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Abstract. We develop a new framework for the game of Go to target
a high score, and thus a perfect play. We integrate this framework
into the Monte Carlo tree search – policy iteration learning pipeline
introduced by Google DeepMind with AlphaGo. Training on 9×9 Go
produces a superhuman Go player, thus proving that this framework is
stable and robust. We show that this player can be used to effectively
play with both positional and score handicap. We develop a family
of agents that can target high scores against any opponent, recover
from very severe disadvantage against weak opponents, and avoid
suboptimal moves.

1 Introduction

The game of Go has been a landmark challenge for AI research since
its very beginning. It is no surprise that DeepMind first major effort
and achievement was [15, AlphaGo], an AI that plays Go at superhu-
man level. It is nevertheless quite surprising that the approach for this
achievement works even better without human knowledge [17, Al-
phaGo Zero] and that it is universal enough to be applied successfully
to Chess and Shogi [16, AlphaZero].

However, in the game of Go, maximizing the final score difference
and the related abilities of playing with positional or score handicap
is still an open and important question. AlphaGo is known to play
suboptimal moves in the endgame, see for instance [18, moves 210
and 214, page 252], and in general many games in [18] not ending
by resignation. This phenomenon is rooted in the win/lose reward
implemented in the Deep Reinforcement Learning (DRL) pipeline of
AlphaGo. Score is unlikely to be a successful reward, because a single
point difference may change the winner, thus inducing instability in
the training.

Efforts in the direction of score maximization have been made
in [1] and in [11]. However, these attempts do not use any of
the modern DRL techniques, and thus their accuracy is quite low.
One DRL paper we are aware of is [21], where a Deep Convo-
lutional Neural Network is used to predict the final score and 41
different winrates, corresponding to 41 different scores handicap
{−20,−19, . . . , 0, . . . , 19, 20}. However, their results have not been
validated against human professional-level players. Moreover, one
single self-play training game is used to train 41 winrates, which is
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not a robust approach. Finally, in [20, KataGo] the author introduces
a heavily modified implementation of AlphaGo Zero, which includes
score estimation, among many innovative features. The value to be
maximized is then a linear combination of winrate and expectation of
a nonlinear function of the score. This could be a promising approach.

In this paper we present a new framework, called Sensible Artifi-
cial Intelligence (SAI), which addresses the above-mentioned issues
through a novel modification of the AlphaGo framework: the winning
probability is modeled as a 2-parameters sigmoid function, making ex-
plicit the dependence on the targeted score. Several self-play training
games are branched, reinforcing robustness of this model, see Sec-
tion 2.2. We first introduced this framework in a previous work [14],
where we conducted a proof-of-concept in the toy example of 7×7 Go.
In this paper we could exploit the 9×9 setting to prove that the results
promised in the 7×7 proof-of-concept have been indeed achieved.

The implementation of the SAI framework [7] has been realized as
a fork of Leela Zero [6], an open source clean room implementation
of AlphaGo Zero. We performed two runs of the learning pipeline,
from a random network to very strong play on the 9×9 board, using
two PCs with entry-level GPUs, see Section 3.

In Section 4 we apply massive simulations to show that SAI is able
to play Go with both positional and score handicap and can maximize
the final score. Moreover, SAI can leverage on its strength to recover
from very severe disadvantage when playing against weaker oppo-
nents. All these features have been validated against human players:
SAI won against a professional player and against a professional-
level player with substantial handicap, therefore showing superhuman
strength and additional ability to win with handicap in games with
humans. Finally, human validation shows that SAI minimizes subop-
timal moves when compared with Leela Zero.

2 The SAI framework

2.1 Modeling winrate as a sigmoid function of
bonus points

In the AlphaGo family the winning probability (or expected winrate)
τ of the current player depends on the game state s. In our framework,
we include an additional dependence on the number x of possible
bonus points for the current player: in this way, trying to win by n
points is equivalent to play trying to maximize the winrate in x =
−n. We modeled τs(x) with a two-parameters sigmoid function, as
follows:

τs(x) :=
1

1 + exp(−βs(αs + x))
(1)

The number αs is a shift parameter: since τs(−αs) = 1/2, it
represents the expected difference of points on the board from the
perspective of the current player. The number βs is a scale parameter:
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the higher it is, the steeper is the sigmoid, the higher the confidence
that αs is a good estimate of the difference in points, irrespective of
the future moves.

