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Speeding Up CDCL Inference with
Duplicate Learnt Clauses
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Abstract. Conflict-driven clause learning (CDCL) is well-known
to be the predominant SAT solving approach. Its main idea consists
in using conflict clauses to guide the effective traversal of the com-
plete search space. Despite the undoubted usefulness of this powerful
mechanism, a CDCL solver may end up computing (exponentially)
many conflict clauses. To resolve this issue, a number of efficient
heuristics exist aiming at aggressive conflict clause filtering, which
leads to some of the clauses being removed. Thus, when process-
ing a particular instance, a solver may learn and remove the same
clause multiple times. One might see it as an indication that such re-
learned clauses pose extra value. In the paper we show that extract-
ing duplicate clauses and storing them indefinitely can be beneficial
for the CDCL solver performance which is indicated by the fact that
the family of solvers incorporating the corresponding heuristic won
in the UNSAT and SAT+UNSAT tracks of the SAT Race 2019. We
perform the detailed experimental evaluation of this heuristic on the
instances from the SAT Competitions 2017 and 2018, and also SAT
Race 2019 and show that it improves both PAR-2 and SCR scores.

1 INTRODUCTION

The success of state-of-the-art Conflict-Driven Clause Learning
(CDCL) SAT solvers [17] largely comes from the careful handling
of conflict clauses. They are used both to restrict the already pro-
cessed parts of the search space, and to direct the subsequent search.
In the recent two decades, new methods have been proposed for eval-
uating the quality of conflict clauses [1], preprocessing SAT formulas
[3,5, 7], and inprocessing the formulas during solving [9, 14, 16]. In-
formally, inprocessing and preprocessing aim to generate shorter and
better representations for learnt clauses and for the clauses of an orig-
inal formula, respectively. The important aspect of clause learning
is the necessity to periodically reduce the learnt clauses database to
maintain the time-memory trade-off: more learnt clauses give more
information about the original problem, but sustaining them takes a
lot of memory and slows down the Boolean constraint propagation.
The periodic purges of conflict clauses mean that some learnt
clauses can be generated more than once in the course of solving SAT
for some formula. To the best of our knowledge, this phenomenon
while often acknowledged was not studied in any detail before. The
goal of the present paper is to shed some light on this particular
aspect of CDCL inner workings, in particular to show that the du-
plicate learnt clauses derived during CDCL inference can be put to
good use. We propose a parameterized heuristic intended to (1) dis-
cover and (2) keep duplicate learnts in the solver’s conflict database.
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To evaluate its effectiveness we incorporated the heuristic into the 3
solvers that won the SAT Competitions 2016 through 2018: MAPLE-
COMSPS, MAPLELCMDIST, MAPLELCMDISTCHRONOBT, and
also into the COMINISATPS solver that can be viewed as their pro-
genitor. Several common architectural features of these solvers exist
that make the implementation of duplicate learnts heuristic easy and
straightforward.

In the paper we use the mentioned solvers to perform the de-
tailed experimental evaluation of the duplicate learnts heuristic on
instances from the SAT Competitions 2017 and 2018 and that from
the SAT Race 2019. Interestingly, the results show that the heuris-
tic leads to stable improvement in performance of the solvers that
incorporate learnt clause minimization [16] (also referred to as viv-
ification [25] or distillation [11]). As for the solvers without clause
vivification — the improvements are unstable. In the paper we study
this phenomenon and provide some explanations regarding the possi-
ble reasons behind it. Note, that the MAPLELCMDISTCHRONOBT-
DL family of solvers that incorporate the duplicate learnts heuristic
into MAPLELCMDISTCHRONOBT became the winners of the SAT
Race 2019. This fact can be viewed as a strong argument for the use-
fulness of the proposed heuristic.

The paper is organized as follows. In Section 2, we briefly touch on
the related works crucial for the understanding of the paper. Section
3 contains the motivation behind the duplicate learnts heuristic and
its detailed description. Section 4 covers the details regarding the
implementation of the duplicate learnts heuristic in the considered
CDCL solvers. In Section 5, the proposed heuristic is experimentally
evaluated on instances from the SAT Competitions 2017-2018 and
SAT Race 2019. It is followed by a discussion of the results and the
description of the solvers submitted to the SAT Race 2019. Section 6
contains concluding remarks.

