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Abstract.

Modeling a combinatorial problem is a hard and error-prone task

requiring expertise. Constraint acquisition methods can automate this

process by learning constraints from examples of solutions and (usu-

ally) non-solutions. We describe a new statistical approach based on

sequential analysis that is orders of magnitude faster than existing

methods, and gives accurate results on popular benchmarks. It is also

robust in the sense that it can learn constraints correctly even when

the data contain many errors.

1 Introduction

Constraint Programming is a powerful approach to modelling and

solving decision and optimisation problems. It draws on techniques

from Artificial Intelligence, Operations Research, graph theory and

other areas to provide a wide range of variable types, constraints,

filtering algorithms, search strategies and specification languages. A

constraint satisfaction problem (CSP) has a set of problem variables,

each with a domain of possible values, and a set or network of con-

straints imposed on subsets of the variables. A constraint is a rela-

tionship that must be satisfied by any solution.

However, modelling an application as a CSP, possibly with an

objective function, remains a task for experts [20]. This problem,

and the successes of Machine Learning at automating a wide vari-

ety of tasks, has inspired the field of Constraint Acquisition (CA)

[1, 2, 4, 5, 16, 21, 27, 30], closely related to Constraint Learning

[25], Constraint Synthesis [22] and Empirical Model Learning [18].

In CA we are given examples of solutions and non-solutions or fail-

ures (or positive and negative examples respectively) and the aim is

to learn a constraint model that represents them. Beside the general

goal of automated problem modelling, the model might be used as

an explanation or compressed representation of the problem, to clas-

sify partial assignments, to show that a partial assignment cannot be

placed in a class, to speed up the solution of future problems, or to

find instances that optimise some objective. CA has been identified

as an important topic [21], and recognised as progress toward the

“holy grail” of computing in which a user simply states a problem

and the computer proceeds to solve it without further programming

[12].

The CA problem is defined in [25] as follows. We are given a space

X of �x instances (assignments to variables V ); a space of possible

constraints C; an unknown target constraint theory T ⊆ C; and a

set of training instances E, in which positive instances E+ satisfy T
while negative instances E− do not. The task is to find a constraint

theory H ⊆ C such that the positive instances in E satisfy all con-

straints, while the negative instances violate at least one constraint.

A more detailed formal definition and theoretical results are given

in [5]. Active methods are guided by interaction with a user or other
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oracle, while passive CA methods learn automatically. Several CA

systems have been devised (see Section 5), based on version space

learning [19], inductive logic programming [23, 24] and other meth-

ods, with a recent survey given in [25]. They usually require a set of

candidate constraints, also called a bias, that may or may not occur

in the model we are trying to learn.

An alternative approach to CA is to train a classifier to distinguish

between solutions and non-solutions, then derive a constraint model

from the trained classifier. This has been done for classifiers based

on neural networks and decision trees [9, 18] and Naive Bayes [10].

In this paper we develop a fast method based on sequential analysis

(sequential hypothesis testing). We also show that it can accurately

learn constraints from noisy data in which many instances have been

misclassified.

The paper is organised as follows. Section 2 describes the new

method. Section 3 presents empirical results showing its accuracy

and speed. Section 4 tests its robustness on noisy data. Section 5

discusses related work. Section 6 concludes the paper.

2 The method

In this section we describe the new method and discuss its properties.

2.1 A test for constraints

The key property of a constraint is that it cannot be violated by a

solution, though it might be violated by a non-solution. In contrast,

a non-constraint candidate might be violated by instances from both

E+ and E−. So a simple way of checking whether a candidate c ∈ C
is a constraint is to find all training instances that violate c, and check

that they are all in E−.

However, it is not always necessary to check all instances. An ob-

vious exception is: on encountering a c violation from E+ we can

immediately reject c as a constraint (assuming all instances are cor-

rectly classified). A more interesting question is: can we stop check-

ing c violations after encountering a sufficient number of E− cases?

For example, if we encounter 100 violations from E− in a row, is

this enough evidence to conclude that we will never see a violation

from E+, and that c can reasonably be assumed to be a constraint?

