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Abstract. These last years, there has been a growing interest for
structures like tables and decision diagrams in Constraint Program-
ming (CP). This is due to the universal character of these structures,
enabling the representation of any (group of) constraints under ex-
tensional form, and to the efficient filtering algorithms developed for
constraints based on (ordinary/short/compressed/smart) tables and
multi-valued decision diagrams. In this paper, we propose the con-
cept of segmented tables where entries can combine ordinary values,
universal values (∗) and sub-tables. Segmented tables can be seen
as a generalization of compressed tables. We propose an algorithm
enforcing Generalized Arc Consistency (GAC) on segmented table
constraints, and show their modeling and practical interests on a re-
alistic problem.

1 Introduction

Constraint Programming (CP) is a modeling paradigm that has been
shown quite effective for solving various forms of combinatorial
problems, by means of highly optimized inference and search algo-
rithms [10, 2, 29, 19]. The strength of CP is its ability to take any
kind of information into consideration, at modeling time, because of
the availability of structures permitting a universal form of represen-
tation. These structures allow us to introduce constraints enumerat-
ing, in extension, what can be accepted (or not): they are called table
constraints. For example, in data mining, a user can ask for frequent
patterns together with some specific features, which can be expressed
as a combination of user’s constraints (typically, arithmetic or table
constraints) that can be easily added to the model due to the flexible
nature of CP [14].

Interestingly, the practical efficiency of filtering algorithms for ta-
ble constraints has been substantially improved over the past decade,
leading to the state-of-the-art Compact-Table [12], and STRbit [33].
However, one major issue remains the space required to store the
tables, i.e., all the tuples that are accepted (or forbidden) by the con-
straints. To address it, several compact forms of tables have been in-
troduced in the literature, notably short tables [17, 32], allowing the
use of the universal value ’*’, and compressed tables [18, 34, 31], al-
lowing subsets of values in tuples. Sliced tables [13] and smart tables
[26] are two other sophisticated compact representation.

It is important to note that, sometimes, tables simply happen to
be simple and natural choices for dealing with tricky situations. This
is the case when no adequate (global) constraint exists or when a
logical combination of (small) constraints must be represented as a
unique table constraint for efficiency reasons. If ever needed, another
argument showing the importance of universal structures like tables,
and also MDDs (Multi-valued Decision Diagrams), is the rising of
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tabulation techniques, i.e., the process of converting sub-problems
into tables, by hand, using heuristics [1] or by annotations [11].

Compressed tables generalize short tables since each element of
a compressed tuple can be any subset of values (and consequently,
the full set of values, just like ’*’). For example, the compressed tu-
ple τ = (a, {b, c}, b, {a, b, c}) captures 6 ordinary tuples, among
which we find (a, b, b, a) and (a, c, b, c). In this paper, we intro-
duce segmented tables that generalize compressed tables since sub-
sets are possibly extended over several variables. For example, Γ =
({(a, a), (a, c), (b, b)}, ∗, {(a, b), (c, c)}) is a segmented tuple com-
posed of a first segment representing a (sub-)table over two variables,
a second segment being the universal value ∗ and a third segment
representing again a (sub-)table over two variables. Any ordinary tu-
ple obtained from the implicit Cartesian product of these segments
is compactly represented by the segmented tuple, as for example
(a, a, a, a, b) and (b, b, c, c, c). Note that a general form of logically
reasoning with several constraints (segments) was proposed in [24],
but on an AC-6 [3] basis.

The paper is organized as follows. After some technical back-
ground, we introduce segmented tables and constraints. Then, we
provide a synthetic view, followed by a fully detailed description, of
an algorithm enforcing GAC on segmented table constraints. Before
giving some perspectives and conclusions, we show the modeling
and practical interest of segmented tables on a challenging problem
called CD (Crosswords Design), used in XCSP3 Competitions.