AlphaGo and derivatives all share the same core structure, with
neural networks that for every state s provide a probability distribution
ps over the possible moves (the policy), trained as to choose the most
promising moves for searching the tree of subsequent positions, and a
real number vs ∈ [0, 1] (the value), trained to estimate the winning
probability for the current player.

In our framework, the neural network was modified to estimate,
beyond the usual policy ps, the two parameters αs and βs of the
sigmoid, instead of vs. The winning probability may be computed as
τs(ks) where ks = ±k is the signed komi, i.e., the bonus points of
the current player (if it is negative we often use the term malus). Rules
generally assign a komi of k = 7.5 to white player, to compensate for
the disadvantage of playing for second. So the sign of ks depends on
the color of the current player at s.

2.2 Branching from intermediate positions

In order to train the two sigmoid parameters for each position, we
relaxed the habit of starting all training games from the initial empty
board position, and sometimes branched games at a certain state s,
changing the komi of the branch according to the value of αs. In this
way, we generated fragments of games with natural balanced situa-
tions but a wide range of komi values. This reinforces robustness of
the model. Only a sample of all the possible positions were branched,
nevertheless the network was able to generalize from this sample and
obtain sharp estimates of αs, with high values of βs, for positions
near the end of the game.

2.3 Parametric family of value functions

In Leela Zero’s Monte Carlo tree search, every playout that reaches
a state s then chooses among the possible actions a (identified with
children nodes) according to the policy ps(a) and to the evaluation
Q(s, a) of the winrate. The latter is the average of the value vr(s)
over the visited states r inside the subtree rooted at a; the quantity
vr(s) is the value at r from the point of view of the current player at s,
so vr(s) = vr or 1− vr depending on whether the current player at
s is the same as at r or the other one. The choice between the actions
is done according to AlphaGo Zero UCT formula, see [17].

In our framework, the value function formally equivalent to vr(s)
is the value τr(ks) of the sigmoid (1). We designed an additional
parametric family of value functions νr(s) = νλ,μ

r (s), λ ≥ μ ∈
[0, 1] computed as

νλ,μ
r (s) :=

{
1

xλ−xμ

∫ xλ

xμ
τr(u)du λ > μ

τr(xλ) λ = μ

with xλ and xμ pre-images via τs of convex combinations between
τs(ks) and 0.5, i.e.:

xθ := τ−1
s

(
θ · 0.5 + (1− θ)τs(ks)

)
, θ = λ, μ (2)

so that for example x0 = ks is the authentic bonus for the current
player, and x1 = −αs is the virtual bonus that would make the
game position balanced. Here, xλ and xμ (and hence νr(s)) are
computed according to the evaluation τs at the root node s, so that the
integral averages νr(s) entering in the averages Q(s, a) in order to
be compared, are all done on the same interval. See Figure 1.

Figure 1. If s is a state, a a possible move from s, and r a position in the
subtree rooted at a, the value νλ,μr (s) is the integral average of τr between
xλ and xμ, where xλ and xμ are determined according to (2).

λ0.5+(1-λ)τs(ks)

μ0.5+(1-μ)τs(ks)
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τs where s is the current position
τr where r is a position in the subtree
rooted at move a from s 

We remark that for λ > 0 and μ ∈ [0, λ], νλ,μ
r (s) under-estimates

or over-estimates the winning probability, according to whether the
player’s winrate is above or below 0.5. In the extreme scenario λ =
μ = 1, the agent ν1,1 would always believe to be in a perfectly
balanced situation. Thus, it would try to grab every single point,
resulting in a greedy score-maximizing agent.

As we will show, when adopted, the parametric family νλ,μ is
instrumental in pushing SAI towards higher scores.

2.4 Results from the 7×7 proof-of-concept

In our previous work [14] we showed that our framework can suc-
cessfully be applied to 7×7 Go. In particular the double value head
estimated correctly both parameters in final and nearly final positions,
with αs+ks typically within 0.5 points from the real score difference
and β > 5. This is not trivial, since the target to which the value head
is trained is not a pair (α, β), but the boolean game outcome at one
single komi value, and in fact we couldn’t get this result without the
branching mechanism, which seems quite necessary to this end. The
present work shows that this was not due to the relative small number
of positions on 7×7 Go.