There is reason to believe that this can be reliable. We have ob-

served in experiments that a non-constraint is approximately as likely

to be violated by an instance from E+ as from E−. As an example

consider the following vertex colouring problem. The graph has 3

vertices and 3 colours, corresponding to a CSP with variables x, y, z
each with domains {R,G,B}, with edges x− y and y − z. Let the

bias be the set of all possible disequalities (2 constraints x �= y and

y �= z, 1 non-constraint x �= z) and let the training data contain all

27 possible assignments as instances. The solutions are:
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RGR RGB RBR RBG GRG GRB GBR GBG GRG GRB GBR

GBG

and the non-solutions are:

RRR RRG RRB RGG RBB GRR GGR GGG GGB GBB GRR

GGR GGG GGB GBB

For the constraint candidate x �= y the violating non-solutions are:

RRR RRG RRB GGR GGG GGB GGR GGG GGB

and there are no violating solutions. On the other hand, for the non-

constraint candidate x �= z the violating non-solutions are:

RRR GGG

and the violating solutions are:

RGR RBR GRG GBG GRG GBG

If we randomly sample violations of a candidate, we are likely to

quickly detect a solution if and only if the candidate is a non-

constraint.

In practice we usually find a roughly even split for a non-constraint

candidate c: in a balanced dataset any instance is in E+ or E− with

equal probability, and if c is not a constraint then the same is true of

the subset of instances that violate c. It is possible to construct cases

for which this is untrue, but so far we found only cases in which c
contains most or all of the problem variables. Our method would not

be applied to such cases because bias size increases exponentially

with candidate arity.

Assuming our observation holds, given a balanced dataset the

probability of encountering a series of 100 violations from E− in

a row is extremely small (approximately 10−30). It therefore seems

reasonably safe to stop checking c violations after encountering 100

from E− and none from E+: c is almost certainly a constraint. This

is the main idea explored in this paper, and we shall show that it

leads to a very fast CA method that gives accurate results on stan-

dard benchmarks. First we recast the above idea as an application of

sequential analysis.

2.2 Sequential analysis

Sequential analysis [32] is a form of hypothesis testing in which a

stopping rule is used to stop sampling as soon as the accumulated evi-

dence is sufficient to accept or reject the hypothesis. This has obvious

benefits for patients in clinical trials [3], which can be halted as soon

as it becomes obvious that an experimental treatment is harmful, or

that one treatment is much more successful than another. Another

application is in manufacturing, where product lots are tested for de-

fects: lots should be accepted or rejected after as few tests as possible,

to save time and costs [31]. A similar approach called Banburismus

was developed independently by Turing to speed up decryption [14].

There are many more applications in the literature.

Our test can be viewed as an application of sequential analysis, in

which we look for evidence to accept or reject the hypothesis that

a candidate has only non-solution violations (and is therefore a con-

straint). When gathering evidence we can use a stopping rule to avoid

sampling all violations.

2.3 SPRT

A well-known, simple and provably optimal sequential analysis algo-

rithm is Wald’s Sequential Probability Ratio Test (SPRT) [31]. Using

the manufacturing application as an illustration: products are sam-

pled and tested one by one (m = 1, 2, . . .), counting the number

dm of defects found so far. If at any point dm < Am the lot is ac-

cepted and the algorithm halts, where Am is an acceptance number.

On the other hand, if at any point dm > Rm the lot is rejected and

the algorithm halts, where Rm is a rejection number. Otherwise the

algorithm continues indefinitely.

Am and Rm increase with time, as shown in Figure 1 where a lot

is accepted. The formulae for computing them are

Am =
ln β

1−α

ln p1
p0

+ ln 1−p1
1−p0

+m
ln 1−p0

1−p1

ln p1
p0

− ln 1−p1
1−p0

(1)

Rm =
ln 1−β

α

ln p1
p0

+ ln 1−p1
1−p0

+m
ln 1−p0

1−p1

ln p1
p0

− ln 1−p1
1−p0

(2)

where p0 is the defect probability below which we prefer acceptance,

p1 is the defect probability above which we prefer rejection, α con-

trols the type I and β the type II error rate. These four parameters

specify the sampling plan.

d

m

R

accept

A

Figure 1. Illustration of SPRT

2.4 SPRT-based constraint acquisition

We now describe the new SEQACQ method (SEQuential analysis-

based constraint ACQuisition) for CA. It has only two easy-to-

understand parameters (A,R), one of which (R) can be set to 1 if

we expect no errors in the data.