2 Technical Background

A Constraint Network (CN) P is composed of a sequence vars(P )
of distinct variables and a set ctrs(P ) of constraints. Each variable
x has an associated domain, dom(x), that contains the finite set of val-
ues that can be assigned to it. Each constraint c involves a sequence
of distinct variables, called the scope of c and denoted by scp(c),
and is semantically defined by a relation, rel(c), that contains the
set of tuples allowed for the variables involved in c. When a tuple τ
is allowed (accepted) by a constraint c, we say that c is satisfied by τ .
The arity of a constraint c is |scp(c)|. An instantiation of a sequence
of variables X maps each variable x ∈ X to a value in dom(x). An
instantiation is complete for P iff X = vars(P ). A solution of P
is a complete instantiation satisfying all constraints of P ; sols(P )
denote the set of solutions of P ; when sols(P ) �= ∅, P is satisfi-
able. If X = 〈x1, . . . , xp〉 and Y = 〈y1, . . . , yq〉 are two sequences
of p and q variables, the sequence 〈x1, . . . , xp, y1, . . . , yq〉 of p+ q
variables is denoted by X � Y .

For simplicity, a pair (x, a) such that x ∈ vars(P ) and a ∈
dom(x) is called a literal (of P ). Let τ = (a1, . . . , ar) be a tu-
ple of values associated with a sequence of variables vars(τ) =
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〈x1, . . . , xr〉. The ith value ai of τ is denoted by τ [i] or τ [xi]. τ is
valid iff ∀i ∈ 1..r, τ [i] ∈ dom(xi). τ is a support on a constraint c
iff vars(τ) = scp(c) and τ is a valid tuple allowed by c. When a
support exists on c, c is said to be satisfiable. If τ is a support on a
constraint c involving a variable x and such that τ [x] = a, we say
that τ is a support for the literal (x, a) on c; equivalently, we say that
the literal (x, a) is supported (on c). Enforcing Generalized Arc Con-
sistency (GAC) on a constraint c means removing all literals (values)
without any support on c.

A table constraint c is a constraint such that rel(c) is explicitly
defined by listing the tuples that are allowed by c. Over the years,
there have been many developments about compact forms of tables.
Ordinary tables contain ordinary tuples, i.e., classical sequences of
values as in (1, 2, 0). Short tables can additionally contain short tu-
ples, which are tuples involving the special symbol ∗ as in (0, ∗, 2),
and compressed tables can additionally contain compressed tuples,
which are tuples involving sets of values as in (0, {1, 2}, 3). Assum-
ing that the tuples mentioned just above are associated with the se-
quence of variables 〈x1, x2, x3〉, in (0, ∗, 2), x2 can take any value
from its domain and in (0, {1, 2}, 3), x2 can take the value 1 or the
value 2. Smart tables are composed of smart tuples, which are tu-
ples containing arithmetic expressions (column constraints). Finally,
a basic smart table is a restricted form of smart table where column
constraints are unary. In term of expressiveness, basic smart tables
are equivalent to compressed tables.

3 Segmented Tables and Constraints

A segmented table contains segmented tuples that are built from so-
called segments. In this section, we introduce some formal defini-
tions before giving an illustration.

Definition 1 A segment, or tuple segment, is a constraint γ that can
take one of the three following forms:

• xi = ∗, a unary tautology constraint, always holding whatever is
the value assigned to xi; it is called a tautology segment;

• xi = a, a unary equality constraint, holding only when xi is set
to the value a; it is called an equality segment;

• 〈xi1 , xi2 , . . . , xiri
〉 ∈ T , a table constraint, holding when the

values assigned to the sequence of variables corresponds to a tu-
ple accepted by the table T (which contains ordinary tuples of
length ri); it is called a table segment.

