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Abstract. We present a Spades bidding algorithm that is
superior to recreational human players and to publicly avail-
able bots. Like in Bridge, the game of Spades is composed
of two independent phases, bidding and playing. This paper
focuses on the bidding algorithm, since this phase holds a pre-
cise challenge: based on the input, choose the bid that maxi-
mizes the agent’s winning probability. Our Bidding-in-Spades
(BIS) algorithm heuristically determines the bidding strat-
egy by comparing the expected utility of each possible bid.
A major challenge is how to estimate these expected utilities.
To this end, we propose a set of domain-specific heuristics,
and then correct them via machine learning using data from
real-world players. The BIS algorithm we present can be at-
tached to any playing algorithm. It beats rule-based bidding
bots when all use the same playing component. When com-
bined with a rule-based playing algorithm, it is superior to
the average recreational human.

1 Introduction

Spades is a popular card game. Therefore designing strong
Spades agents has a commercial value, as millions of games
are held daily on mobile applications. Those applications have
been downloaded from Google Play store more than any other
trick taking game (over 10M times) and produce annual in-
come of several millions of dollars[3, 13].

Spades shares many similarities with games such as Bridge,
Skat, Hearts and others that have attracted considerable at-
tention in AI. Recently, AI agents have reached superhu-
man performance in the partial information game of no-limit
poker [4, 5] and to a level of human experts in Bridge, which
is considered to be one of the most appraised partial informa-
tion problems for AI [1, 25, 17]. Spades, however, has received
relatively little attention in the literature. Although several
Spades bots were made, such as those made by AI-factory
(see Related Work), we have no knowledge of strong publicly
available bots, thus a comparison with the state of the art
algorithm is unavailable. Instead, we compared our bidding
in Spades (BIS) to humans and to rule-based bidding bots on
one of the most popular mobile applications and show that
BIS bidding is superior.

The game holds three interesting features from AI perspec-
tive: (1) It is a two-versus-two game, meaning that each agent
has a partner and two opponents. The partner can be an AI
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“friend” with a common signal convention or an unknown
AI/human where no convention can be assumed; (2) Partly
observable state: agents observe their hand but do not know
how the remaining cards are distributed between the other
players. Each partly observable state at the start of a round
can be completed to a full state in 39!

13!3
∼= 8.45 · 1016 ways;

and (3) Goal choosing, as different bids mean that the agent
should pursue different goals during the round.

Related work. We first mention two general game-playing
algorithms: Monte-Carlo Tree Search (MCTS) evaluates
moves by simulating many random games and taking the aver-
age score [6]. Upper Confidence bounds applied to Trees (UCT)
is an improved version that biases the sampling in favor of
moves that already have higher score [14].

Two groups have made intensive research in the spe-
cific area of Spades agents: a group from University of Al-
berta [18, 19, 20, 21] and AI-Factory group [2, 8, 9, 23]. The
latter launched a commercial application called Spades Free.
AI-Factory use a knowledge-based bidding module because
they found that a “Monte Carlo Tree Search is poor at mak-
ing bidding decisions” [23]. Whitehouse et al. [23] presented
an improved MCTS playing module that beats their strongest
heuristic playing agent, they explain that the MCTS must use
several heuristics tweaks to be perceived as strong by human
players. In a follow-up study, Baier et al. [2] used neural net-
works in order to emulate human play. They trained the net-
work to predict human’s next moves, given a game state. It
achieved an accuracy of 67.8% which is an improvement over
other techniques such as decision trees.

The Alberta University team considered a simplified ver-
sion of the game with perfect-information (hands are visi-
ble), 3 players, 7 cards, and no partnerships. This reduction
was essential in order to reduce the size of possible states of
the game, which allow search algorithms to get good results
faster. Sturtevant et al. [18] compared the paranoid [22] and
the maxn [15] algorithms to a handmade heuristic and found
that both algorithms were barely able to outperform their
handmade heuristic. A followup research from the same group
showed that in an n-player game, search algorithms must
use opponents modeling in order to obtain good results [20].
They proposed the soft-maxn algorithm which uses opponent
modeling. Interestingly, they used a rule based bidding sys-
tem, even though the search space is much smaller than clas-
sic Spades. In the simple 3-player Spades variant mentioned
above, UCT reaches the level of play of prob-maxn [19]. Au-
thors hypothesized that UCT works better in games with high
branching factor and low n-ply variance5 such as Gin-Rummy.