Pseudocode for the method is shown in Figure 2. For each candi-

date c we test whether it is violated by each of a random sequence of

instances. On observing some number R of violating solutions, we

reject c as a constraint. On observing some number A of violations

without having rejected c, we accept it as a constraint. If we do not

expect any errors in the data then we set R = 1, which will be the

default unless stated otherwise. If neither threshold is reached before

the instances are exhausted SEQACQ rejects the candidate (but see a

modification in Section 2.6).

Figure 3 shows an example in which a candidate c is violated by

two sampled solutions. These cause two diagonal moves (horizontal

moves correspond to non-solution violations) which lead to rejection

because R = 2. But if A non-solution violations were observed first

then c would be accepted as a constraint.
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SEQACQ(R,A)

for each candidate c in the bias

r ← 0 a ← 0
repeat

randomly choose an instance e without replacement

(if impossible then reject c as inconclusive)

if c is violated by e
if the instance is a solution

r ← r + 1
if r ≥ R reject c as a constraint

a ← a+ 1
if a ≥ A accept c as a constraint

Figure 2. The SEQACQ algorithm

reject

A

R=2

R−1

−1

r

a

Figure 3. SEQACQ as SPRT

2.5 Algorithm parameters

SPRT has four parameters (p0, p1, α, β) while SEQACQ has only two

(A,R). We can prove that SEQACQ is an instance of SPRT by show-

ing that any reasonable choice of A,R (1 ≤ R < A) corresponds to

at least one meaningful choice of SPRT parameters: meaningful here

means that all the parameters must be probabilities and that p1 must

be greater than p0: 0 < p0 < p1 < 1 and 0 < α, β < 1. Using

equations (1,2), in Figure 3 the rejection line at a = 0 has value:

R − 1 =
ln 1−β

α

ln p1
p0

+ ln 1−p1
1−p0

(3)

the acceptance line at a = 0 has value:

−1 =
ln β

1−α

ln p1
p0

+ ln 1−p1
1−p0

(4)

and the gradient of both lines is:

1

A
=

ln 1−p0
1−p1

ln p1
p0

− ln 1−p1
1−p0

(5)

Arbitrarily setting p1 = ep0 (to satisfy p0 < p1) equation (5) be-

comes

1

A
=

ln 1−p0
1−ep0

1 + ln 1−p0
1−ep0

hence

p0 =
1− e

1

A−1

1− e
A

A−1

If A > 1 (required above) then 0 < p0 < p1 < 0.73 so p0, p1 are

valid probabilities. Next, subtracting equation (4) from equation (3):

R =
ln 1−β

α
− ln β

1−α

1 + ln 1−ep0
1−p0

or

ln
1− β

α
− ln

β

1− α
= X

where

X = R

(
1 + ln

1− ep0
1− p0

)

Hence

α =
1− β

1− β + eXβ

Now eX > 0 for any X, and any expression Y/(Y + Z) is in (0, 1)
if Y,Z > 0, so 0 < α < 1 for any β and p0. Hence we can choose

any probability β and obtain a valid probability α, so SEQACQ is a

special case of SPRT.

Note that although SPRT has 4 parameters it only has 3 degrees of

freedom: one constant for each of the two lines plus a common gradi-

ent (as shown in Figure 1). However, SEQACQ has only 2 degrees of

freedom because A determines both the gradient 1/A and the inter-

cept (A, 0). The motivation for this was to obtain a parameterisation

that we believe is more intuitive for constraint programmers, but ob-

jections can be raised:

• It might be argued that by setting a very shallow gradient we

are effectively using fixed bounds A and R, instead of increas-

ing bounds as in SPRT, so SEQACQ is no longer SPRT in spirit.