2 RELATED WORK

The description of technical details implies that the reader is familiar
with the architecture of state-of-the-art CDCL solvers and possesses
general knowledge about recent trends in practical SAT solving.
The seminal paper [18] paved the way for the Conflict-Driven
Clause Learning SAT solvers by introducing the non-chronological
backtracking and clause learning. It was later refined by the idea to
periodically restart [10] the search by resetting the current decisions
and starting the process anew. This idea together with the first meth-
ods for periodic purging of conflict database was introduced in [21].
Largely popularized by MINISAT [8], the CDCL concept became one
of the cornerstones of effective complete SAT solvers. It revolves
around conflict clauses, also referred to as learnt clauses or simply
learnts. They are used both to limit the exploration of the decision
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tree in the areas without solutions and to guide the search process in
new directions via various heuristics. The most important question
related to learnt clauses is how to judge one such clause to be better
than the other? Because storing all of them indefinitely is out of the
question: the resulting slowdown of constraint propagation nullifies
all possible benefits of a larger conflict database. Moreover, it was
shown that frequent purges of learnt clauses often result in better
performance [1]. Unfortunately, there are no ways to know before-
hand whether a learnt clause will be useful for future search or not.
Thus, any methods for reducing the clause database have to rely on
heuristics.

Probably the largest step in the practical analysis of learnt clauses
was made in [1], where the concept of Literal Block Distance or 1bd
was introduced in the GLUCOSE solver. The 1bd value is computed
by counting the number of distinct decision levels for the literals of
the conflict clause. The clauses with lower 1bd are perceived to be
more useful, than that with higher 1bd values. Practically all mod-
ern CDCL solvers employ this measure to evaluate conflict clauses’
worth.

The COMINISATPS solver [24] introduced the three-tiered struc-
ture of the learnt clauses database where they are separated based
on the 1bd values and handled differently. The COMINISATPS-
inspired special treatment of clauses with small 1bd is currently
employed by most CDCL SAT solvers. In particular, the winners of
main tracks of the SAT Competitions 2016 through 2018 are all based
on COMINISATPS.

There have been many attempts to explore different measures be-
sides 1bd (see, e.g., [2]) or to characterize clauses as useful or use-
less based on the analysis of SAT solver proofs [26] or community
structure of a SAT instance [23]. Despite this fact, the majority of
existing CDCL SAT solvers employ 1bd together with some sort of
activity to assess the value of learnt clauses and decide which of them
should be removed during the next database purge.

Another very relevant and popular class of methods for handling
conflict clauses is formed by the so-called inprocessing methods (see,
e.g., [14]). They modify (minimize, simplify, etc.) the parts of for-
mula during the solving. One of the most recent and prominent re-
sults in this direction was proposed in [16] and consists in a relatively
straightforward method for learnt clauses minimization, also referred
to as clause distillation [11] or vivification [25]. The important fact
is that as a result of a clause vivification, the size of a clause can
be (significantly) reduced resulting in lower 1bd value, thus greatly
improving the clause’s value.

All the currently known methods for handling conflict clauses rely
on periodic purges of their database. While it is evident that such
purges might lead to learning some conflict clauses multiple times,
the authors of the paper are not aware of this phenomenon having
been studied before thus making the present research novel.

3 DUPLICATE LEARNTS

The idea behind the heuristic proposed below might seem a little au-
dacious, but it actually follows from common sense. If a SAT solver
repeatedly derives the same learnt clauses while exploring different
paths of the search space, then the permanent addition of such clauses
to the clause database may save the solver some work in the future
and possibly even direct it to explore potentially more profitable re-
gions of a decision tree. The natural question that comes to mind
when speaking about duplicate learnts is “how many of them are
there?”. In fact, the wide adoption of unsatisfiability proofs [27] in
contemporary SAT solvers makes it possible to answer this question

with ease, for example as follows.

1. Launch a SAT solver on some instance with enabled proof con-
struction (might want to interrupt on time limit).

2. Parse the proof file ignoring clause deletions.

3. Order each learnt clause in a specific order (say, ascending).

4. Count the occurrences of each learnt.

For example, during the first 2000 restarts (about 17 seconds) the
MINISAT 2.2 solver [8] (the version from the SAT Competition
2018) on the pigeonhole formula [6] (with 12 pigeons and 11 holes)
generates 905378 learnt clauses, of which 6353 are duplicates. Some
learnts repeated up to 21 times, however the majority of them were
met only two (5038), three (785) or four times (234). Note that be-
cause pigeonhole formulas are small, unsatisfiable and contain few
variables, the number of duplicate learnts for them is much larger
than for typical SAT instances. Nevertheless, in this instance the por-
tion of re-learned conflict clauses in the conflict clauses database (for
limited time period) is about 0.7 %. Thus, it is safe to assume that
their number is actually pretty small, but since CDCL SAT solvers
typically generate millions of learnt clauses, the duplicate ones are
likely to be encountered regularly, albeit in small quantities. Also,
we will show below that the learnt clause minimization technique
[16] is responsible for the majority of duplicate learnts.

Let us now formulate the heuristic employing duplicate learnts.
The duplicate learnts heuristic: Screen generated learnt clauses
and add duplicates as permanent clauses.