5 A measure of how fast the game state can change.
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Besides those two groups, dozens of Spades apps are avail-
able on Google’s play store, most of them have an option of
playing with AI players. Currently, The most popular apps
are Zinga’s Spades Plus,6 BeachBum’s Spades Royale7 and
AI Factory’s Spades Free.8

Contribution. The main focus of the BIS agent is the de-
cision whether to bid nil. BIS uses Monte Carlo simulations
combined with heuristic relaxations to obtain heuristic values
for nil and non-nil bids. The probability of winning a nil bid
is then evaluated using supervised learning from millions of
real games.

Combined with a rule-based playing module, BIS is superior
to other rule-based bidding algorithms and to the average
recreational human, beating humans in 56% of the games. In
particular, BIS bids nil more frequently (13.6% of the rounds
vs. 12.6%), and still obtains a higher success rate in those
rounds (68.8% vs. 63.2% for human players).

Figure 1. A game of Spades. From the agent’s perspective, the

Left-Hand Opponent (LHO), Right-Hand Opponent (RHO) and

the Partner are sitting at West, East and North, respectively.

2 Rules of Spades

Spades is a 4-player trick-taking card game. It resembles
Whist, Euchre, Oh Hell, Hearts, Skat, Callbreak and often re-
ferred to as a simpler version of Bridge. Its name comes from
the rule that the spade suit is strongest (spades are trumps).
The game is played in partnerships of two, partners sit across
the table from each other and named after the four compass
directions: East and West against North and South. The game
is played over several rounds. At the end of each round both
partnerships score points, the winner is the partnership with
the highest score that also exceeds a predefined winning goal
(usually 500 points). A round begins with dealing 13 cards to
each player out of a regular deck of 52 cards. Each round has
two phases: bidding followed by playing.

In the bidding phase, each player, in her turn (passed clock-
wise), makes a single bid (0-13), which states the number of
tricks she commits to take. The playing phase has 13 tricks,
where a trick consists of each player in her turn, playing a
single card from her hand onto the table. The player which
played the strongest card on the table, wins the trick and will
be the leader of the next trick. The first card played in a trick
is the leading card and determines the leading suit of the trick,
other players must follow the leading suit if they can. If in a
trick, no spade cards were played, then the highest leading
suit card is the winner, if a spade card was played then the

6 www.zynga.com/games/spades-plus
7 www.spadesroyale.com
8 www.aifactory.co.uk

highest spade card is the winner. The leader cannot lead a
spade card unless spades were broken or she is spades tight
(holds nothing but spades). Spades are broken when a spade
card is played for the first time in the round.

When a round ends, scoring is performed. A partnership
that takes at least as many tricks as the combined bid of
both partners, receives 10 points times their combined bid,
otherwise the partnership loses 10 points times their combined
bid. Any extra trick taken beyond their combined bid is called
bag (or overtrick) and it is worth 1 point. If throughout the
game a partnership collects 10 bags, they lose 100 points and
10 bags. Thus players usually aim to take exactly their bid.

For example, assume agent bids 4 and partner bids 2. If
their sum of takes is less than 6 tricks then they will lose
60 points, if they will take 9 tricks, then they will receive 63
points. If they had already 288 points (meaning they collected
8 bags during previous rounds), then they will receive 63 how-
ever since they cross the 10 bags limit they will lose 10 bags
and 100 points, which will results in 241 points.

Bidding 0, also known as nil, is a special bid. If a player
bids nil then each of the partners in the partnership checks
separately whether her bid was successful. A player that bids
nil wins 100 points if she individually did not win any trick,
and loses 100 points if she did. Terminology can be found in
the full version. The complete set of rules can be found at
The Pagat website [16].

3 To Nil or Not to Nil, that is The
Question

The major decision a player is facing during the bidding phase
is whether to bid nil or a regular bid (non nil bid). A nil bid
offers a high reward (100 points) but a high risk of being set
(−100 points) compared to a regular bid, making the decision
a risk-reward trade-off. The major factor of nil bids is shown
at Fig. 2. While the score of no-nil rounds is concentrated
around 60 points, nil bids result in a risky gamble (see the
two peaks of the “Nil” curve).