Note that for any segment γ, scp(γ) denotes the sequence of vari-
ables involved in γ; we have scp(γ) = 〈xi〉 for equality and tau-
tology segments, and scp(γ) = 〈xi1 , xi2 , . . . , xiri

〉 for table seg-
ments. The table T required for a table segment γ will be denoted
by table(γ). Now, we consider a sequence of r (distinct) variables
X = 〈x1, x2, . . . , xr〉.
Definition 2 A segmented tuple Γ over X is a sequence of segments
〈γ1, γ2, . . . , γp〉 such that X = scp(γ1)�scp(γ2)�· · ·�scp(γp).
The semantics of Γ, i.e., the set of tuples represented by Γ, is given
by sols(PΓ) where PΓ is the CN defined by vars(PΓ) = X and
ctrs(PΓ) = {γ1, γ2, . . . , γp}.

In some occasions, we shall refer to the specific types of segments.
This is why Γtt, Γeq and Γtb denote the respective sets of tautology,
equality and table segments in Γ.

Definition 3 A segmented table constraint, or segmented constraint
for short, is a constraint c defined by a segmented table, denoted by

seg table(c), which is a set T of segmented tuples over scp(c).
The semantics of c is given by rel(c) =

⋃
Γ∈T

sols(PΓ).

Example 1 Let X = 〈x1, x2, . . . , x10〉 be a sequence of 10 vari-
ables with domains {a, b, c}. Figure 1 shows a segmented table con-
straint over X . Its table contains 3 segmented tuples Γ1, Γ2 and
Γ3. The first segmented tuple Γ1 is defined as a sequence of five
segments 〈γ11 , γ12 , γ13 , γ14 , γ15〉. We have γ11 : 〈x1, x2, x3〉 ∈
{(a, b, a), (b, a, c), (c, b, b)}, γ12 : x4 = b, γ13 : 〈x5, x6〉 ∈
{(a, a), (c, c)}, . . . As an example of tuple represented by Γ1, we
find (a, b, a, b, a, a, a, b, a, a). We can observe that all segmented tu-
ples do not overlap, i.e., do not share any tuple. Consequently, the
number of ordinary tuples represented by these 3 segmented tuples is
exactly (3× 2× 3× 3)+ (4× 3× 3)+ (3× 3× 3× 3) = 165. This
shows the possible compression benefit of using segmented tables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Γ1

[
a b a
b a c
c b b

]
b

[
a a
c c

]
∗

[
b a a
b c c
c b a

]

Γ2

⎡
⎣
a b a b c
b a b a a
b a c b b
c b b c a

⎤
⎦ b ∗ a

[
a b
b c
c a

]

Γ3 a c ∗
[
a b
b a
c a

]
∗ b

[a a
b b
c c

]
b

Figure 1: A segmented table constraint, composed of three segmented
tuples Γ1, Γ2 and Γ3.

When looking for supports of literals (in the context of a filtering
procedure), one has to determine which segmented tuples are valid.
Validity for a segment γ means that the constraint γ is satisfiable.
Similarly, validity for a segmented tuple Γ means that Γ is satisfiable
(more precisely, the set of segments/constraints in Γ is satisfiable).

Definition 4 A segment γ is valid iff γ is satisfiable.

This is the case when γ is a tautology segment, or γ is an equal-
ity segment x = a with a ∈ dom(x), or γ is a table segment and
table(γ) ∩ ∏

x∈scp(γ) dom(x) �= ∅. Note that the intersection of
table(γ) with the Cartesian product of the current domains of vari-
ables in scp(γ) is exactly the set of supports on γ, meaning that γ is
satisfiable when the intersection is not empty.

Definition 5 A segmented tuple Γ is valid iff Γ is satisfiable, i.e.,
sols(PΓ) �= ∅.

Proposition 1 A segmented tuple Γ is valid iff every segment in Γ is
valid.

Proof: Because, by definition, segments do not overlap (share
variables), when every segment in Γ is valid, we necessarily have
sols(PΓ) �= ∅.

As an illustration, let us consider again Figure 1. If b is removed
from dom(x10), then Γ3 becomes clearly invalid. If a and c are re-
spectively removed from dom(x5) and dom(x6), then Γ1 becomes
invalid because its third segment becomes invalid.

