Large
BM25

5 100 200 300 400 500 600 700
Time budget (ms)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Re
ca

ll@
10

312

64

69

76

20

TK
MatchPyramid
DUET
BERT-Base
BERT-Large
BM25

1 50 100 150 200 250 300
Time budget (ms)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

nD
CG

@
10

124

54

56

32

8

TK
MatchPyramid
DUET
BERT-Base
BERT-Large
BM25

(c) TREC CAR

Figure 2. Time-budget analysis: We show the effectiveness (y-axis) of each model on the respective validation set by selecting the maximum number of
documents to re-rank in the available time limit (x-axis). The marker indicates the best possible result; the dotted line indicates that additional time does not

yield better results; the number of re-ranked documents is indicated for each best result.

TREC CAR, TK yields the highest effectiveness for a time-budget
up to 200ms for MRR@10, 480 ms for Recall@10 and 250 ms for
nDCG@10. If we again apply a time-budget of 100 ms to TREC
CAR, we observe that TK’s MRR@10 is 12% higher, Recall@10 is
31% higher, and nDCG@10 is 17% higher than BERT-Base.

5.3 Query Analysis

Following the presentation of the collection results, we now analyze
the query results in more detail. Our aim is to understand TK’s qual-
ity on different query types or information needs and how TK com-
pares to BM25 and BERT-Base. We cluster MSMARCO-Passage
validation queries based on their mean contextualized embedding of

TK with k-means. We set k = 30, as we found it to be an appro-
priate choice with the elbow method. In Table 3 we show a selection
of those clusters and their median rank of the first relevant passage
for each model, as a robust measure inspired by MRR. Additionally,
we report the number of queries in each cluster (# Q). We manually
assigned an information need or type of query summary to each clus-
ter. In practice we observed most clusters to be unambiguous in their
assignment, except for a few outliers per cluster. To keep the analysis
simple, we do not place a time-constraint on the models.

The MSMARCO collections were created for question answering
tasks and the queries reflect that. Only a minority of queries repre-
sents plain keyword queries – a type for which BM25 provides good
results. Natural language question queries are particularly well suited
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Query (Id:2) androgen receptor define

Rank: TK 1©, BM25 9© (judged as relevant, Id: 4339068) Rank: TK 8©, BM25 1© (not relevant, Id: 1782337)

The androgen receptor ( AR ) , also known as
NR3C4 ( nuclear receptor subfamily 3 , group C
, member 4 ) , is a type of nuclear receptor that
is activated by binding either of the androgenic
hormones , testosterone , or dihydrotestosterone
in the cytoplasm and then translocating into the
nucleus . in some cell types , testosterone inter-
acts directly with androgen receptors , whereas ,
in others , testosterone is converted by 5 - alpha
- reductase to dihydrotestosterone , an even more
potent agonist for androgen receptor activation .

μk sk
log
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0.9 -0.6
0.7 2.3
0.5 -1.6
0.3 -3.3
Rest -14.6

slog -11.6
slen 1.1

s -10.6

μk sk
log

1 -5.0
0.9 -1.5
0.7 1.9
0.5 -1.3
0.3 -2.3
Rest -14.6

slog -12.8
slen 0.9

s -11.9

Enzalutamide is an androgen receptor inhibitor
that acts on different steps in the androgen
receptor signaling pathway . Enzalutamide has
been shown to competitively inhibit androgen
binding to androgen receptors and inhibit andro-
gen receptor nuclear translocation and interaction
with DNA .

Figure 3. TK’s scoring results of two MSMARCO-Passage documents: We highlight two close similarity kernels (0.9 & 0.7). In the text words are colored
and underlined if they are closest to the center of the kernel. Individual kernel results (model weights included) are displayed in the middle for each document.

for neural re-ranking models, especially when users ask for a defini-
tion or clarification (”what is”) with two or more words. Here, both
TK and BERT improve substantially over BM25, while BERT per-
forms slightly better than TK. BERT has an advantage over TK on
complex queries with more than 8 words, which suggest the language
modelling in BERT is more useful.

Table 3. Comparing the median ranks of the first relevant document for
BM25, TK, and BERT-Base on selected query clusters on the

MSMARCO-Passage validation set

Information need # Q
Median Rank

BM25 TK BERT

company phone number 115 2 2 2
celebrity/movie facts 224 8 4 3
money: cost/salary/net worth 210 7 4 3
plain keyword(s) of diff. topics 224 6 4 2
how long is something 196 41 12 5
long question for a single number 326 15 7 5
what is/are 1 word 321 15 3 3
what is/are 2+ words 279 20 5 3
meaning/definition of 1 word 155 13 3 3
meaning/definition of 2+ words 208 23 4 3
symptoms of diseases 58 59 9 5
benefits/effects of prescriptions 106 13 4 4

All queries (with ≥ 1 relevant) 6058 13 5 3

6 Interpretability

We now highlight the interpretation capabilities of the TK model
with a qualitative example. This analysis is enabled by TK’s archi-
tecture, which first contextualizes query and document sequences in-
dependently and then uses only a single interaction value per term
pair, which is scored via soft-histogram kernels. This allows us to
accurately represent the scoring process of the model in our analysis.
In contrast BERT-based re-rankers cannot be analyzed in this way,
as they have no clear single point of interaction and a much more
complex scoring mechanism.