Figure 2. Histograms of the points gained in a round by

BIS+Partner, when agent bids either nil or non-nil. The main peak

of the “non-nil” histogram (around 60 points) is due to agents ful-

filling their regular bid. The left peak (−60) is due to failed bids,

and the right peak (130) is due to successful nil bids of the partner.

Deciding to nil does not depend solely on the hand a player
holds. The relevant parameters are: (1) the hand’s compatibil-
ity to a nil bid; (2) the alternative regular bid; (3) the bids by
previous players; and (4) the willingness to take risks, which
depends on the current scores in the game. For example when
the other partnership is about to win the game while having
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an easy contract, a desperate nil might be the best option.
High alternative regular bid reduces the risk a player should
take since the alternative reward is higher. Bidding later in
the turn order reveals information about the other players
hands. The most important information is the partner’s bid.
High partner’s bid informs that she holds several high cards,
which allows the agents to bid nil even with hand containing
high cards. A high sum of bids by the three other players re-
duces the risk for nil since the opponents cannot set the nil
without jeopardizing their own bid.

4 The BIS Agent

The BIS agent runs two preprocesses: the first is a Monte-
Carlo simulation that estimates the probability that other
players hold various cards. The output of these simulations is
in the form of Probability Tables, that we denote by PT. The
second preprocess uses data from real games played against
human players, to estimate success probabilities of nil bids.
The output is in the form a real-valued function called success
curves (SC).

In every round, the bid is determined in the following man-
ner. The agent may use the precomupted data (PT and SC),
in addition to the current hand and the sequence of 0-3 pre-
vious bids in this round.

Algorithm 1: BIS algorithm

1 Input: Hand, PrevBids;
Result: bid [0-13]

2 regularTakes ← CalcRegularTakes(PT,Hand,PrevBids);
3 nilValue ← CalcNilValue(PT,Hand);
4 nilProb ← SC(PrevBids,nilValue);
5 expNilScore ← nilProb ·100 + (1-nilProb) (-100);
6 nilThreshold← CalcNilThreshold(regularTakes);
7 if expNilScore > nilThreshold then
8 Return 0;
9 else

10 Return regularTakes;
11 end

The regularTakes variable is an estimation of the number of
tricks that the BIS agent can take with high probability. This
is a rule-based heuristic estimation based on the current hand
and the precomputed probability tables. Details in Sec. 4.1.
Similarly, the nilValue (line 3) is a heuristic rule-based esti-
mation of the chances to succeed in a nil bid (Sec. 4.2). Since
the accuracy of this estimation is critical, we used data from
online games to generate a more accurate probability estima-
tion nilProb. Generating the Success Curves used in line 4 is
the main innovative part of the algorithm. The computation
and use of success curves is detailed in Sec. 4.3.

The nilThreshold in the deployed version of BIS is a con-
stant value (typically 25 points, but may be higher or lower
under endgame conditions that we will later explain). We also
consider a more structured way to compute the threshold.

4.1 Regular bid

In a regular bid, BIS tries to estimate the largest number
of tricks it can take with high probability. Five features are

considered to calculate the regular bid of a hand: (1) side
suits high cards (2) spades high cards, (3) long spades suit,
(4) short side suits accompanied with spades and (5) the sum
of the previous bids. Features 2,3 and 4 are not completely
disjoint: the value of a spade card is the maximum between
the value it gets from high/long spades and the value it gets
from being a potential cut at a short side-suits.

4.1.1 Side Suit High Cards

We use a simplifying assumption that neglects the probability
of finesse9. Thus the first, second and third tricks of each suit
will be won by either the A,K,Q, respectively, or by a spade
cut. Table 1 presents the probability that in a specific suit,
no opponent is void, singleton or doubleton (columns), given
the number of cards the agent holds from that suit (rows).
These are exactly the probabilities that the agent will take a
trick with the A,K and Q respectively (when neglecting the
probability of finesse, and having enough blockers). Values in
parentheses are worth 0 since the high card does not have
enough blockers to be played at the given trick.