Below we consider the implementation in more detail, but first it is
important to note several features of COMINISATPS-based solvers
that allow us to implement the proposed heuristic in a natural and
elegant manner.

3.1 On the architecture of COMINISATPS-based
solvers

The winners of the main tracks of the SAT Competitions 2017 and
2018, MAPLELCMDIsST [16] and MAPLELCMDISTCHRONOBT
[22], are both variations of the MAPLECOMSPS solver [15] that
won the main track of the SAT Competition 2016. MAPLECOM-
SPS is built upon COMINISATPS [24], based on MINISAT 2.2 [§]
and GLUCOSE [1].

The peculiar feature of COMINISATPS and its derivatives that
we will exploit below consists in the fact that they split all
learnt clauses into three Tiers depending on their 1bd and the
core_lbd_cut parameter. The Core tier contains the learnts with
1bd < core_lbd_cut, and the corresponding clauses are stored in-
definitely (they are never purged). The learnts with core_lbd_cut
< 1bd < 6 go into Tier2 and all the remaining learnts — to the Lo-
cal tier. The learnts purged during reduceDB from Tier2 go to the
Local tier. Meanwhile, Local-tier conflict clauses are deleted during
reduceDB. Several other specific nuances regarding the handling
of clauses from different tiers exist, but they are not important for the
present research.

During the clause minimization (in MAPLELCMDIST and
MAPLELCMDISTCHRONOBT) learnts can be reduced in size and
therefore decrease their 1bd. The outlined solvers apply vivification
only to clauses from Core and Tier2. If the new value of 1bd for a
Tier2 learnt satisfies the (previously unmet) condition for the Core
then it is moved to that tier. Finally, the parameter core_lbd_cut
is equal to 3 by default but is increased to 5 if after the first 100000
conflicts the Core tier contains fewer than 100 learnts.
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The described setup is perfect for the proposed duplicate learnts
heuristic: we can move the detected duplicate conflict clause into the
Core tier regardless of its 1bd.

3.2 Duplicate learnts heuristic: implementation
details

Let us now give a detailed description of the proposed duplicate
learnts (DL) heuristic that was briefly introduced above. The detec-
tion of duplicate learnts involves storing the database (in the form of
a hash table) of all learnts generated during some period of time. Sev-
eral observations should be taken into account in the implementation
of the DL heuristic.

1. The higher the 1bd of a learnt clause, the less the probability that
it will be relearned later.

2. The number of times a learnt clause was generated matters and
should be taken into account.

3. To avoid the uncontrolled growth of the hash table size it is nec-
essary to limit it, e.g., by means of periodic purges.

The first point can be addressed naturally. It is reasonable to estab-
lish the 1bd_1imit and screen for duplicates only the learnt clauses
for which 1bd < 1bd_limit.

Regarding the second point, the common sense suggests that the
number of times a learnt clause was re-learned is important. In partic-
ular, if a clause was generated only two times — it is quite likely that
the second occurrence is not due to a hidden trend. The more times
it is repeated — the greater the probability that the inclusion of such
a learnt into a permanent clause database can be beneficial. Here-
inafter, by a k-duplicate learnt we mean a learnt clause for which
the number of its occurrences in the hash table is equal to k£ + 1 (it
means that the learnt clause repeated k times). By a duplicate learnt
we mean a k-duplicate learnt with £ > 1. It is important to take into
account the hash table because, as it will be detailed below, it is nec-
essary to purge the majority of its entries from time to time. Thus,
technically, a learnt clause can be derived more times than k + 1 but
be marked as k-duplicate by a hash table.

It is clear that the number of k-duplicates rapidly decreases with
the increase of k. Thus, it is sensible to consider k-duplicates with
relatively small & for inclusion into the Core tier. In our implemen-
tation, we use the parameter min_dup-app (minimum number of
duplicate appearances). If we denote the min_dup_app value as
mda then the DL heuristic works as follows: it puts all (mda — 1)-
duplicates into Tier2 viewing them as candidates for inclusion into
Core, and puts all mda-duplicates into Core.

As for the hash table growth, it is clear that storing the data in it
indefinitely is out of the question, regardless of the 1bd_limit’s
value. While modern PCs are more than capable to hold the hash ta-
ble containing the information on the appearances of learnt clauses
for thousands of seconds, in the general sense it would be a bad prac-
tice. Also, from our empirical evaluation it turned out that the vari-
ants of the implementation where the hash table was not periodically
purged showed worse performance. We limit the initial size of the
duplicate learnts database by db_size_limit parameter and once
the database size exceeds this value we purge from it all entries cor-
responding to k-duplicate learnts with £ < min_dup_app—1 and
increase the value of db_size_limit by 10 %. The goal here is to
preserve the data on clauses which have already been put into Core
or will be put there if they appear during the search one more time.