However, we showed above that it is technically SPRT because
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our parameter values correspond to valid SPRT parameter values.

Moreover, some formulations of SPRT use fixed bounds: Wald’s

original paper started with fixed bounds then introduced increas-

ing bounds for computational reasons.

• Allowing fewer degrees of freedom seems likely to prevent SE-

QACQ from expressing the optimal SPRT parameters, but we shall

show that it nevertheless achieves good results.

• Some researchers might prefer to use the SPRT parameterisation

on the grounds that it is more statistically justifiable, or more in-

tuitive for statisticians.

For any or all of these reasons one could instead directly apply SPRT

to the CA problem: choose values for p0, p1, α, β and for each can-

didate sample its violations, testing for membership of E− or E+.

Alternatively one could use a Bayesian hypothesis testing approach

and adjust a log-likelihood ratio during sampling. However, we shall

use our two parameters in this paper.

2.6 Inconclusive candidates

In experiments we found that some candidates were rejected as in-

conclusive when they should have been learned. This was caused by

an insufficient number of violations, even on datasets of several thou-

sand instances. It occurs with candidates that are hard to violate, for

example those with high arity.

Ideally we should demand more instances to handle such cases.

But to handle cases where this is impractical we instead modify SE-

QACQ slightly: instead of rejecting all inconclusive candidates, we

accept those for which r = 0 and a > 0 and reject others. SPRT

is often modified to handle inconclusive cases, yielding a Truncated

SPRT (see [26] for example) that accepts or rejects them on the ba-

sis of a limited number of samples. This modification helps on some

examples, but it also risks learning non-constraints. In general we

prefer to obtain more instances when inconclusive cases occur.

2.7 Datasets

Different CA methods require datasets with different characteristics,

for example ModelSeeker [4] only needs a few solutions, while most

methods require many solutions and non-solutions. In experiments

we found it necessary to create datasets with at least a thousand in-

stances, and SEQACQ works best on datasets that are large and bal-

anced (or nearly so): they have a similar number of solutions and

non-solutions. Large datasets are not unusual: for example QUACQ

used more than 9000 for Sudoku [2].

If the dataset has many instances of both types but is imbalanced,

SEQACQ can compensate by rescaling A by a factor |E−|/|E+|: if

there are more solutions then it can use a smaller value of A, while

if it has more non-solutions then it should use a greater value of A
to be sure of testing a significant number of violations. However, if

the dataset has few non-solutions then few non-solution violations

will be observed, and SEQACQ will learn few constraints (though

the modification in Section 2.6 helps). And if the dataset has few

solutions then SEQACQ will accept many candidates that should not

be learned, because they will not be observed to be violated by any

solutions.

2.8 Discussion

A reasonable question is: why not simply check whether a candidate

is satisfied in all solutions? This is essentially how Valiant’s SAT

method [29] works (modulo algorithmic details): a candidate that is

not violated by any solution is learned as a constraint. In contrast

SEQACQ also requires evidence that a candidate can be violated by

non-solutions. This requirement might seem odd because it is not

part of the definition of a constraint, which is a relation that must

satisfy all solutions.

However, the requirement has a useful consequence. Suppose we

check only that candidates are not violated in any solution. Consider

a particular candidate: the not-all-equal constraint on all problem

variables. An instance only violates this constraint if all its variables

take the same value, which is unlikely to occur randomly. Thus if the

bias contains this constraint, it will almost always be learned whether

or not it is part of the model. A user would quickly lose faith in a CA

system that always learns such constraints.

3 Experiments

In this section we test SEQACQ on examples with fixed parameter

values A = 50 and R = 1. We include results for the BAYESACQ

CA method using parameter values recommended in [10] (α = 0.01,

κ = 20). Unless stated otherwise we use a bias of all possible {≤, �=
,≥} constraints as in [6].