To conclude this section, do note that segmented tables are a gen-
eralization of both compressed and sliced tables. While a compressed
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or sliced table can be represented by a segmented table, the reverse is
not true. In particular, a compressed table constraint [18] can be seen
as a particular segmented constraint where each table segment has
arity 1 (whereas segmented tables allow us to use table segments of
any arity). A sliced table [13] can be seen as a segmented table with
exactly two segments (one for the pattern and one for the sub-table).
Segmented tables can also be cast as logic programs in the ’Propria’
system built over the CLP scheme [28].

4 Synthetic View of Filtering

Like many filtering algorithms developed for constraints in exten-
sional form (i.e., using structures like tables or decision diagrams),
the principle is to explore the underlying structure of the constraints
so as to identify (and to delete) the literals (values) that are not sup-
ported. In this section, we present a synthetic view of an original fil-
tering algorithm dedicated to segmented table constraints. Important
implementation details (notably, the data structures) will be given in
the next section.

For this high-level description, we only need to introduce
the structure gacValues. For each variable x in the scope of
the constraint c to be filtered, the filtering algorithm computes
gacValues[x], the set of values for x that are supported on c.

In Algorithm 1, Function filter() must be called (i.e., systemati-
cally triggered by the solving engine) every time a segmented table
constraint c must be filtered. To start, the sets gacValues[x] are ini-
tialized. Then, every segmented tuple of the table is iterated over:
when a segmented tuple Γ is found to be valid, literals supported by
Γ can be collected. After processing the segmented table, the sets
gacValues[x] represent the new domains for the variables involved
in c, indirectly indicating which values must be deleted, and possibly
causing a domain wipe out (i.e., an empty domain).

1 Function filter(c: Segmented Table Constraint)
2 gacValues[x] ← ∅, ∀x ∈ scp(c)
3 foreach Γ ∈ seg table(c) do
4 if Γ is valid then

// we can collect values
5 foreach x = ∗ ∈ Γtt do
6 gacValues[x] ← dom(x)

7 foreach x = a ∈ Γeq do
8 add a to gacValues[x]

9 foreach γ ∈ Γtb do

10 SUPs ← table(γ) ∩
∏

x∈scp(γ)

dom(x)

11 foreach x ∈ scp(γ) do
12 foreach a ∈ {τ [x] : τ ∈ SUPs} do
13 add a to gacValues[x]

14 dom(x) ← gacValues[x], ∀x ∈ scp(x)

Algorithm 1: Synthetic Filtering Algorithm

When a segmented tuple is valid, it remains to identify supported
literals. This is the role of Lines 5-13 in Algorithm 1. For a tautology
segment x = ∗, all values in dom(x) are supported, and then can be
directly collected. For an equality segment x = a, only the value
a is supported. Finally, for a table segment, one has to identify the
set SUPs of current supports on this segment. For each variable x
involved in the segment, we can consider the projection of SUPs on
x: {τ [x] : τ ∈ SUPs} is the set of values for x occurring in one tuple

of SUPs. These projections correspond to supported values, and then
can be collected.
As an illustration, let us consider the first table segment of Γ2 in Fig-
ure 1. If we suppose that b has been removed from dom(x3), then
we have SUPs = {(a, b, a, b, c), (b, a, c, b, b)}. For x1, x2, x3, x4

and x5, the supported values that can be collected are then {a, b},
{a, b}, {a, c}, {b} and {b, c}, respectively. Now, while consider-
ing the entire segmented table, let us suppose that b has been re-
moved from dom(x4), instead of dom(x3). We can see in Figure 2
that some parts of the segmented table become invalid: this is dis-
played in red color. Now, after collecting, we have gacValues[xi] =
{a, b, c} for all variables xi except for x4 and x5 for which we
have gacValues[x4] = {a, c} and gacValues[x5] = {a, b}. As
dom(x4) was already {a, c} (our initial assumption), after the col-
lecting process, we can only deduce that c must be removed from
dom(x5).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Γ1

[
a b a
b a c
c b b

]
b

[
a a
c c

]
∗

[
b a a
b c c
c b a

]

Γ2

⎡
⎣
a b a b c
b a b a a
b a c b b
c b b c a

⎤
⎦ b ∗ a

[
a b
b c
c a

]

Γ3 a c ∗
[
a b
b a
c a

]
∗ b

[a a
b b
c c

]
b

Figure 2: If b is removed from dom(x4), some parts of the segmented
table become invalid (displayed in red color). We can then infer that
x5 �= c.