It might seem that, since the mda—duplicate learnts go straight
into the Core tier in COMINISATPS-based solvers, the separators

between the Core and Tier2 and between Tier2 and Local tiers be-
come more important, because there appears an additional source of
core learnts. However, as it will be shown in Section 5, it turned
out that in practice the amount of Core learnts that come from the
DL heuristic is not large. Thus, it is not necessary to introduce any
changes into the handling of the core_lbd_cut value. Note that
in the SAT Race 2019 versions of the DL-based solvers the value of
core_lbd_cut was reduced from 3 to 2 and the heuristic that in-
creases its value to 5 depending on the size of the Core tier after first
100000 conflicts was disabled. In the experiments for the present pa-
per we found that leaving the treatment of core_lbd_cut to the
COMINISATPS variant works a bit better, thus the solvers we em-
ployed in the experiments slightly differ from that participated in the
SAT Race 2019.

To sum things up, we propose to implement the DL heuristic
with parameters: 1bd_limit, min_dup-app, db_size_limit.
The pseudocode depicting the interconnection between parameters
is shown at Algorithm 1. The i sDuplicate function is applied to
each learnt clause generated during the conflict analysis and during
learnt clause minimization of learnts from Tier2 (because MAPLEL-
CMDIST and MAPLELCMDISTCHRONOBT apply the minimiza-
tion only to clauses from Core and Tier2). Essentially, it counts the
number of occurrences of a learnt clause according to the hash table.

isDuplicate (learnt clause L)
if size(Hashtable) > db_size_limit then
foreach U in Hashtable do

if Hashtable[U] <min_dup-app then

| Remove U from Hashtable
db_size_limit =db_size_limitx1.1

if 1bd(L) < 1bd_1imit then
if L in Hashtable then
| Hashtable[L] = Hashtable[L] + 1
else
| Hashtable[L] =1
return Hashtable[L)
Algorithm 1: Algorithm for processing duplicate learnts

It works as follows: a hash table (Hashtable in Algorithm 1)
is maintained that stores the information on the number of occur-
rences of learnts produced during the CDCL derivation. If a learnt
clause satisfies the given criterion on its 1bd, then the procedure
updates and outputs the number of its occurrences in the hash ta-
ble. If the result of isDuplicate for a learnt clause L is equal
to min_dup_app then L is added to Tier2 and if it is equal to
min_dup_app+1, then it goes into the Core tier. Once the hash ta-
ble size exceeds db_size_limit, all its entries for which the num-
ber of occurrences is < min_dup-app are deleted and the value of
db_size_limit is increased by 10%.

The hash table used in screening learnts for duplicates was imple-
mented on top of the unordered_map class from the C++ Standard
Template Library. The literals in each learnt clause are sorted in the
ascending order before being processed by a hash table. In the next
section let us cover the implementation details.

4 IMPLEMENTING DL HEURISTIC IN
COMINISATPS-BASED SOLVERS

To evaluate the DL heuristic, we implemented it into several CDCL
SAT solvers. We chose the ones that are based on COMINISATPS,
since its tiered approach to storing learnts fits very well to the pro-
posed heuristic. In the four years since the COMINISATPS was first
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introduced, the progress in SAT solving was quite significant, thus
it is interesting how the DL heuristic will fare when implemented
in top solvers from different years. Therefore we worked with CO-
MINISATPS, MAPLECOMSPS, MAPLELCMDIST and MAPLEL-
CMDISTCHRONOBT.

4.1 COMINISATPS

The COMINISATPS solver [24] debuted at the SAT Race 2015 and
introduced several novel features that later were assimilated into
other SAT solvers. In SAT Race 2019 [13], the majority of partici-
pants employed at least some of the techniques first proposed in [24].

COMINISATPS natively supports 1bd and tiered structure of
learnt clauses. It uses the Variable State Independent Decaying Sum
(VSIDS) heuristic [21] to choose variables for branching, unlike
the later solvers. Also it is completely deterministic: the solver fre-
quently switches between fast glucose-like restarts and Luby restarts.

We refer to solvers with incorporated DL heuristic as to
SOLVERNAME-DL, followed by the values of the DL parameters
outlined in the previous section. COMINISATPS-DL does not em-
ploy the learnt clause minimization (it was proposed in 2017), thus
its only source of duplicate learnts is the conflict analysis procedure.