For example, in the hand agent holds at Fig. 1, the value of
the K♣ is 0.678. This is the probability that both opponents
will not be able to cut the second ♣ trick, given the agent
holds five ♣ cards (marked with ∗ in Table 1). The value of
Q♦ is 0 (marked with ∗∗) since agent does not have enough
blockers to be played on the third trick.

When an opponent has bid nil or is known to be void at
spades, only one opponent may cut so the probabilities are
different, and we use a different table instead (see full version).

Table 1. Side suit high card’s value. Calculated as the probability

that the first/ second/ third trick can not be cut by an opponent,

taking into account the player’s number of cards from that suit.

Probability that both opponents have:
cards in
side-suit

> 0 cards > 1 cards > 2 cards

0 (0.997) (0.966) (0.817)
1 0.994 (0.942) *** (0.733) **
2 0.990 0.907 (0.624)
3 0.983 0.855 0.489
4 0.970 0.779 0.350
5 0.948 0.678 * 0.212
6 0.915 0.544 0.095
7 0.857 0.381 0.025
8 0.774 0.214 0
9 0.646 0.074 0
10 0.462 0 0
11 0.227 0 0

4.1.2 Spades High Cards

The A♠,K♠,Q♠,J♠ are each worth one trick if they are
mostly protected. A spade high card is mostly protected if
it has more spades than the number of un-owned higher rank
spades. This notion comes from the blog Tactics and Trickery
by Tyler Wong [24]. Formally, the A♠ is worth one trick. The
K♠ is worth one trick if the hand contains another spade.
The Q♠ (J♠) needs 2 (3) protectors in order to be counted
as a take.

9 A finesse is a method of playing your cards to win a trick with a
card lower than your opponents highest card.
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4.1.3 Spades Long Suit

Every spade beyond the forth is counted as a take since given
the agent holds five spades or more, it is likely no oppo-
nent is holding five spades. For example, the spades at Fig. 1
(A♠,K♠, J♠, 6♠, 2♠) are worth 4 takes: two takes for the
A♠,K♠, the J♠ together with the 2♠ as a blocker is worth
another take, and another take is due to the fifth ♠.

4.1.4 Short Side Suits with Uncounted Spades

BIS’s value of short side suits is the probability that it is the
only player that can cut in the specific trick, (otherwise, op-
ponents might over cut). Table 1 show this probabilities for
void, singleton and doubleton. For example, the cutting value
of a Singleton ♦ and two unassigned spades, is the probabil-
ity that no opponent is having the possibility to overcut on
the second and third ♦ tricks, that is 0.942 + 0.733 = 1.675
(marked with ***,** in Table 1). Each ♠ card is counted once
where it produce the highest value, either for high/long spades
or for cutting short side-suit.

In total, in the example hand displayed at Fig. 1:

• The side suit high cards contribute 0.678 (for K♣) and 0.99
(for A♥). While the Q♥, Q♦ contribute 0.

• The A♠,K♠ contribute 1 take each.
• The J♠, 6♠, 2♠ can be counted as a high card (J♠) with

a blocker and a fifth ♠, and contribute 1 + 1 = 2.
• Alternatively, the J♠, 6♠, 2♠, can be counted as short side

suits cuts, which worth 0.942 + 0.733 + 0.624 = 2.3.

Thus the expected amount of regular takes is 0.678 + 0.99 +
2 + max{2, 2.3} = 5.89. To this value we add a factor which
determined by the sum of previous bids and then it is rounded
to the nearest integer to determine the value of regularTakes
in line 2 of Alg. 1.

4.2 Nil-Value

BIS heuristiclly estimate the probability of a successful nil
bid, we denote this estimation as the hand’s nilValue.

Our main relaxation is almost-suit-independence:10 the
probability of taking 0 cards from a given suit, depends only
on the cards of that suit. Formally:

Pr(nil|hand) ≈
∏

suit∈{♣,♦,♥,♠}

Pr(nil(suit)|hand ∩ suit),

This relaxation reduces the number of unknown location of
cards from 39 to 13 (minus our holdings from that suit). Thus,
enables to efficiently simulate every single suit set of cards
in the agent’s hand. This relaxation was used in [7, 10] to
evaluate nil winning probability in a resembling trick-taking
game named Skat.