SEQACQ is implemented in the C programming language and ex-

ecuted on a 2.8 GHz Pentium 4 with 512 MB RAM. We shall cite

run times from other papers using different machines, so they are not

directly comparable to ours (except for BAYESACQ which used the

same machine). However, the differences in performance we report

are significantly greater than any likely difference in machine perfor-

mance, as they have fairly similar clock rates: [1] used an Intel(R)

Xeon(R) a© 3.40 GHz, [27] used an Intel(R) Core(TM) i5-4690K

CPU a© 3.50 GHz with 8Gb of RAM, [5] used an Intel Core i7 a©
2.9 GHz with 8 Gb of RAM, and [2] used a 1.6 GHz Intel Core i5

with 4GB of RAM.

3.1 Sudoku

A Sudoku puzzle can be viewed as a CSP with an N × N array

of variables, each with domain {1, . . . , N}, and disequality con-

straints on pairs of variables occurring in the same rows, columns

and “boxes”. A 9× 9 Sudoku puzzle (divided into nine 3× 3 boxes)

was used in [1, 2, 6, 7, 27]. Using 5000 solutions (generated by per-

muting a known solution) and 5000 random non-solutions, and a bias

of 9720 candidates, SEQACQ learned the correct 810 disequalities in

0.05 seconds while BAYESACQ took 0.4 seconds. Both are signifi-

cantly faster than other methods. Passive CONACQ took 15.6 seconds

to generate background knowledge and approximately 2 seconds for

acquisition [5]. In [27] MQUACA+FINDSCOPE 2 MAXB took 85

seconds and beat five other methods. QUACQ took approximately

800 seconds and MULTIACQ approximately 900 seconds [2]. In [1]

QUACQ took 2810 seconds, and a time-bounded version of QUACQ

called T-QUACQ took 69 seconds.

3.2 Latin squares

A Latin square is similar to a Sudoku puzzle as a CSP, but without

boxes. On a 10× 10 Latin square with 5000 solutions (generated by

permuting a known solution) and 5000 random non-solutions, with

a bias of 2700 candidates, SEQACQ took 0.06 seconds to learn the

correct 900 disequalities while BAYESACQ took 0.6 seconds. Again,

both are faster than other methods. T-QUACQ took 120 seconds,

compared to 7200 seconds for QUACQ [1]. In a comparison of six

S. Prestwich / Robust Constraint Acquisition by Sequential Analysis358



CA methods in [27] the fastest was MQUACA+FINDSCOPE 2 MAXB
which took 114 seconds.

We used a larger example to further compare the two new meth-

ods: a 20 × 20 Latin square with a bias of 239400 candidates. SE-

QACQ learned the correct 7600 disequalities in 0.3 seconds while

BAYESACQ took 19.3 seconds, clearly showing the advantage of

early stopping.

3.3 Golomb rulers

A Golomb ruler is a set of N marks at integer positions along an

imaginary ruler such that no two pairs of marks are the same dis-

tance apart. The smallest number is 0 and the largest is the ruler

length L. Golomb rulers are used for CA in [1, 2, 5]. We generated

5000 solutions (by permuting a few known optimal rulers) and 5000

random non-solutions. To our usual bias we added quaternary con-

straint candidates |xi − xj | �= |xi′ − xj′ | (i < j, i′ < j′, i < i′,
j′ �= k, k �= k′). The largest case usually tested is N = 12. SEQACQ

took 0.05 seconds to correctly learn 66 disequalities and 1485 qua-

ternary constraints, while BAYESACQ took 0.07 seconds. In contrast,

QUACQ took 2257 seconds and MULTIACQ took 2335 seconds [2],

while CONACQ took 2193 seconds on a smaller example (N = 8)

[5]. In [1] QUACQ took 11972 seconds while T-QUACQ took 1184

seconds.

T-QUACQ was also tested on larger Golomb rulers and failed to

converge when N = 20 [1]. However, for N = 27 with optimal

length L = 553 both SEQACQ and BAYESACQ took 2.7 seconds

to learn the 351 disequalities and 52650 quaternary constraints from

a bias of 53703 candidates. The reason for the similar run times is

that on this dataset all quaternary constraints are inconclusive: each

quaternary constraint is unlikely to be violated by a random instance

because of its high arity, so most or all of the training instances are

tested.