One peculiar result in [14] was that the sequences of moves chosen
by the policy at the very beginning of each game correspond to what
is believed to be the perfect play (there are tentative solutions of
7×7 Go by strong professional players, see [3, 22]). Moreover the
estimated parameters for the initial position were α∅ ≈ 9 and β∅ > 2,
suggesting that the nets properly identified the fair komi of 9 points,
and could win with 95% confidence if given just 0.5 bonus points
from it. We believe that the play at 250 visits was perfect or very close
to perfect, and the fact that almost perfect play can actually be learnt
on 7×7 Go, made the possibility of generalization to larger sizes at
least dubious.

In this work we exploit the setting of 9×9 Go. This allows us to
challenge our assumptions and prove that our framework is effective.
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3 Methods of this paper

3.1 Training SAI

We performed two runs of 9×9 SAI. The process we implemented
is similar to what was done in Leela Zero [6], with a sequence of
generations, each one with a single network doing self-play games,
beginning with a random net. Differently from Leela Zero, and fol-
lowing AlphaZero [16], in our setting there is no gating, meaning that
after a fixed number of games the generation ends and a newly trained
net is automatically promoted, without testing that it wins against the
previous one. Around 2,000 self-plays for generations were enough
to get a fast and stable learning (with the possible exception of the
first 3-4 generations).

Each training was performed on the self-play games data of a
variable number of generations, ranging from 4 to 20, inversely pro-
portional to the speed of the changes in the nets from generation to
generation, so that in the training buffer there would not be contradic-
tory information.

In each generation, the proportion of complete games to branches
was 2:1. Complete games always spanned several komi values, chosen
in 1

2
Z with a distribution obtained by interpreting the sigmoid τ∅ (of

the current net, for the empty board) as a cumulative distribution
function. Branches were originated from random positions s (each
position in a game or branch had the same probability p = 0.02 of
originating a new branch) and new komi set equal to±αs (rounded to
half an integer) with the sign appropriate for the color of the current
player, so that the starting position s with the new komi would be
estimated as fair for the two players.

The training hyperparameters changed several times during the
two runs, with typical training rate 0.0001, batch size 512 and 4,000–
10,000 training steps per generation. In the second run we experi-
mented with a kind of “weak gating”, in the sense that for every
generation during the training we exported 10 networks, at regular
intervals of steps, and then match every one against the previous
network, finally promoting the one with the best performance. It is un-
clear if this choice improves learning, but it seems to reduce strength
oscillations.

3.2 Network structure

The structure of the neural networks was always the same during
the runs, though with different sizes. The input is formed by 17
bitplanes of size 9×9: one is constant, with 1 in all intersections
(useful for the network to be aware of borders, thanks to the zero-
padding of subsequent convolutions). The remaining planes hold 4
different features for the last 4 positions in the game: current player
stones, opponent stones, illegal moves, last liberties of groups. The
first layer is a 3 × 3 convolutional layer with k filters, followed by
batch normalization and ReLU. Then there is a tower of n identical
blocks, each one a 3 × 3 residual convolutional layer with k filters
followed by batch normalization and ReLU. On top of that there are
the two heads. The policy head is composed by a 1× 1 convolutional
layer with 2 filters, batch normalization and ReLU, followed by a
dense layer with 82 outputs, one per move, and then softmax. The
value head starts with a 1× 1 convolutional layer with 3 or 2 filters
(first and second run respectively), batch normalization and ReLU, on
top of which there are two almost identical sub-heads, for α and β.
Both sub-heads are composed by two dense layers. The first layer has
384 or 256 outputs (for α or β sub-heads), and is followed by ReLU.
The second layer has just 1 output. The β sub-head is concluded by
computing the exponential of the last output.

The loss function is the sum of three terms: an l2 regularization
term, the cross-entropy loss between the visits proportion and the
network estimate of the policy, and the mean-squared error loss be-
tween the game result and the winrate estimate τ̂s(ks), where ks is
the signed komi and τ̂s is the sigmoid with parameters α̂s and β̂s as
estimated by the network.