Therefore, the problem reduces to estimating

Pr(nil(suit)|hand ∩ suit)

10 Suit-independence occurs since players must follow the leading
suit if they can, it breaks down when a player is void in the
leading suit.

in a given suit. Our second simplifying assumption is that in
each suit, cards beyond the three lowest are not dangerous.11

Monte Carlo deals. As a preprocess, we evaluated the prob-
ability of taking zero tricks with each possible set of a sin-
gle suited cards. The event “nil(suit)” depends not only on
dealt cards, but also on how players will play, which makes
the evaluation ambiguous. Therefore we evaluate a different
event cnil(suit) (‘cards nil’) which only depends on the cards
players have. Formally, this event means that “on all tricks of
the relevant suit, both opponents can play under one of the
agent’s cards, and partner cannot cover that card”.12

We evaluate the probability of the complement event
Pr(¬cnil(suit)|hand ∩ suit). There are four cases depending
on how many cards are in the suit, and each of them can be
written as a union of simple events:

1. In a void suit ∅ the nil can never be set, so
Pr(¬nil(suit)|hand∩suit) = 0 (note that in this case there
is no difference between nil and cnil).

2. in a singleton suit {x}: both opponents are either void
or have at least one card smaller than x, and partner isn’t
void and has no higher card.

3. in a doubleton suit {xx} is the union of the following two
events:

(a) set at the smallest card x: same as in the singleton suit
case.

(b) set at the second smallest card x: both opponents are
singleton/void or have at least two cards smaller than
x, and partner isn’t singleton/void or has no two higher
cards than x.

4. in a suit with three cards or more11 {xxx} is the union
of the following three events:

(a) set at the two smallest cards x or x: same as in the
doubleton case.

(b) set at the third card x: both opponents are doubleton/
singleton/ void or have at least three cards smaller than
x, and partner isn’t doubleton/ singleton/ void and has
no higher card than x.

• evaluating the ♠ suit is the same except that partner can
not cover by cutting and that a forth spade denials nil
(which is a popular heuristics [11]).

To evaluate the simple events used in the above cases, we
made a table that contains an entry for each outcome. This
is similar to Table 1 but with many more rows, a row for
each possible set of cards from the suit. For each entry, we
uniformly deal the rest of the suit between the other players
100K times.

For example, the nilValue of the hand in Fig. 1 is calculated
as follows:

11 The fourth card in a suit is seldom dangerous since when holding
4 cards from the same suit, only 8% of the deals will allow the
opponents to lead a forth trick while the partner can not cover
by cutting.

12 This event leads to failed nil under the following assumptions:
(1) no cards from this suit are played on tricks where different
suit was lead, (2) both opponents are playing under the agent’s
card if it is the highest on the table, otherwise they play their
highest, (3) partner covers with high card when able, (4) partner
can always cut when she is void in the suit.
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Figure 3. Left: the nilValue and the actual nil success probability of the agent when bidding third, after the RHO bid 3, and the partner

bid 1, 3, or 8. Right: the learned success curves for the three bidding sequences on from the left figure.

• ♣ : K, 9, 5, 4, 3. The 3 lowest cards are perfectly safe, thus
Pr(cnil(♣)|hand) = 1.

• ♦ : Q♦. The singleton Q has 57.8% to be covered, either
when the partner is void, or when the partner holds either
the K or the A, or when one of the opponents holds only
higher ♦. Thus Pr(cnil(♦)|hand) = 0.578.

• ♥ : A,Q. According to the respective doubleton table,
Pr(cnil(♥)|hand) < 0.001. It is non-zero only due to the
chance is that partner is void.

• ♠ : A,K, J, 6, 2. The A guarantees a failed nil, thus
Pr(cnil(♠)|hand) = 0.

• Thus, the Nil-Value is 1 · 0.578 · 0.001 · 0 = 0

When the hand contains a void suite, we multiplie
the nilValue by a constant factor of 1.15 (hence ‘almost-
independence’), which is a reasonable approximation that
does not require to recompute all the tables.

4.3 Supervised Learning of the Nil Success
Probability

The nilValue computed in Sec. 4.2 is providing us with some
estimation of the actual probability to succeed in a nil bid.
However, we can get a more accurate evaluation of the prob-
ability if we take into account the bids of the previous players
in this round.