3.4 Bandwidth vertex colouring

A benchmark used in [2, 7, 28] is the Radio Link Frequency Assign-

ment Problem (RLFAP). The version used in [2] had 25 variables,

25 values, and a bias of 1800 candidates. QUACQ took 35 seconds,

MULTIACQ took 1441 seconds, and MACQ-CO took 142 seconds.

[7] used the same problem (at least the description is the same) and

improved QUACQ from 1653 to 151 seconds. [28] used a larger ex-

ample with 50 variables and 40 values, and a bias of 12250 candi-

dates; four variants of QUACQ were tested, all with execution times

of over 200 seconds.

We use an almost identical problem: bandwidth colouring, a gen-

eralisation of vertex colouring in which two adjacent vertices cannot

be assigned colours that are closer in value than a specified distance.

In the RLFAP these are called interfering links as they represent fre-

quencies that must be different enough to prevent radio interference.

(The RLFAP also has constraints forcing some adjacent vertices to

have a fixed distance between them, which are called parallel links

and are not included in bandwidth colouring. It may also have soft

constraints.)

We chose one of the larger DIMACS bandwidth colouring bench-

marks [15]: geometric graph GEOM100 with 100 vertices and 547

distance constraints (graph edges) with distances in the range 1–

10.2 It is known that this graph can be coloured using 50 colours,

but we allow 75 colours to allow many different solutions. We gen-

erated 1000 random solutions using a local search algorithm, and

2 File available at https://mat.tepper.cmu.edu/COLOR02/

1000 random non-solutions, and used a bias of 366300 distance can-

didates. SEQACQ (and a newly augmented version of BAYESACQ)

avoids learning redundant distance constraints by testing distances

d = m,m− 1, . . . , 2, 1 between two vertices starting from the max-

imum range m which is the maximum difference between domain

values, and halting on learning a constraint (greater efficiency could

be achieved by performing binary search on d). SEQACQ correctly

learned all the 547 constraints and their distances in 0.023 seconds

while BAYESACQ took 0.24 seconds.

3.5 Random 3-SAT

The experiments in Sections 3.1–3.4 show that SEQACQ and

BAYESACQ are much faster than other methods. However, most of

the benchmarks are too small for a real comparison between the two,

so we now compare them on harder problems.

A propositional satisfiability (SAT) problem can be viewed as a

CSP with binary domains and extensional non-binary constraints

(clauses). Following [10] we generated random 3-SAT examples with

different numbers V of variables, and 1000 randomly-generated in-

stances with 5 clauses so that approximately half of the instances

were solutions, and the bias is the set of all possible clauses with up

to 3 literals. The results are shown in Table 1. For the largest example

the bias contains over 20 million clauses. SEQACQ and BAYESACQ

both learn the correct clauses, but SEQACQ is more than two orders

of magnitude faster.

bias size learning time (seconds)
V (# clauses) BAYESACQ SEQACQ

50 1.6× 10
5 1.8 0.02

100 1.3× 10
6 16 0.1

150 4.5× 106 56 0.5

200 1.1× 107 123 0.9

250 2.1× 107 243 1.6

Table 1. Results for 1000 random 3-SAT examples

Next we generated a 1000-variable random 3-SAT example with

a bias of 1.3 × 109 clauses and 1000 instances. We also increased

the size of the target to 50 clauses, obtaining an approximately bal-

anced dataset via rejection sampling (only accepting non-solutions

for the training data with probability 0.0013). SEQACQ learned the

correct target in 78 seconds while BAYESSEQ took 16259 seconds.

This further illustrates the improved performance of SEQACQ over

BAYESACQ. It also shows that both can handle biases that are con-

siderably larger than those used in most CA papers.

3.6 Static vs adaptive sampling

BAYESACQ is closely related to SEQACQ, but it was derived from a

Naive Bayes classifier and does not use a stopping rule: it tests candi-

dates on all training instances. It might be thought that BAYESACQ is

unfairly penalised by the use of large datasets, and that it will match

SEQACQ given fewer instances. We performed further experiments

to test this idea.