4.2 MAPLECOMSPS

The MAPLECOMSPS solver won in the main track of the SAT Com-
petition 2016. Compared to COMINISATPS it has two major differ-
ences. The first is that it uses not only VSIDS to choose variables
for branching, but also the so-called learning rate branching (LRB)
[15]. The use of LRB made it possible to significantly improve the
overall performance of SAT solvers. Another distinctive feature of
MAPLECOMSPS is that it uses LRB + Luby restarts for the first
2500 seconds of the search and VSIDS + glucose restarts for the re-
maining time. The switch happens only between restarts. Note, that
similar to COMINISATPS-DL, in MAPLECOMSPS-DL duplicate
learnts can be produced only in the course of conflict analysis.

4.3 MAPLELCMDIST and
MAPLELCMDISTCHRONOBT

The MAPLELCMDIST solver [16] won the main track in the SAT
Competition 2017. Its main novelty compared to MAPLECOMSPS
is the use of learnt clause minimization (LCM) [11, 25] as an in-
processing technique. Previously, LCM was employed only on the
preprocessing stage. The learnt clause minimization turned out to be
so effective that it is now used in most state-of-the-art CDCL solvers.

The MAPLELCMDISTCHRONOBT [22] is the evolution of
MAPLELCMDIST that revived to some extent the chronological
backtracking. This solver won the main track of the SAT Compe-
tition 2018. In [20], it was shown that incorporation of chronological
backtracking into the CADICAL SAT solver significantly improved
its performance, so it is likely that this technique will make its way
into other solvers as well.

While chronological backtracking does not really interfere with
the proposed DL heuristic, the learnt clause minimization certainly
does. Let us give additional comments to the procedure. The clause
vivification in the considered solvers is applied only to Core and
Tier2 learnts. It is invoked quite rarely, but has a significant effect
on the search. The minimization procedure attempts to construct a

shorter clause by testing whether each consecutive literal of an orig-
inal clause can be safely removed. It does not always manage to re-
duce the size of a clause, but when it does, it often results in a reduced
1lbd.

Our implementation of the DL heuristic handles the learnt clause
minimization by applying the isDuplicate function (see Algo-
rithm 1) to each simplified clause from Tier2 and processing it the
way outlined in the previous section. An important nuance is that
we apply isDuplicate to all Tier2 clauses that undergone learnt
clause minimization, regardless of whether their size was decreased
or not. In our experiments this version showed better results than
the (intuitively more natural) variant with screening only the reduced
Tier2 learnts. Note, that we use the same hash table for learnt clauses
obtained through conflict analysis and through learnt clause mini-
mization and do not distinguish the corresponding learnt clauses in
any way. Thus, for example some learnt clause may first be gener-
ated through conflict analysis, then be removed during the database
purge, then during learnt clause minimization phase some other
learnt clause can be reduced to it, thus resulting in the second oc-
currence, etc.

S COMPUTATIONAL EXPERIMENTS

This section describes the performed experimental evaluation com-
paring the performance of solvers implementing the proposed DL
heuristic against their corresponding unmodified versions.

5.1 Experimental setup

In the experiments, for each of the four CDCL solvers men-
tioned in Section 4 (COMINISATPS, MAPLECOMSPS, MAPLEL-
CMDisT, MAPLELCMDISTCHRONOBT) we made two DL-
based modifications. In the first DL-based modification, DL-
12-3-500K, the following values of the DL parameters (see
Section 3) were used: 1lbd_limit=12, min_dup_app=3, and
db_size_1imit=500000. In DL-14-2-1M, the DL parameters
had the following values: 1bd_limit=14, min_dup_app=2, and
db_size_1imit=1000000. The main difference between them is
that the DL-14-2-1M version processes much more potential dupli-
cate learnts compared to DL-12-3-500K and admits larger number
of them into the Core tier. This phenomenon is discussed in the re-
mainder of this section in more detail.

As a test set we chose the instances from the main tracks of the
SAT Competition 2017 [4], SAT Competition 2018 [12], and SAT
Race 2019 [13]. Below we refer to these sets of instances as SC2017,
SC2018, and SR2019, respectively.

All experiments were performed using the “Academician V.M.
Matrosov” computing cluster of Irkutsk Supercomputer Center [19].
Each node of the cluster is equipped with two 18-core Intel Xeon
E5-2695 CPUs and 128 GB DDR4 RAM. To ensure that all solvers
worked in equal conditions, we singled out one cluster node and ran
all experiments on it. The results presented below were obtained in
parallel using 36 tasks per computing node at a time. Here by “task”
a single run of a solver on some instance is meant.