To estimate the nil success rate, we used data from games
of the earlier version of BIS that does not use the learning
component, combined with the playing module SRP (see Sec-
tion 5.1). We extracted 2 million rounds from online games
played during December 2018 (all games had three bots and
a single human player). We only used rounds where the agent
bids nil.

For every sequence of previous bids and any nil value, we
counted how many nil bids were successful. See Fig. 3(left) for
three such sequences. We can see that the nilValue is indeed
positively related to the actual success probability, but is not
in itself a good approximation, as the probability highly de-
pends on the previous bids. Since BIS never bids nil in some
situations (e.g. low nilValue), we also used a noisy variant of
BIS for better exploration.

Ideally, we would get a curve of Pr(nil|nilV alue) for every
possible bid sequence. However, there are 1+14+142 +143 =

2955 bidding sequences (0-3 previous bidders, each bid in the
range of 0-13). Some of them have enough data to provide a
good estimation, but for other bid sequences data is scarce.
E.g., there are over 20K rounds for the previous bid sequence
“(3,3)”, but only about 700 rounds for the sequence “(8,3)”,
which means no data at all for some nilValues.

To generate the success curves for all bidding sequences, we
trained a binary Logistic Regression model on our collected
data. The model estimates the nil success probability for each
of the 2955 bidding sequences and every possible nilValue.

We then utilize our trained model to retrieve a nil success
probability estimate for all possible bidding sequences and
nilValues, including for values that do not occur in our data.
See Fig. 3(right) for the learned success curves of the three
sequences mentioned above.

We generated all 2955 success curves offline, and stored
them as the SC tables. The bidding algorithm (see row 4 of
Alg. 1) uses the relevant success curve for the actual previ-
ous bids, and returns the estimated nil success probability
as SC(PrevBids, nilV alue). For example, if the agent bids
third, previous bids are (1, 3), and the calculated nil value is
0.8 then the estimated nil success probability is 65% (marked
with a star in Fig. 3.

Besides Logistic Regression, we experimented with neural
networks, random forests and linear regression as well, and
got similar results, thus we chose to use Logistic Regression
for the following reasons:

• Interpretable - we can easily understand how it weights
each feature, as opposed to neural networks.

• Easy to implement and train.
• Explicitly models the probability estimates we are inter-

ested in.
• It produces a probability that is monotone in the nil value,

as opposed to other methods.

4.4 End-of-game Bidding Modifications

In most rounds, maximizing the expected points in the round
is a good approximation to maximizing the winning probabil-
ity in the game. However when at least one partnership will
win the game by fulfilling their contract those two objective
differ widely. BIS becomes risk seeking when opponents are
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about to win and risk averse when partnership is winning.
An example for such modification is the ‘complete to 14’ bid
which means betting on the opponents to fail their bid (as
there are only 13 tricks). While this modification may yield
negative expected points, it increases the winning probability
when opponents are close to winning the game. Those heuris-
tics are detailed at the full version.

5 Experimental Evaluation

In this section, we evaluated our bidding algorithm against
other bidding algorithms, and against human players. We then
evaluate the impact of the different components of our bidding
algorithm.

5.1 Competition with other bots

Setting. We matched BIS with three competing rule-based
bidding algorithms (see below). In every game there was one
BIS partnership (two agents using BIS for bidding) and one
competing partnership. To ensure that only the bidding com-
ponent is evaluated, all four players used the same playing
module (see below).

In each comparison 10K games where played, which is
about 35K rounds. Unless stated otherwise, we used a winning
goal of 200 points and losing goal of -100 points.13

Competing Algorithms:

IO This agent is implemented on Cardsgame.io website and
uses a fairly simple bidding method. It uses the following
nil classifier: if the regular bid ≤ 3 and partner’s bid ≥ 4
and hand contains no A or K, and no A-T of spades and
no more than 3 spades, then bid nil. It uses the following
regular bid: each high spade (A to T) is worth 1 trick, each
low spade (9 to 2) is worth 0.4 trick, in side suits, each A is
worth 1 trick, each {AK} is worth 2 tricks and each {Kx}
is worth 0.5 a trick. We did not get access to the playing
module of this agent.