3.3 Scaling up complexity

Since with limited computational resources the training of 9×9 SAI
is very long, we decided to start the process with simplified settings,
scaling up afterwards as the performance stalled. This approach was
introduced with success in Leela Zero, by increasing progressively the
network size. We observed that one could also progressively increase
the number v of visits, as very small values are more efficient at
the beginning, while very large values may be needed for getting to
optimal play in the end [14].

In the first run we started with n = 4, k = 128 and v = 100
and progressively increased visits to a maximum value of v = 850.
Then we started increasing the network size to a maximum of n = 8,
k = 160. In total there were 690 generations, equivalent to about 1.5
million games, 70 million moves and 25 billion nodes. In the second
run we tried to keep the network structure large and fixed at k = 256,
n = 12 and scaled only the visits, starting from a lower value of
v = 25 and going up to v = 400 in 300 generations.

3.4 Elo evaluation and training outcome

Every run of a project like Leela Zero or SAI yields hundreds of neural
networks, of substantially growing strength, but also with oscillations
and “rock-paper-scissors” triples. It is then quite challenging to give
them absolute numerical scores to measure their performance.

The standard accepted metric for human players is the Elo rating [5,
Section 8.4]. In order to get global estimates of the networks strengths,
following [19], we confronted every network against several others,
of comparable ability, obtaining a graph of pairings with about 1,000
nodes and 13,000 edges. We implemented the maximum likelihood
estimator, in a way similar to the classic Bayesian Elo Rating [2], but
with a specialization for dealing with draws in the game of Go, which
are possible in our framework.

Figure 2 shows the Elo rating of the networks of both runs, anchored
to 0 for the random network. It is apparent that the growth is very
fast in the beginning, ranging from random play to a good amateur-
level playing strength. Elo rating seems less able to express the subtle
differences in the playing style and game awareness of more mature
networks. In fact our experiments show for example that the very
similar ratings of nets S1, S2 and S3 are the overall result of different
patterns of winrates against other networks.

3.5 Fair komi for 9×9 Go

A valuable byproduct of the two runs is that we got an estimate of
the bonus points for the second player that makes the perfect game
a tie, that is, fair komi. There are speculations on this subject in the
Go community and a general agreement that, with Chinese scoring,
a komi of 7.5 should be quite balanced. Figure 2 shows that SAI
believes that the fair komi should be 7 points. This is confirmed by
both runs, despite the fact that the final networks of the two runs have
different preferences for the first moves.
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Figure 2. On the upper graph, estimate of the Elo rating as function of the
generation for the two runs of 9×9 SAI. The nets S1, S2, S3, W1, W2, W3
are described in Section 3.7. On the lower graph, evolution of the estimates
α̂∅ of the initial empty board position for the two runs of SAI.
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3.6 Score in a Go game

For our experiments we needed a precise evaluation of the score of a
finished game, even if it ended by resignation at a fairly early position.
But it is difficult to implement an algorithm to compute exactly the
score of such a game, as it would in practice require to conduct the
game up to the point where scoring can be applied, and this leads to a
painstakingly long final part, after the winner is already decided.

In this work we exploited the features of SAI itself to estimate
score. The first choice could have been to have a standard strong
SAI network compute αs on the position s when the loser resigns.
However we realized after some experiments that this estimate is fairly
unstable, in particular when βs is low, and decided to make it more
precise, by aggregating information from a large sample of positions
in the subtree of visited nodes rooted at s. This is the same principle
introduced by AlphaGo Zero to assess the winrate, but instead of the
average, we chose the median, which proved to be stable when based
on 1,000 visits. The algorithm was validated by an expert player on a
set of 20 games.

3.7 The experimental setting

In order to conduct our experiments, we selected a set of strong and
a set of progressively weaker nets (see Figure 2). According to a
qualitative assessment, W3 is stronger than a strong amateur, but is

not at professional level. To calibrate the nets, we had each of the
strong nets play against itself and against all the weak nets 100 times,
half times with black and half times with white, with komi 7.5 and
with 1,000 visits. As expected, each net won against itself around half
of the times, although it would win more often with white, consistently
with the assessment that komi 7.5 is unbalanced in favor of White (see
Subsection 3.5). Strong nets won 71-73% of the times against W1,
73-90% against W2 and 96-98% against W3. Since the results on 100
games showed a little too much variability, in the next experiments we
played 400 games for each setting, in order to reduce the uncertainty
by half. The code of the experiment, as well as the files of the games
in Smart Game Format, is available at the link [8], and the datasets
containing the results underlying the figures of the next section is
available at the link [9].