We revisited the 20× 20 Latin square problem. In tests SEQACQ

used a mean of 228 instances per disequality, while BAYESACQ

tests the full 10000. We used 10000 instances because the Sudoku

problem needed approximately this number, but the Latin square has
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fewer constraints and a smaller number of instances seems to be suffi-

cient. In experiments BAYESACQ still learned the correct constraints

with as few as 700 instances, after which it started to make errors.

Using 700 BAYESACQ took 1.2 seconds, so the performance gap be-

tween the two methods can be narrowed by carefully reducing the

number of instances. But SEQACQ does not need this form of tuning

as it adaptively adjusts the number of instances for each candidate.

Moreover, on other random samples of 700 we might find errors, so

it is important to leave a safety margin by providing more instances.

We also tried the experiment on the 250-variable random 3-SAT

example. BAYESACQ gave correct results with as few as 280 in-

stances which reduced the run time to 50 seconds, but below this

number it started to make errors. SEQACQ tested a mean of only 13

instances per candidate and is still more than 30 times faster, show-

ing the benefit of adaptive sampling. Again, this difference would be

greater if BAYESACQ used more instances as a safety margin.

3.7 Redundant constraints

SEQACQ is not confused by the presence of redundant constraints,

unlike methods based on version spaces for which redundant con-

straints can prevent learning. [6] provides small examples with bi-

ases containing redundant candidates, that is some candidates in the

bias are implied by others. This prevented CONACQ from eliminat-

ing some candidates, and a special technique (redundancy rules) was

added to handle such cases. This necessitates the detection of higher-

order redundancies. SEQACQ does not require such techniques be-

cause each candidate is tested independently, and it learned these

examples correctly. However, redundant constraints should perhaps

be removed from its learned model.

4 Robust constraint acquisition

To the best of our knowledge, most CA systems are not robust under

errors. For systems based on version space learning, if training in-

stances are misclassified they may become inconsistent, causing the

version space to collapse. Rough version spaces [11] are designed to

be robust but do not seem to have been applied to CA.

A statistical approach seems particularly appropriate for noisy

data. The first such attempt is BAYESACQ for which it was shown

that any number of errors can be overwhelmed by sufficient correct

data [10]. But this is of no practical use if the errors can not be over-

whelmed by correct data because the data source has a constant error

rate. We now empirically test SEQACQ on data with constant error

rates.

4.1 Low error rate

On the 20 × 20 Latin square example we deliberately misclassified

1% of the instances, and tested SEQACQ with different values of R
while keeping A = 50 as before. The results in Table 2 show that

SEQACQ is able to learn the correct constraint model for R values 4–

10: no inequalities and 7600 disequalities (verified to be the correct

ones). Setting R too low causes it to reject some constraints, while

setting R too high causes it to mistakenly accept some candidates as

constraints. Higher values of R also cause longer run times because

more instances must be tested.

We repeated the experiment for the 250-variable random 3-SAT

problem. The results in Table 3 shows that with R values 2–4 the

correct model is learned (the 5 learned clauses were verified to be

correct).

learned constraints time
R ≤ ≥ �= (seconds)

1 0 0 5718 0.32
2 0 0 7360 0.34
3 0 0 7586 0.36
4 0 0 7600 0.37
5 0 0 7600 0.39
6 0 0 7600 0.43
7 0 0 7600 0.44
8 0 0 7600 0.44
9 0 0 7600 0.47

10 0 0 7600 0.50
11 0 0 7601 0.49
12 0 0 7601 0.53
13 0 0 7601 0.55
14 0 0 7601 0.56
15 0 0 7607 0.57
16 2 1 7609 0.60
17 6 1 7619 0.60
18 10 4 7630 0.62
19 19 19 7642 0.63
20 43 39 7674 0.68

Table 2. 20× 20 Latin square with 1% error (A = 50)

learned clauses time
R 1 2 3 (seconds)

1 0 0 3 1.7
2 0 0 5 3.7
3 0 0 5 5.6
4 0 0 5 7.8
5 0 0 6 10.1
6 0 0 8 12.6

Table 3. Random 3-SAT with 1% error (A = 50)
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These experiments show that SEQACQ can handle constant but

low levels of misclassification in the training data, with a little pa-

rameter tuning.