MS This is an implementation of the bidding scheme de-
noted as ‘simple bidding’ which appears in the book Mas-
ter Spades [12]. The instructions in the book for bidding nil
(and also the playing instructions) are not concrete enough
to write them down as an algorithm. We therefore com-
bined the bidding algorithm with the näıve nil classifier of
RB. The regular bid is the following: Nine cards are worth
one trick each: Aces, non-singleton Kings and the Q♠ (if
it is not a singleton or doubleton that does not contain the
A♠). Each ♠ beyond the first three is worth a trick while
a void or a singleton spade reduce the bid by one. A side-
suit void or singleton, together with exactly three spades
increases the bid by one.

RB Rule-based Bidder. This is the previous bidder that was
implemented in the application we use for evaluation. Its
regular bid calculated as a sum of values of each card in
hand. Each card has a value that depends on the number
of cards from that suit in the hand. The näıve nil classifier
bids nil if the lowest, second lowest and third lowest cards
from each suit are not larger than 5, 8 and 10 thresholds
respectably.

13 The (+200/-100) goal was a common setting on the application
at the time. We received similar results with other goals.

Playing modules:

WRP A Weak Rule-based Player. Strength of an average
recreational human player. When combined with the RB
bidding module, wins almost 50% of the games when plays
vs. recreational human players.

SRP A Strong Rule-based Player - When combined with the
RB bidding module, wins 56% of games vs. RB+WRP; and
54% of the games vs. recreational human players.

UCT An implementation of the UCT algorithm [14] for the
game of Spades. We use a time limit of 3 seconds to decide
the number of samples. Further details about our imple-
mentation and the limitations of UCT are found in the full
version.

We can also use the general UCT algorithm for bidding and
not just for playing. We denote by UCT (X) the SRP playing
module where the last X tricks are replaced with UCT.

Results. Table 2 shows that for three different playing mod-
ules, the bidding module of BIS is stronger than the other
bidding modules.

Table 2. Comparison of BIS bidding to other bidding algorithms.

In each comparison, the playing module is fixed for both bidding

modules. The comparison is in two aspects: win ratio and average

points per round.

Opponents’
Bidding

Playing
Module

BIS’s
win rate

Average points
BIS : opponents

RB WRP 51.9% 53.2 : 50.0
MS WRP 66.9% 50.1 : 38.2
IO WRP 68.6% 52.8 : 46.5
RB SRP 52.3% 56.2 : 52.8
MS SRP 67.7% 50.8 : 38.4
IO SRP 67.1% 51.6 : 46.3
RB UCT (3) 52.1% 52.0 : 48.5
RB UCT (5) 52.9% 48.5 : 40.3

Our results shows that the UCT playing module is stronger
than SRP only when activated at the last several tricks, this is
because of the three seconds time limit which does not allow
the UCT to search accurately when activated earlier. If we
would like to use UCT as a bidding module, it would have to
search a huge space. We are currently looking into how UCT
can be combined with our BIS agent without using excessive
computation time.

5.2 Playing against humans

Setting and dataset. Our BIS agent was deployed in a pop-
ular mobile Spades application.14 We extracted more than
400K rounds from games played during October 2019, be-
tween a partnership of two BIS+SRP agents and a partner-
ship composed of a BIS+SRP and a human player.

Results. The overall winning rate of the BIS partnership is
56% of all games, which are 2 percentage points above the
performance of the previous rule-based partnership used by
the platform (RB bidding module with the same SRP playing

14 We disclose the name of the platform in a note to the reviewers.
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module). Note that this data suffers from selection bias be-
cause games were only recorded if they ended, while humans
tend to quit games when they are losing badly.

To better understand the strenghths and weaknesses of BIS
we divided all rounds to types according to the bids made by
players.

Table 3 shows that in almost all round types, the BIS+SRP
partnership obtains a higher score. This is true also when par-
titioning no-nil rounds according to the sum of bids (Fig. 4).
The biggest points gaps in favor of BIS+SRP are in ‘double
nil’ rounds (both partners bid nil) and when the total bids
exceed 14. We conjecture that those rounds are a result of
bidding blunders made by humans.15

One exception where the BIS+H partnership scores higher
is when bids sum up to exactly 14. This is explained by BIS
end-of-game bidding modifications (see Sec. 4.4). The other
exception is when the human’s partner bids Nil, demonstrat-
ing that the poor performance of the partnership is due to
the human part.