Following the SAT Competition (and SAT Race) testing method-
ology, we ran all considered 12 solvers with the timeout of 5000
seconds, and compared them by PAR-2 (Penalized Average Run-
time) score. Recall that PAR-2 is a sum of all runtimes for solved
instances + 2 X timeout for unsolved instances. The lower PAR-2 in-
dicates that the solver is better on average. We also show the SCR
(Solution Count Ranking) scores since they complement PAR-2.
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Table 1. Detailed statistics on solved instances from SC2017, SC2018, and SR2019. S and U stand for the number of solved satisfiable and unsatisfiable
instances, respectively. The PAR-2 scores are reported in thousands. The best PAR-2 and SCR scores for SC2017, SC2018, and SR2019 are marked with bold.
I SC2017 SC2018 I SR2019

Solver SCR S 18] PAR-2 || SCR S U PAR-2 || SCR S U | PAR-2
COMSPS 164 82 82 2018 206 114 | 92 2103 208 | 125 | 83 2140
COMSPS-DL-12-3-500k 168 83 85 1990 205 113 | 92 2117 206 | 126 | 80 2163
COMSPS-DL-14-2-1m 176 89 87 1910 200 108 | 92 2150 210 | 127 | 83 2139
MACom 197 | 102 | 95 1715 212 116 | 96 2017 224 | 131 | 93 2012
MACoM-DL-12-3-500k 200 | 102 | 98 1703 208 114 | 94 2062 219 | 127 | 92 2059
MACOM-DL-14-2-1m 202 | 103 | 99 1680 214 119 | 95 2018 220 | 129 | 91 2029
MALCM 206 | 100 | 106 1638 228 128 | 100 1885 226 | 131 | 95 1980
MALcM-DL-12-3-500k 210 | 105 | 105 1607 236 134 | 102 1821 231 136 | 95 1928
MALCM-DL-14-2-1m 211 108 | 103 1603 237 133 | 104 1805 234 | 137 | 97 1914
MACHR 212 98 114 1586 234 132 | 102 1834 231 137 | 94 1933
MACHR-DL-12-3-500k 219 | 105 | 114 1530 244 141 | 103 1735 236 | 139 | 97 1872
MACHR-DL-14-2-1m 219 | 107 | 112 1551 240 137 | 103 1783 235 138 | 97 1875

5.2 Results 106

The detailed statistics for SC2017, SC2018, and SR2019 are pre-

sented in Table 1. It shows (1) the total number of instances solved

(SCR), (2) the number of satisfiable and (3) unsatisfiable instances

solved, as well as (4) PAR-2 score for each solver on a set of in- .

stances combined from SC2017, SC2018, and SR2019. In the table, ER 105 v Y’ »®

COMSPS stands for COMINISATPS; MACOM for MAPLECOM- g

SPS; MALcM for MAPLELCMDIST; and MACHR for MAPLEL- 5

CMDISTCHRONOBT. The results are also presented in graphical -g o

form in Figure 2. In particular, Figures 2a, 2b, 2c, and 2d show 5

the runtimes of the considered solvers on instances from SC2017, 3

SC2018, SR2019, and the combined set, respectively. g S OSSR

5.3 Discussion

It is clear that for both MAPLELCMDIST and MAPLEL-

CMDISTCHRONOBT the DL versions show stable and significant 10° :

speedup on all three considered sets of benchmarks. In particular, 103 104 105 106

MAPLELCMDISTCHRONOBT-DL-14-2-1M managed to solve 17 MapleLCMDistChronoBT-DL-12-3-500k

more instances (compared to MAPLELCMDISTCHRONOBT) on the

combined set of instances, while MAPLELCMDISTCHRONOBT- Figure 1. Scatter plot depicting PAR-2 scores obtained for 44 families of

DL-12-3-500K solved 22 more instances. The PAR-2 scores are
also significantly better.

An interesting detail is that while MAPLELCMDIST showed sig-
nificantly worse results compared to MAPLELCMDISTCHRONOBT
on all considered sets, the performance of both versions
of MAPLELCMDIST-DL is comparable to that of MAPLEL-
CMDISTCHRONOBT. In particular, on SC2018 and SR2019
two variants of MAPLELCMDIST-DL outperform MAPLEL-
CMDISTCHRONOBT. In a way, the DL heuristic makes it possible
to gain the speedup comparable to the one provided by chronological
backtracking on a wide set of benchmarks.

Overall, the best performance over all sets of test in-
stances (SC2017, SC2018, and SR2019) was achieved by
MAPLELCMDISTCHRONOBT-DL-12-3-500K. To see where does
the performance increase come from, we analyzed the results of the
solver on families of benchmarks. From the analysis of SC2017,
SC2018, and SR2019 we outlined 11, 23 and 10 families of
benchmarks, respectively, in each set of instances. Thus, in total
we considered 44 benchmark families. Figure 1 shows the scat-
ter plot that compares PAR-2 scores on all 44 families obtained

benchmarks from SC2017, SC2018, and SR2019

by MAPLELCMDISTCHRONOBT-DL-12-3-500K and MAPLEL-
CMDISTCHRONOBT. One can see a steady increase in perfor-
mance of MAPLELCMDISTCHRONOBT-DL-12-3-500K over the
wide range of benchmark families. In particular, it turned out that
MAPLELCMDISTCHRONOBT-DL-12-3-500K had better PAR-2
on 31 families out of 44 (i.e. on about 70 % of families). It means
that the proposed DL heuristic is applicable to a wide area of prob-
lems. We show 8 families on which the speedup was greater than
1.2x in Table 2. The families are sorted in descending order by their
speedup.