4 Results

4.1 SAI can play with handicap

We conducted two experiments to prove that SAI is able to play with
handicap. In the first experiment, we had each of the strong nets play
against itself and against all the weak nets, half times with black and
half times with white, with an increasing level of komi. The result is
shown in Figure 3, where komi is represented in relative terms with
respect to an even game of 7.5, i.e. “2” means 5.5 if the strong net is
white, and 9.5 if the strong net is black.

When playing against themselves and against W1 as white, the
strong nets were able to win a sensible share of games with up to 6

Figure 3. Games of the three strong nets versus themselves and each of the
three weak nets, with komi increasingly disadvantageous for the strong net (in
relative terms with respect to 7.5).
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points of unfavorable komi, while as black their share of victories
decreased to less than 2% on average at 4 points. Against the two
weaker nets, all the strong nets kept an average share of victories
higher than 70% with white, and a reasonably high share of victories
with black (higher than 29% on average), when playing with up to 6
points of malus. With 8 malus points, the strong nets could still win
an appreciable share of times (5.6% and 16.4%), with both colors.

In the second experiment, we pushed the handicap further, having
the three strong nets play white against W3 with additional levels of
komi and with the “traditional” concept of handicap: H1 is having
no komi (actually, 0.5, to avoid ties), H2 is having white start the
game but with two black stones placed on the board. To make H2 less
prohibitive, we countered it with komi points in favor of white. The
result is shown in Figure 4, where komi is expressed in absolute points.
As expected, H2 proved prohibitive, even though in one single game
S2 was able to win. When H2 was played with 6.5 komi, in few cases
strong nets were able to recover, and with 8.5 the setting was chal-
lenging again for W3. With 10.5 the game was again approximately
even.

Figure 4. Games of the three strong nets as white versus W3, with various
levels of handicap. Komi is expressed in absolute terms. Score handicap (left):
the disadvantage is malus points, and H1 means komi 0.5. Positional handicap
(right): the starting board contains 2 black stones and white plays first, and H2
means komi 0.5. Since the strong nets play white, lower komi points (from left
to right on the x-axis) mean higher disadvantage.
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4.2 SAI can target high scores

SAI nets can play with different agents, according to which of the
value functions introduced in Section 2.3 is used. We expected that
SAI, when playing with agents with high parameters, due to the sys-
tematic underestimation of the number of advantage points, would

have targeted high margins of victories. We also expected that this
would come at the price of reducing its winning probability, due to
two composite effects: on the one hand, when playing against a strong
opponent, SAI would overlook more solid moves, towards moves
riskier but with a higher reward; on the other, when being in disadvan-
tage, the agent would provide SAI with a delusional overestimate of
its situation, therefore jeopardizing its choices.

To explore those effects, we had the three strong nets play against
themselves and against the three weak nets with a family of agents:
λ equal to 0.5 or 1, and μ being in turn 0, 0.5λ, 0.75λ, and λ. The
result is shown in Figure 5.

Figure 5. Games of the three strong nets versus themselves and each of the
three weak nets, with agents adopting different value functions parameterized
by λ and μ. In each subfigure, the lower part shows the winning probability of
the strong net, the upper part shows the average final score of the games won
by the strong net.
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As expected, the winning probability of the strong nets when play-
ing against themselves and against W1 decreased rapidly with in-
creasing λ, especially for high values of μ and when playing as black.
However, the average score when winning as white, which was around
10 points at baseline with λ = μ = 0, showed a remarkable improve-
ment, up to +7.6 points on average when playing against itself with
λ = 1 and μ = 0.5, and up to +9.5 points on average when playing
against W1 with λ = μ = 1. The loss of strength against W2 and W3
was not so apparent, even for high values of λ and μ. On the other
hand, the improvement in score was substantial.
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We then reasoned that the potential of the family of value functions
would be better exploited if the choice of the value function was
targeted to the situation in the game, for instance changing with the
winning probability or with the strength of the opponent. Therefore
we tested a variable agent by having the strong nets play against
themselves and against W3 using three agents ((0.5, 0), (1, 0) and
(1, 0.5)) which were only activated if the winrate was higher than a
threshold of, in turn, 50% and 70%.