Table 3. Comparison between a partnership of two BIS+SRP

against BIS+SRP and a human. The comparison is broken down by

round types. The BIS+SRP partnership is generating more points

in rounds containing nils.

nil position # rounds Average points Successful nils
BIS+BIS : H+BIS BIS+BIS : H+BIS

BIS+BIS 117782 57.3 : 47.7 68.8% : -
H 73157 50.7 : 49.2 - : 63.9%
Partner of H 57392 51.9 : 62.2 - : 70.0%
Nil vs. Nil 102132 67.4 : 60.5 44.2% : 39.6%
Double Nil 691 64.5 : -29.3 - : 32.4%
No Nil 95928 48.9 : 43.6 - : -

Figure 4. Average points per round in rounds where no player

has bid nil, broken down based on the sum of the four bids.

5.3 Impact of BIS components

This section aims to reveal the significance of several com-
ponents in BIS bidding by comparing a BIS partnership to a
partnership that has the specific component disabled or mod-
ified. In all simulations, all four bots use the SRP player.

5.3.1 Success Curves

A simple variant of the BIS bidding algorithm would use a
single Success Curve, without taking the previous bids into
account. The current BIS algorithm beats the simple variant

15 Double nil bid is rarely beneficial (BIS never bids nil if its partner
bid nil). Sum of bids higher than 14 is usually an indication that
a human player is vastly overvaluing their hand, since BIS bids
conservatively.

Table 4. BIS Vs BIS with a single component disabled

Opponents
BIS’s
win rate

Average points
BIS : opponents

Single success curve 51.2% 44.7 : 43.6
No end-game conditions,
winning goal of 200

52% 48.3 : 49.9

No end-game conditions,
winning goal of 1

52.8% 43.5 : 52.9

in 51.2% of the games, and gains 2.5% higher score on average.
This means that the success curves are responsible for about
1/4 of the overall improvement that BIS obtains over the best
rule-based bidder RB.

5.3.2 End-of-game Bidding Modifications

The end game conditions are a set of heuristics described at
Subsection 4.4. BIS with the end game conditions won 52%
of the games under the usual winning goal of 200 points. As
expected, BIS with the endgame module obtains fewer points
per round. When the winning goal was set to 1 point (single
round games), the win rate increased while the average points
decreased.

5.3.3 Bid-sensitive Nil Threshold

The BIS algorithm uses a threshold as a cutoff point to decide
whether to bid nil (see Lines 6-7 in Alg. 1). The current algo-
rithm uses a constant threshold (specifically, 25) that is based
on the expected score of a non-nil bid. It may seem wiser to
use more available information to determine this threshold.

Indeed, we implemented a variation of the BIS algorithm
(BIS∗), which tries to evaluate the expected score of the part-
nership once if the agent would bid nil and second if she will
bid a non-nil bid, using the regularTakes value and the bid of
the partner, if known.

When playing against each other, BIS∗ was slightly worse.
One possible explanation is that an inaccurate estimation is
worse than using a constant threshold. We hope to better
understand the weak points of the estimation and improve
the threshold decision in future work.

6 Conclusion

This work is the first to publish a Spades bidding algorithm
that outperforms recreational humans. Our hope is that it
will serve as a baseline for future work which will allow other
teams to build stronger Spades bidding modules.

BIS is flexible in the sense that it can bid in several varia-
tions of Spades, such as Cutthroat Spades (i.e. Solo), Mirror,
Spades with jokers, Whiz and Suicide, each of them require
very little game-specific modifications. We conjecture that the
methods we used might produce strong bidding modules in
other trick-taking games such as Skat, Whist and Callbreak.
In the first two games, a nil classifier is a major part of the
bidding and our nil classifier, with slight modifications can be
used. Our regular bid evaluator needs slight modification to
the value of cards in order to be used in those other games.

The main takeaway message that goes beyond applications
to trick taking card games, is our approach of combining rule-
based heuristics and learning. That is, we first generate a rule-
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based heuristics (in this case, of the probability to succeed in
a nil bid), and then apply machine learning on past data,
using this heuristic as the main feature, to get an improved
estimation.

Future research is focused on better tackling the weak
points of the bidding module (cases where probability esti-
mations are off), and on improving the playing module. Our
goal is to develop a combined Spades agent with super-human
strength.
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