5 Detailed Description of the Algorithm

We propose now a rigorous detailed implementation. To enforce
GAC on segmented table constraints, we have to deal with a main
segmented table, and some secondary ordinary tables attached to ta-
ble segments. Being careful about efficiency, we chose to use tabular
reduction, which is a time-tested technique for dynamically main-
taining tables. Indeed, based on the structure of sparse sets [7, 9],
variants of Simple Tabular Reduction (STR) have been proved2 to
be quite competitive [30, 20, 21]. For the main table of segmented
tuples, we maintain the set of valid segmented tuples by partitioning
it in two parts. More specifically, at any time, we aim at respecting
the following invariant: the segmented tuples indexed from 1 to the
value of tableLimit are valid whereas segmented tuples with an
index strictly greater than tableLimit are invalid. For simplicity,
we shall denote by Γi the segmented tuple indexed by i in the cur-
rent table at a given time. In the process of maintaining the table, if
a segmented tuple Γi becomes invalid, it suffices to swap it with the
one indexed by tableLimit, and then to decrement tableLimit;
this is illustrated in Figure 3, where segmented tuples Γ1 and Γ3

are swapped. Similarly, for any table segment γ, the valid (ordinary)
tuples are indexed from 1 to the value of tableLimit[γ]. In the con-
text of a table segment γ (and so, without any ambiguity), we shall
denote by τi the tuple indexed by i in the current table of γ.

2 The state-of-the-art algorithm Compact-Table also uses tabular reduction
(sparse sets) to maintain the list of non-zero words.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Γ3 a c ∗
[
a b
c a
b a

]
∗ b

[a a
b b
c c

]
b

Γ2

⎡
⎣
c b b c a
b a b a a
b a c b b
a b a b c

⎤
⎦ b ∗ a

[
a b
b c
c a

]

Γ1

[
b a c
c b b
a b a

]
b

[
a a
c c

]
∗

[
b a a
b c c
c b a

]

Figure 3: If b is removed from dom(x4), invalid parts of the segmented
table are removed by swapping.

The class SegmentedConstraint, Algorithm 2, allows us to rep-
resent any segmented table constraint c, with the possibility of en-
forcing GAC at any time by simply calling Method enforceGAC().
As fields of this class we first find scp for representing the scope
〈x1, . . . , xr〉 of c. As indicated above, for dealing with tables, we
simply use tableLimit and tableLimit[γ], while getting access
to tuples with notations Γi and τi. We also have three fields Sval,
Ssup and prevSizes in the spirit of STR2 [20]. The set Sval contains
variables whose domains have been reduced since the previous call
to Method enforceGAC() on c. To set up Sval, we need to record the
domain size of each variable x right after the execution of enforce-
GAC() on c: this value is recorded in prevSizes[x]. The set Ssup

contains unbound variables whose domains contain each at least one
value for which a support must be found. These two sets allow us to
restrict loops on variables to relevant ones.

At the beginning of Method enforceGAC(), the sets Sval, Ssup and
gacValues[x] (initially, no value has been proved to be GAC) are
first initialized. Then, the main method traverseTable() is called to
update tables and collect values. If after such a ’traversal’, the value
of tableLimit is 0, it means that no more segmented tuple is valid,
and consequently a failure is identified. Otherwise, domains are up-
dated by calling Method filterDomain() in order to remove the val-
ues that have not been collected in sets gacValues. Before returning
SUCCESS (for indicating that filtering has been achieved without
generating a domain wipe-out), the array prevSizes is modified in
anticipation of the next call.