On the other hand, DL heuristic only slightly improves the per-
formance of COMINISATPS and MAPLECOMSPS. Sometimes the
DL variants manage to solve more instances and do it faster but on
other instances the addition of the DL heuristic results in decreased
SCR and PAR-2. In particular, DL-versions of COMINISATPS sig-
nificantly outperform the original solver on SC2017, but are slightly
worse on SC2018. For the case of MAPLECOMSPS the similar pic-
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Table 2. Families of benchmarks from SC2017, SC2018, and SR2019 on which MAPLELCMDISTCHRONOBT-DL-12-3-500K had more than 1.2x
speedup (by PAR-2) compared to MAPLELCMDISTCHRONOBT. MACHR stands for MAPLELCMDISTCHRONOBT, MACHR-DL 12 stands for
MAPLELCMDISTCHRONOBT-DL-12-3-500K.

Family description | Source | PAR-2 on MACHR | PAR-2 on MACHR-DL12 | PAR-2 Speedup
Subshape in Grid SC2017 6249 2 690 2.32x
SHA-1 Pre-image Attack SR2019 39077 20 353 1.92x
Searching for unit-distance graph SC2018 43 526 22961 1.9x
SATcoin — Bitcoin mining via SAT SC2018 43 665 28259 1.55x
Cryptanalysis of keystream generators | SR2019 19 631 13 037 1.5x
Latin squares SC2017 83211 58 695 1.42x
Polynomial multiplication SC2017 122 741 91712 1.34x
Pigeonhole principle SC2018 170 451 126 822 1.34x
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Figure 2. Comparison of the considered solvers on instances from SC 2017, SC 2018, and SR 2019

ture is observed but with slowdown of the DL-versions on SR2019.
The largest distinction between COMINISATPS, MAPLECOMSPS
and MAPLELCMDIST, MAPLELCMDISTCHRONOBT is that the
latter solvers employ the learnt clause minimization. Below we show
that it positively influences the DL heuristic.

5.4 On the explanation of DL effectiveness

In order to better understand the
ent effectiveness of the DL heuristic,

reasons behind appar-
we gathered addi-

tional CPU-independent information. In particular, we mod-
ified MAPLELCMDISTCHRONOBT-DL-12-3-500K and
MAPLELCMDISTCHRONOBT-DL-14-2-1M so that they counted
and periodically outputted the DL-related statistics, and ran them on
the combined set of instances from SC2017, SC2018, and SR2019.
We measured the number of 2-duplicates and (for 12-3-500K)
3-duplicates. In addition to that we measured the time overhead of
the DL-heuristic, i.e. what percentage of the total runtime does it
take to check whether learnt clauses are duplicates or not. Finally,
we counted the number of hash table purges.
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Figure 3. Statistics on the number of duplicates and DL heuristic time
overhead for MAPLELCMDISTCHRONOBT-DL-14-2-1M. The vertical
axis is in logarithmic scale.

Collecting the data on database purges was the most straight-
forward part, and it turned out that on average there are about
7 purges per 5000 seconds for MAPLELCMDISTCHRONOBT-
DL-14-2-1M and about 14 purges per 5000 seconds for
MAPLELCMDISTCHRONOBT-DL-12-3-500K. Figures 3 and 4
show the remaining statistics we gathered using the ver-
bose variants of MAPLELCMDISTCHRONOBT-DL-14-2-1M and
MAPLELCMDISTCHRONOBT-DL-12-3-500K, respectively. They
are made in the style of cactus plots, i.e. for each plot line the corre-
sponding values are ordered in the ascending order independently
from the data for the other plot lines. The plots use the logarith-
mic scale on the vertical axis and show the percentage of differ-
ent kinds of duplicate learnts proportional to the total number of
learnts screened for duplicates (e.g., the ones with 1bd < 12 for
MAPLELCMDISTCHRONOBT-DL-12-3-500K and 1bd < 14 for
MAPLELCMDISTCHRONOBT-DL-14-2-1M). Note, that in accor-
dance with Algorithm 1, we periodically purge from the hash table
all entries that correspond to k-duplicates with £ < min_dup_app,
thus some learnt clauses may have repeated more times than it
was measured (but not fewer). Recall that all the 2-duplicates in
MAPLELCMDISTCHRONOBT-DL-14-2-1M and 3-duplicates in
MAPLELCMDISTCHRONOBT-DL-12-3-500K go to the Core tier
and remain there indefinitely. For them we additionally show at dif-
ferent plot lines the percentage of duplicate learnts that go to Core
after having occurred during the conflict analysis or the learnt clause
minimization.