The result of the games between strong nets and themselves (and
between strong nets and W3) is shown in Figure 6. The threshold
effectively eliminated or contained the loss in strength. The gains in
score were maintained or increased with thresholds, especially for the
50% case. We tested whether loss in strength and increase in score
were significant on average across the three strong nets. The results
are reported in in Table 1. Loss in strength as white was more often
significant when the strong net was playing against itself than when it
was playing against W3; loss in strength as black was not significant,
except when (λ, μ) = (1, 0.5). The increase in score was always
statistically significant, but was more substantial with threshold 50%.

Figure 6. Games of the 3 strong nets versus themselves and W3, with agents
adopting different value functions parameterized by λ and μ, when the point-
wise estimate of victory is above a pre-defined threshold of 0%, 50% and 70%.
In each subfigure, the lower part shows the winning probability of the strong
net with variable agent, the upper part shows the average final score of the
games won by the strong net.
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Table 1. Analysis of the data in Figure 6. The winrates and the scores are
averages across the three strong nets. The differences (indicated by Δ) both
in winrates and in scores are between each row and the corresponding row
with λ = μ = 0. A binomial test for difference smaller than 0 was conducted
for winrates, a t-test for difference larger than 0 was conducted for score.
Differences are marked with ∗ if the p-value is < 0.05 and with ∗∗ if the
p-value is < 0.001.

Threshold=50%, opponent: itself

Winrate Δ in winrate Score Δ in score

Color λ μ (%) with (0,0) with (0,0)

White 0 0 69.2 - 8.9 -
0.5 0 64.2 −5.0∗∗ 17.5 +8.6∗∗
1 0 60.8 −8.3∗∗ 18.7 +9.8∗∗

0.5 52.5 −16.7∗∗ 22.4 +13.5∗∗
Black 0 0 30.0 - 11.2 -

0.5 0 31.7 +1.7 14.6 +3.4∗∗
1 0 29.3 −0.7 16.3 +5.1∗∗

0.5 26.8 −3.2∗ 15.9 +4.7∗∗

Threshold=70%, opponent: itself

Winrate Δ in winrate Score Δ in score

Color λ μ (%) with (0,0) with (0,0)

White 0 0 69.2 - 8.9 -
0.5 0 66.2 −3.0 16.5 +7.6∗∗
1 0 64.3 −4.8∗∗ 15.4 +6.5∗∗

0.5 60.0 −9.2∗∗ 17.4 +8.4∗∗
Black 0 0 30.0 - 11.2 -

0.5 0 27.5 −2.5 15.6 +4.4∗∗
1 0 32.0 +2.0 14.9 +3.7∗∗

0.5 28.7 −1.3 17.0 +5.8∗∗

Threshold=50%, opponent: W3

Winrate Δ in winrate Score Δ in score

Color λ μ (%) with (0,0) with (0,0)

White 0 0 97.2 - 7.5 -
0.5 0 97.7 +0.5 17.7 +10.2∗∗
1 0 95.5 −1.7∗ 24.2 +16.8∗∗

0.5 90.7 −6.5∗∗ 36.2 +28.8∗∗
Black 0 0 97.2 - 17.4 -

0.5 0 96.3 −0.8 27.2 +9.8∗∗
1 0 96.2 −1.0 34.8 +17.3∗∗

0.5 91.3 −5.8∗∗ 41.0 +23.5∗∗

Threshold=70%, opponent: W3

Winrate Δ in winrate Score Δ in score

Color λ μ (%) with (0,0) with (0,0)

White 0 0 97.2 - 7.5 -
0.5 0 96.8 −0.3 16.7 +9.3∗∗
1 0 95.8 −1.3∗ 21.5 +14.0∗∗

0.5 89.2 −8.0∗∗ 31.7 +24.3∗∗
Black 0 0 97.2 - 17.4 -

0.5 0 96.2 −1.0 27.9 +10.5∗∗
1 0 96.7 −0.5 34.1 +16.7∗∗

0.5 89.3 −7.8∗∗ 39.9 +22.4∗∗
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4.3 SAI can recover from very severe disadvantage