Method traverseTable() iterates over the segmented tuples from the
current table (by considering indexes from 1 to tableLimit). When
a segmented tuple Γi is found to be valid, Method collectValues() is
called. Otherwise, Γi is removed from the current table.

To check whether a segmented tuple Γ is valid, Method isValid-
SegmentedTuple() is called. Because tautology segments are always
valid, we only focus on equality and table segments. For an equality
segment x = a, we just check if x must be tested according to Sval

(although this test can be safely discarded) and if a belongs to the
current domain of x. For a table segment, we start by computing the
set S of variables occurring in both Sval and scp(γ). If ever this set
S is empty, it means that nothing has changed for γ since the previ-
ous call to Method enforceGAC(), and consequently the table of γ
is up-to-date (this is why we ’continue’). Otherwise, we iterate over
the current table of the segment to only keep the tuples that are valid
(tests performed by Method isValidSubtuple()). If the table becomes
empty, it disqualifies the segmented tuple by returning ’false’.

Finally, Method collectValues(), Algorithm 3, allows us to collect
all values that admit a support on at least a tuple. For a tautology
segment x = ∗, we simply remove x from Ssup because, from now

1 Method enforceGAC()

2 Sval ← {x ∈ scp : prevSizes[x] �= |dom(x)|}
3 Ssup ← {x ∈ scp : |dom(x)| > 1}
4 foreach x ∈ scp do
5 gacValues[x] ← ∅
6 traverseTable()
7 if tableLimit = 0 then
8 return FAILURE
9 filterDomains()

10 foreach variable x ∈ Sval ∪ Ssup do
11 prevSizes[x] ← |dom(x)|
12 return SUCCESS

13 Method traverseTable()
14 i ← 1
15 while i ≤ tableLimit do
16 if isValidSegmentedTuple(Γi) then
17 collectValues(Γi)
18 i ← i+ 1
19 else // Γi must be removed
20 swap Γi and ΓtableLimit

21 tableLimit ← tableLimit− 1

22 Method isValidSegmentedTuple(Γ)
23 foreach x = a ∈ Γeq do

24 if x ∈ Sval ∧ a /∈ dom(x) then
25 return false

26 foreach γ ∈ Γtb do

27 S ← Sval ∩ scp(γ)
28 if S = ∅ then
29 continue

30 i ← 1
31 while i ≤ tableLimit[γ] do
32 if isValidSubtuple(τi, S) then
33 i ← i+ 1
34 else // τi must be removed
35 swap τi and τtableLimit[γ]
36 tableLimit[γ] ← tableLimit[γ]− 1

37 if tableLimit[γ] = 0 then
38 return false

39 return true

40 Method isValidSubtuple(τ, S)
41 foreach x ∈ S do
42 if τ [x] /∈ dom(x) then
43 return false

44 return true

Algorithm 2: Class SegmentedConstraint

on, no more supports have to be sought for x. For an equality segment
x = a, we indicate that a has just been found to be a support by
adding a to gacValues[x], and we determine if x can be discarded
from Ssup by comparing its size with that of dom(x). For a table
segment, we start by computing the set S of variables occurring in
both Ssup and scp(γ). If ever this set S is empty, it means that no
relevant support can be found in the current table of γ (consequently,
we can ’continue’). Otherwise, we iterate over the current table of γ,
looking for supports of values with respect to variables in S.

Proposition 2 When called on a segmented table constraint c,
Method enforceGAC(), Algorithm 2 establishes GAC on c.