We focus on the following scenario: a user would like to know why
the neural model replaced the first result (a non-relevant document)
of the first stage ranking with the actual relevant document. For this,
we offer a side-by-side comparison view of two documents. Figure
3 shows the comparison of two documents for the query “androgen
receptor define”. On the left side is a document judged as relevant,
which is placed on the first position by TK. On the right side is the top

BM25 document, which is not the correct answer and only partially
relevant to the query – TK moved it to a lower position.

We show each document with its full-text and a selection of tem-
porary results of TK. We aim to identify and highlight the differences
that result in different ranking scores. We color words according to
their closest affiliation with a kernel. An important fact to consider
is the soft-matching nature of the kernels: A term is counted in more
than one kernel at a time. For example, this explains the difference
in kernel μ = 1, even though no word is closest associated with that
kernel and therefore we omitted a color.

From the highlighted kernel scores (sklog) it is apparent that the left
document has more stronger matches than the right one, leading to
higher scores. If we look at the corresponding colored words we ob-
serve that the sentence containing the definition in the left is most
relevant to the query: The androgen receptor ( AR ) , also known as
NR3C4 ( nuclear receptor subfamily. Even though TK does not con-
tain a mechanism for strictly categorizing a region as relevant, it does
so indirectly by strongly matching almost every term in this region.
Of particular interest to us is the fact that the contextualization of
TK learns to match the query term “define” with words and phrases
that make up a definition: “also known as”, “subfamily”, “is a type”
as well as the parentheses. This exceeds simple synonym mapping,
suggesting once more the importance of training contextualized and
relevance specific encoding models.

This analysis demonstrates the potential for future work on key-
word based search. When a collection is not queried with natural
language questions, but only keywords, one could expand such key-
word queries with terms like “definition” or “meaning” both during
training and inference of neural models, to promote documents closer
related to the core of the information need.

7 Conclusion

The work in this paper is based on the assumption that search tasks
are time-constrained and neural re-ranking models have to fulfil this
requirement to be deployable as part of user-facing search engines.
To address this, we proposed TK: an interpretable ad-hoc neural re-
ranking model with a very strong efficiency-effectiveness ratio. We
introduced a realistic time-budget aware evaluation. Models are al-
lowed to re-rank as many documents as they can within the given
time-budget. This evaluation shows how the TK model is the overall
best choice for a time-budget under 200 ms per query for precision
based measures and 400 ms per query for recall. In addition – to
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not just propose a black-box model without insight – we provided
a fine granular query analysis showing the different strengths of TK
on various query types and we illustrated how TK can be analyzed
and interpreted. TK makes it possible to obtain competitive neural
re-ranking results with a limited time-budget.

Acknowledgements This work has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation program un-
der grant agreement No 822670.

REFERENCES

[1] Nasreen Abdul-Jaleel, James Allan, W. Bruce Croft, Fernando Diaz,
Leah Larkey, Xiaoyan Li, Mark D. Smucker, and Courtney Wade,
‘UMass at TREC 2004: Novelty and HARD’, in Proc. of TREC, (2004).

[2] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao,
Xiaodong Liu, Rangan Majumder, Andrew Mcnamara, Bhaskar Mitra,
and Tri Nguyen, ‘MS MARCO : A Human Generated MAchine Read-
ing COmprehension Dataset’, in Proc. of NIPS, (2016).

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov,
‘Enriching word vectors with subword information’, Tr. of the ACL, 5,
(2017).

[4] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salva-
tore Orlando, Raffaele Perego, and Nicola Tonellotto, ‘Quality versus
efficiency in document scoring with learning-to-rank models’, Informa-
tion Processing & Management, 52(6), (2016).

[5] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu, ‘Con-
volutional Neural Networks for Soft-Matching N-Grams in Ad-hoc
Search’, in Proc. of WSDM, (2018).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘Bert: Pre-training of deep bidirectional transformers for language un-
derstanding’, in Proc. of NAACL, (2019).

[7] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell, ‘Trec
complex answer retrieval overview.’, in TREC, (2017).

[8] Yixing Fan, Jiafeng Guo, Yanyan Lan, Jun Xu, Chengxiang Zhai, and
Xueqi Cheng, ‘Modeling Diverse Relevance Patterns in Ad-hoc Re-
trieval’, in Proc. of SIGIR, (2018).

[9] Zeon Trevor Fernando, Jaspreet Singh, and Avishek Anand, ‘A study
on the Interpretability of Neural Retrieval Models using DeepSHAP’,
in Proc. of SIGIR, (2019).