As demonstrated in Section 4.1, SAI can play with handicap. However,
victory becomes rare in H1 and H1 with an additional negative malus
point; or H2 with 6 or even 8 bonus points. In such severe situations we
investigated whether having the strong net overestimate its advantage
would help it keeping a solid game until the weak net made some
error, allowing the strong net to leverage on its own superiority and
win. To this aim we had the 3 strong nets play with W3 in the four
severe disadvantageous situations, with λ set to 0.5 and to 1.

The result is shown in Figure 7. With λ = 0, both S1 and S3 had
won less than 5% of the times with 2 handicaps and a bonus of 6 points
(komi 8.5). In both cases, setting λ to 0.5 increased substantially the
winning probability, to 12.0% and 22.5% respectively. In the case of
S2, that had had a better performance than S1 and S3 in this extreme
situation, increasing λ to 0.5 didn’t have any noticeable effect. Setting
λ to 1 did not further improve the winning probability for any of the
strong nets. In the other, less extreme situations of disadvantage, the
effect of setting λ to 0.5 was inconsistent, while further increasing λ
to 1 never improved the winning probability.

Figure 7. Games of the three strong nets versus W3, playing white with
handicap incremented or decreased by komi points. Since the strong nets play
white, lower komi points mean higher disadvantage. Type of handicap 1: the
disadvantage is malus points. Type of handicap 2: the starting board contains
2 black stones and white plays first.
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4.4 SAI can minimize suboptimal moves

As mentioned in the Introduction, in the view of the content experts,
AlphaGo wins often by a small margin and plays suboptimal moves,
since no direct notion of score is incorporated in its DRL pipeline.
This is common knowledge among Go players, based on professional
analysis of public AlphaGo games against humans [18]. In order to
quantify this claim and, at the same time, prove that SAI acts less
suboptimally, in July 2019 the following experiment was organized.
Since AlphaGo and AlphaGo Zero are not publicly available, we
selected a recent, unofficial but very strong Leela Zero (LZ) net for
9×9 Go.7 We ran 200 games between LZ and W3, the weakest net in
our experiments. LZ was assigned white and won all the games. We
drew a 10% random sample from the 200 games. Our strongest net,
S1, had won 194 times out of 200 games played as white against W3,
with (λ, μ) = (1, 0) (see Subsection 4.2). We drew a random sample
of 20 games from the 194. In total, we obtained a sample of 40 games,
20 played by LZ and 20 played by S1. We shuffled the 40 games and
labeled them with an anonymous identifier.

We asked two strong amateur players (4D and 3D) to score the
40 games and to identify whether the winner had played suboptimal
moves. We also asked them to rate their own estimate of score as
‘reliable’ or ‘non reliable’. The two assessors did not communicate
7 See https://github.com/leela-zero/leela-zero/
issues/863#issuecomment-497599672.

with each other during assessment. As a result, the scores of 32 games
were rated ‘reliable’ by both assessors. The average difference in score
between the two assessors was 1.53, in detail 0.8 among ‘reliable’ and
4.3 among ‘non reliable’ games. We computed the mean of the two
scores and we linked the data to the identity of the winners: LZ or SAI.
We found that the average scores of LZ and SAI were, respectively,
6.3 and 16.0 (single-tail t-test: p < 0.001), or 6.0 and 15.0 when
restricting to ‘reliable’ games (single-tail t-test: p = 0.006). The
games with no suboptimal moves were 18 (90%) for SAI and 11
(55%) for LZ (χ2 test: p = 0.013). The files of the games in Smart
Game Format, the manual assessment and analysis are available at this
link [10]. Finally, to understand the comparative strength of LZ with
respect to S1 playing with this agent, we had them play 400 games:
LZ won 359 times (89.8%). In summary, even though LZ was stronger
than S1, it got significantly lower scores, and made significantly more
suboptimal moves, with respect to SAI playing with an agent targeting
high scores.