G. Audemard et al. / Segmented Tables: An Efficient Modeling Tool for Constraint Reasoning318



1 Method collectValues(Γ)

2 foreach x = ∗ ∈ Γtt do
3 if x ∈ Ssup then
4 remove x from Ssup

5 foreach x = a ∈ Γeq do
6 add a to gacValues[x]
7 if |gacValues[x]| = |dom(x)| then
8 remove x from Ssup

9 foreach γ ∈ Γtb do
10 S ← Ssup ∩ scp(γ)
11 if S = ∅ then
12 continue

13 i ← 1
14 while i ≤ tableLimit[γ] do
15 foreach x ∈ S do
16 if τi[x] /∈ gacValues[x] then
17 add τi[x] to gacValues[x]
18 if |gacValues[x]| = |dom(x)| then
19 remove x from Ssup

20 i ← i+ 1

21 Method filterDomains()
22 foreach variable x ∈ Ssup do
23 foreach value a ∈ dom(x) do
24 if a /∈ gacValues[x] then
25 remove a from dom(x)

Algorithm 3: Class SegmentedConstraint (continued)

Proof: Let us suppose that the segmented table corresponds to
an ordinary table, that is, every segment is an equality segment. In
that case, we obtain a classical filtering STR scheme, and we know
that GAC is reached. If tautology segments are also involved, the
segmented table corresponds to a short table, and GAC is guaranteed
[17]. Now, in case table segments are present, one can rather easily
check that validity and collecting operations are correct.

The worst-case space complexity of representing a segmented ta-
ble constraint c of arity r is as follows. First, note that the space
complexity of scp, Sval, Ssup and prevSizes is O(r). Because rep-
resenting a tautology or equality segment is O(1), representing all
such segments is O(rt) with t being the number of segmented tu-
ples. Now, for each table segment γ, let us denote the arity and the
size of the table of γ by rγ and tγ , and let us denote by ctb the set
of table segments over all segmented tuples (i.e., in the entire table).
The space complexity for a segment table is O(rγtγ). The overall
space complexity is then O(rt + Λ) with Λ =

∑
γ∈ctb r

γtγ . The
worst-case time complexity of enforceGAC() is as follows. Without
any table segment, it is O(rt+rd) because in that case, handling the
main table (traverseTable() is O(rt) and filtering domains is O(rd),
where d is the size of the greatest variable domain. For any table seg-
ment γ, checking validity of tuples and collecting values is O(rγtγ).
The overall time complexity is then O(rt+ rd+ Λ).

A very useful feature of tabular reduction (more generally, sparse
sets) is the possibility of restoring a table in constant time. During
backtrack search, one has simply to record the table limit at each
search level. When a backtrack must be performed, it suffices to
change the limit in O(1) by using the one recorded at the right level.
For an ordinary table, backtracking is O(1), but for a segmented table
it is O(k) where k is the number of table segments.

Finally, even when some segmented tuples overlap, the algorithm
that we propose remains correct because we only consider positive
tables (i.e., tuples accepted by constraints are given) in this paper.

6 Case Study: Crosswords Design

In this section, both modeling and practical benefits of using seg-
mented table constraints are shown on a difficult optimization prob-
lem called Crosswords Design (CD). This problem was used in the
COP track of the 2018 XCSP3 Competition [6, 23]. The problem is
stated as follows: given a grid order n and two dictionaries, a main
dictionary (containing main words) and an auxiliary thematic dictio-
nary (containing thematic words), the objective is to fill up a grid of
size n×n with words contained in these dictionaries as well as with
some black points/cells (BPs, where no letter can be put). This is an
optimization problem because each word w from the thematic dic-
tionary has value |w| (the length of the word), and the objective is to
maximize the overall value. There is one restriction: it is not possible
to have two adjacent BPs (on a row or on a column).

In what follows, we introduce and compare several models for
Problem CD, using two main templates (actually, two ways of defin-
ing variables) denoted by a and b. Our aim is to compare various
models so as to highlight the interest of segmented tables.

First Template. For the first template a, the variables are defined
as follows:

• xi,j , the letter put in the grid at the intersection of row i and col-
umn j, with i ∈ 1..n and j ∈ 1..n. Possible letters are ’a’, ’b’,
. . . , ’z’, and BP.

• bri, the benefit obtained on row i according to the words formed
by letters put in the ith row of x, with i ∈ 1..n. For example, if
n = 10 and we have on row i a main word of size 3, followed by
a BP and a thematic word of size 6, then bri = 0 + 6 = 6.

• bcj , the benefit obtained on column j according to the words
formed by letters put in the jth column of x, with j ∈ 1..n.