[10] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep
Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S.
Zettlemoyer, ‘Allennlp: A deep semantic natural language processing
platform’, (2017).

[11] Jiafeng Guo, Yixing Fan, Qingyao Ai, and Bruce Croft, ‘A Deep Rel-
evance Matching Model for Ad-hoc Retrieval’, in Proc. of CIKM,
(2016).

[12] Sebastian Hofstätter and Allan Hanbury, ‘Let’s measure run time! Ex-
tending the IR replicability infrastructure to include performance as-
pects’, in Proc. of OSIRRC, (2019).

[13] Sebastian Hofstätter, Navid Rekabsaz, Carsten Eickhoff, and Allan
Hanbury, ‘On the Effect of Low-Frequency Terms on Neural-IR Mod-
els’, in Proc. of SIGIR, (2019).

[14] Sebastian Hofstätter, Navid Rekabsaz, Mihai Lupu, Carsten Eickhoff,
and Allan Hanbury, ‘Enriching Word Embeddings for Patent Retrieval
with Global Context’, in Proc. of ECIR, (2019).

[15] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo,
‘PACRR: A position-aware neural IR model for relevance matching’,
in Proc. of EMNLP, (2017).

[16] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard De Melo, ‘Co-
PACRR: A context-aware neural IR model for ad-hoc retrieval’, in
Proc. of WSDM, (2018).

[17] Shiyu Ji, Jinjin Shao, and Tao Yang, ‘Efficient interaction-based neural
ranking with locality sensitive hashing’, in Proc of. WWW, (2019).

[18] Diederik P Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, arXiv preprint arXiv:1412.6980, (2014).

[19] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils
Pohlmann, ‘Online controlled experiments at large scale’, in Proc. of
SIGKDD, (2013).

[20] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian,
‘Cedr: Contextualized embeddings for document ranking’, in Proc. of
SIGIR, (2019).

[21] Bhaskar Mitra and Nick Craswell, ‘An introduction to neural informa-
tion retrieval’, Foundations and Trends in IR, (2018).

[22] Bhaskar Mitra and Nick Craswell, ‘An updated duet model for passage
re-ranking’, arXiv preprint arXiv:1903.07666, (2019).

[23] Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fer-
nando Diaz, and Emine Yilmaz, ‘Incorporating query term indepen-
dence assumption for efficient retrieval and ranking using deep neural
networks’, arXiv preprint arXiv:1907.03693, (2019).

[24] Rodrigo Nogueira and Kyunghyun Cho, ‘Passage re-ranking with bert’,
arXiv preprint arXiv:1901.04085, (2019).

[25] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho, ‘Docu-
ment expansion by query prediction’, arXiv preprint arXiv:1904.08375,
(2019).

[26] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and
Xueqi Cheng, ‘Text Matching as Image Recognition’, in Proc of. AAAI,
(2016).

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer, ‘Automatic differentiation in pytorch’, in Proc. of
NIPS-W, (2017).

[28] Jeffrey Pennington, Richard Socher, and Christopher Manning, ‘Glove:
Global vectors for word representation’, in Proc of EMNLP, (2014).

[29] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer, ‘Deep contextualized
word representations’, in Proc. of NAACL, (2018).

[30] Mary Arpita Pyreddy, Varshini Ramaseshan, Narendra Nath Joshi,
Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu, ‘Con-
sistency and Variation in Kernel Neural Ranking Model’, in Proc. of
SIGIR, (2018).

[31] Jaime Teevan, Kevyn Collins-Thompson, Ryen W White, Susan T Du-
mais, and Yubin Kim, ‘Slow search: Information retrieval without time
constraints’, in Proc. of the Symposium on HCI and IR, (2013).

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, in Proc. of NIPS, (2017).

[33] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan
Titov, ‘Analyzing multi-head self-attention: Specialized heads do the
heavy lifting, the rest can be pruned’, in Proc. of ACL, (2019).

[34] Lidan Wang, Jimmy Lin, and Donald Metzler, ‘Learning to efficiently
rank’, in Proc. of SIGIR, (2010).

[35] Lidan Wang, Donald Metzler, and Jimmy Lin, ‘Ranking under temporal
constraints’, in Proc. of CIKM, (2010).

[36] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell
Power, ‘End-to-End Neural Ad-hoc Ranking with Kernel Pooling’, in
Proc. of SIGIR, (2017).

[37] Zhixiang Xu, Kilian Q Weinberger, and Olivier Chapelle, ‘The greedy
miser: learning under test-time budgets’, in Proc. of ICML, (2012).

[38] Peilin Yang, Hui Fang, and Jimmy Lin, ‘Anserini: Enabling the use of
Lucene for information retrieval research’, in Proc. of SIGIR, (2017).

[39] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V Le, ‘Xlnet: Generalized autoregressive pre-
training for language understanding’, arXiv preprint arXiv:1906.08237,
(2019).

S. Hofstätter et al. / Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking520