4.5 SAI is superhuman

A match was scheduled on May 2019 between SAI and Hayashi Kozo
6P, a professional Japanese player. The match was composed by 3
games, at alternate colors, and komi 7.5. In the first game white was
assigned to Hayashi Kozo 6P, out of respect, because it is traditional
in Go that the more expert player plays white first.8 SAI was set to
play with net S1, 50,000 visits, λ = μ = 0 and resign threshold set at
5%. SAI won all games, two playing black and one playing white.

Another match was also scheduled on May 2019 between SAI and
Oh Chimin 7D, a 7-Dan Korean amateur player whose strength is
estimated to be that of a low dan professional player. The match was
composed by 5 games, with different values of komi. SAI played with
the same settings of the previous match and won 4 games, three of
them while playing white with komi 7.5, 5.5 and 3.5, one playing
black with komi 13.5 (which amounts to 6 malus points for SAI).
Oh Chimin 7D won a game playing black with komi 1.5. According
to expert Go knowledge, winning against a professional-level player
with 6 points of handicap on a 9×9 board is an achievement that
classifies SAI as superhuman.

5 Developments

5.1 SAI and the game of Go

Many opportunities associated with SAI’s framework are still un-
explored. For instance, the variable agents introduced at the end of
Section 4.2 may be used in dependence of other parameters with re-
spect to the pointwise estimate of the winrate, or used in conjunction
with an estimate of the strength of the opponent. Symmetrically, the
ability of SAI to recover from very severe disadvantage against a
weaker opponent that was highlighted in Section 4.3, may probably
be better exploited if the agent were variable. Indeed, it may be sug-
gested that, as soon as a mistake from the weaker opponent re-opens
the game, a variable agent could restore its proper assessment of the
winrate, thus switching its aim from recovering points to targeting
victory and improving effectively its chances.

Moreover, note that SAI is able to win with substantial handicap,
even in situations when the information stored in the sigmoid is of

8 This is rooted in the fact that, in the past, komi was non assigned, and later it
was smaller than 7.5: as a consequence, white was at a disadvantage. It must
be noted that nowadays, however, the conventional 7.5 points komi gives
a small advantage to the expert player, since, to avoid ties, the number of
games scheduled for a match is generally odd.
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little help because the winrate is very low. Similarly, a SAI net is able
to win when playing with λ = μ = 1, when the winrate is constantly
close to 0.5, even when playing with an equally strong opponent
(itself). We speculate that both those abilities amount to the quality of
the policy, that stems from experience gained during branched games.
It would be interesting to test this hypothesis.

In the games we organized with human players, see Section 4.5,
our primary goal was victory. For this reason we used λ = μ = 0. As
a consequence, we observed that SAI made some suboptimal moves.
A promising development is using SAI with variable λ and μ against
humans, for competitive and teaching purposes, in order for it to
choose optimal moves with humans even when it is winning.

All such opportunities will have a chance to be fully exploited
when SAI is trained to play on the 19×19 board.

5.2 SAI and Deep Reinforcement Learning

After the seminal papers on Atari [13] and AlphaGo [15], Deep Rein-
forcement Learning (DRL) has been a major research topic. The SAI
framework, at its essence, is a variation into the high-level, domain-
independent aspects of DRL, stemming from the assumption that
probability of success is a function of the targeted score, belonging
to a parametric family of functions whose parameters can be learned
by a neural network. The only requirement for SAI to contribute to
an application is that success is linked to some score in the first place.
This is true in many instances of zero-sum two-player games, for
instance Othello, where a Leela Zero approach has been advocated for
but not yet pursued [12]. In fact, DRL was recently used to address
broader challenges, such as multi-player games, with incomplete in-
formation, and/or with non-zero sum. Whenever score is relevant
for success, SAI can contribute with parametric modeling of winrate
as a function of targeted score, with branching training techniques,
with real-time score estimates, with a parametric family of agents
which allow real-time tuning the playing style to the opponent and to
the game circumstances. For instance Puerto Rico [4] could benefit
from the general-purpose aspects of SAI. Finally, DRL is expected
to extend to other domains outside of games, spanning from robotics
to complex behaviors in 3D environments and character animation:
as science progresses by contamination, we would not be surprised if
SAI could be part of this conversation, too.
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