4.2 High error rate

We repeated the Latin square experiment with 10% classification er-

ror. The results in Table 4 show that SEQACQ can learn the exact

constraint model for a range of R-values, with A set to the larger

value of 100.

learned constraints time
R ≤ ≥ �= (seconds)

15 0 0 7295 0.7
20 0 0 7589 0.7
25 0 0 7600 0.9
30 0 0 7600 0.9
35 0 0 7600 1.1
40 0 0 7603 1.2
45 0 0 7629 1.3
50 12 14 7697 1.4

Table 4. 20× 20 Latin square with 10% error (A = 100)

Similarly, on the SAT example we increased A to 200. To avoid a

large number of inconclusive cases, we also increased the number of

instances to 5000. The results in Table 5 show that SEQACQ learns

the correct clauses over a range of R values.

learned clauses time
R 1 2 3 (seconds)

15 0 0 1 41
20 0 0 2 59
25 0 0 2 79
30 0 0 5 100
35 0 0 5 119
40 0 0 5 144
45 0 0 7 163
50 0 0 7 191

Table 5. Random 3-SAT with 10% error (A = 200)

These results show that SEQACQ can handle higher error levels,

though this can require more careful parameter tuning, larger datasets

and longer run times.

5 Related work

A number of CA methods are reported in the literature. ModelSeeker

[4] requires only a few positive instances, and finds high-level models

using global constraints. Tacle [16] learns functions and constraints

from spreadsheets. CONACQ [5, 6] is based on version spaces and has

passive and active versions. QUACQ [7, 8] is an active system. MUL-

TIACQ is a related method that can learn more constraints from an

example [2]. T-QUACQ [1] uses time-bounding to reduce run times.

MQUACQ [27] improves QUACQ and MULTIACQ by reducing the

number of generated queries and the complexity of each query. The

framework of [30] learns several types of constraint model by ex-

pressing CA as a constraint problem. The Matchmaker agent [13]

interacts with a user who diagnoses why an instance is not a solu-

tion. Both SEQACQ and BAYESACQ are passive. A recent trend is

to use machine learning to obtain constraint and optimisation models

such as neural networks, decision trees and support vector machines

[9, 18, 22, 25]. BAYESACQ [10] and SEQACQ are part of this in-

teresting new approach. Apart from these two methods we know of

none that can handle noisy data.

Valiant’s method [29] learns SAT formulae from instances and re-

quires no non-solutions. It has been extended to first order logic using

inductive logic programming [23, 24], which was also used by [17].

On satisfiability problems SEQACQ is related to Valiant’s method in

the sense that it is a generate-and-test algorithm: it generates all pos-

sible clauses of permitted length and tests each against the training

data. However, there are important differences. SEQACQ has the ad-

vantage of robustness, while Valiant’s method has the advantage of

not requiring negative instances. Also, whereas SEQACQ tests each

candidate in isolation, Valiant’s algorithm first generates the set of

all candidates then prunes them using each training instance in turn.

This makes Valiant’s method impractical when the bias is very large.

A final difference is that Valiant’s method will learn any clause that

does not contradict the training data. In contrast SEQACQ does not

learn clauses that are satisfied in all non-solutions. Hence Valiant’s

method learns the most specific model while SEQACQ is less specific.

A practical advantage of this property was noted in Section 2.8.

6 Conclusion

We described a new constraint acquisition method called SEQACQ

based on sequential analysis, which performs fast hypothesis testing

by adaptive sampling of training instances. In experiments it accu-

rately learns several constraint models, is orders of magnitude faster

than existing methods, and is the first acquisition method to handle

noisy data sources. It has only two easy-to-understand parameters,

one of which has a default value that can be used if we expect no

data errors. It can learn redundant constraints that cause problems

for version space methods. It is also amenable to parallelisation: can-

didates are tested independently, so we could partition the bias into

disjoint subsets and test them on a highly parallel machine such as

a graphics processing unit. In future work we intend to apply it to

larger problems, to use biases that include global constraints, and to

use redundancy to avoid testing all candidates in the bias.
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