From Figure 3 it can be seen that the amount of duplicates that go
to the Core tier from the learnt clause minimization is quite signifi-
cant and is on average higher than that from the conflict analysis. This
situation is even more drastic when we look at 3-duplicates at Figure
4: their total number is significantly lower than that of 2-duplicates,
and the vast majority of duplicate learnts that were repeated 3 times
actually comes from LCM.

We investigated this issue a little bit deeper and it turned out, that
the vivification procedure from [16] is made in a way that does not
prevent it from constructing multiple duplicate learnts during one in-
vocation of minimization procedure. Recall that in, say, MAPLEL-
CMDISTCHRONOBT, the learnt clause minimization is applied only
to Core and Tier2 learnts. The procedure itself is ran once in a while

Percentage
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3-duplicates
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DL time overhead
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Figure 4. Statistics on the number of duplicates and DL heuristic time
overhead for MAPLELCMDISTCHRONOBT-DL-12-3-500K. The vertical
axis is in logarithmic scale

between restarts. In its course, the minimization is applied to all cor-
responding learnt clauses that have not yet undergone one. Infor-
mally, let us refer to clauses minimized in one block as to belong-
ing to the same minimization phase. Thus, for example, among 1000
core learnts minimized during one LCM phase, there can appear
100 identical learnts. The current implementation of the DL heuris-
tic handles them in two different ways: first, it does not allow the
solver to put duplicates of existing learnts to Core within the current
minimization phase, thus improving the propagation effectiveness.
Second, if sufficient number of learnt clauses from Zier2 were mini-
mized into identical shorter clause, then this clause is moved to Core,
which may well be beneficial for the solver’s performance.

Note that the peculiar symbiosis of DL and the learnt clause min-
imization, as well as the DL heuristic as a whole (but to a lesser
extent) may indirectly affect the LRB and VSIDS scores of variables
involved in corresponding learnt clauses, but we believe this influ-
ence to be negligible.

From Figures 3 and 4 it is clear that the time overhead of the DL
heuristic (measured as the percentage of time spent on invoking the
hash table aimed at detecting duplicate learnts to the time it took to
solve an instance or to the time limit of 5000 seconds) is usually
under 1 percent, thus the heuristic is quite cheap. It is cheaper for
the 12-3-500K version since the hash table size is smaller and the
number of duplicates is lower due to them having to be repeated more
times to be noticed.

Another interesting observation from the presented figures is that
there are instances, on which there are little to no duplicates, and
instances that yield a lot of duplicates. We believe that further inves-
tigation of this feature, that seems to be tied to specific test families,
will make it possible to improve the targeting and efficacy of the DL
heuristic.

From our point of view, the presented data is sufficient to validate
the relevance of the proposed heuristic and its potential for future
research.

5.5 Participation in SAT Race 2019

Three solvers incorporating the DL heuristic participated in the
SAT Race 2019. Among them, MAPLELCMDISTCHRONOBT-
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DL-v2.1 and MAPLELCMDISTCHRONOBT-DL-V2.2 are slightly
modified variants of MAPLELCMDISTCHRONOBT-DL-14-2-1M.
In particular, in the SAT Race 2019 versions the value of
core_lbd_cut parameter was fixed to 2. v2.2 version also
used the value of 1bd separating Tier2 from Local set to 7 in-
stead of 6. MAPLELCMDISTCHRONOBT-DL-V3 is a variant of
MAPLELCMDISTCHRONOBT-DL-12-3-500K that employs pe-
riodic deterministic switching between LRB+Luby restarts and
VSIDS + glucose restarts. The solver switches modes relatively
rarely since it is tied to the number of propagations. All three solvers
won the second place in the SAT track and the first place in the
SAT+UNSAT track (their results were comparable to each other).

6 CONCLUSIONS

In the present paper, we introduced the idea that the duplicate learnts
derived by a CDCL solver can be used to increase its performance.
We implemented the corresponding technique in solvers that won the
main track of the SAT Competitions from 2016 to 2018. It turned out,
that it gives a significant speedup for winners of the SAT Competi-
tions 2017 and 2018 that use learnt clause minimization. Also, the
DL-based versions of MAPLELCMDISTCHRONOBT took the first
place in the SAT+UNSAT track of the SAT Race 2019.

In the future we are planning to improve the handling of duplicate
learnts and seek understanding why the proposed technique gives a
particularly significant speedup on some families of benchmarks.
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