The objective is to maximize
∑

i∈1..n bri +
∑

j∈1..n bcj . The
three first models we propose for CD are called CDseg

a , CDmdd
a , and

CDreg
a and only involve 2 × n constraints because we can reason

with a unique constraint per row and per column. This is rather note-
worthy because do note that BPs can be put anywhere in the grid.
To build constraints, we reason from valid n-patterns, where a valid
n-pattern is an alternation of positive numbers and BP, summing up
to n (when considering BP as being equal to 1). For example, the set
of valid 4-patterns is {4, BP 3, 3 BP, BP 2 BP, 2 BP 1, 1 BP 2, 1 BP
1 BP, BP 1 BP 1}. Now, for each valid pattern, we can build several
segmented tuples when considering two possibilities for each word
length in the pattern: taking a word of this length from either the main
dictionary or the thematic dictionary. As an illustration, let us con-
sider that n = 4 and we have twenty-six 1-letter words {a, b, . . . , z},
three 2-letter words {in, if, no}, three 3-letter words {egg, oat, tea}
and four 4-letter words {cake, fish, kiwi, milk}. We assume here that
the thematic words are ’kiwi’ and ’tea’. Each constraint on each row
involves 4 variables (since n = 4) and a table containing several
segmented tuples built from the valid 4-patterns. This is illustrated
in Figure 4 for the first row constraint, where the first pattern (’4’)
gives Γ1 and Γ2, the second pattern (’BP 3’) gives Γ3 and Γ4 and so
on. Of course, we proceed similarly with columns: there are n seg-
mented table constraints for dealing with the n columns. Note that
the constraint forbidding the presence of two adjacent BPs is directly
taken into consideration by the segmented tables (tuples).
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x1,1 x1,2 x1,3 x1,4 br1

Γ1

[c a k e
f i s h
m i l k

] 0
0
0

Γ2 [k i w i ] 4

Γ3 BP
[
e g g
o a t

]
0
0

Γ4 BP [ t e a ] 3
. . .

Γk

[
i f
i n
n o

]
BP

[
a
..
z

] 0
0
0. . .

Figure 4: A Segmented Table for CD (n = 4).

Segmented tables allow us to put different words together (i.e.,
in the same constraint), without memory explosion, because of the
compactness of the underlying Cartesian product. At this point, it is
important to note that using ordinary tables, instead of segmented ta-
bles, cannot be considered for ’large’ values of n. If there are 20, 000
7-letter words in the main dictionary, then the number of ordinary
tuples generated from the pattern ’7 BP 7’ (when considering only
words from the main dictionary) is 400, 000, 000. Similarly, build-
ing an MDD while enumerating tuples is not viable. However, one
can generate MDDs from segmented tables. One way to proceed is
as follows. First, build an (ordered reduced) MDD from each seg-
mented table. Second, merge all these MDDs by iteratively applying
an efficient procedure [8, 27]. By replacing segmented constraints
by MDD constraints (built this way), we then obtain a second model
CDmdd

a . Finally, if we directly consider the MDDs corresponding to
the segmented tables (valid patterns) without any reduction (merg-
ing), we obtain a non-deterministic diagram for which a constraint
regular can be used: this is model CDreg

a . Although not tested in
this paper, weighted automata could also be envisioned. However, we
believe that required unfolding operations at propagation time might
be too costly.

Second Template. For the second template b, without any loss of
generality, we introduce m as being the maximal number of words
put on a same row or same column. It is always possible to set m
in order to avoid discarding any potential solution. For example, if
n = 5, the maximal number of words is 3, as visible in the following
pattern: 1 BP 1 BP 1 where 1 here refers to 1-letter words. So, setting
m = 3 guarantees us that no solution can be lost.

For template b, the variables are defined as follows:

• xi,j , defined similarly to template a.
• bri,k, the benefit of putting the kth word on row i, from left to

right, with i ∈ 1..n ∧ k ∈ 1..m. For example, if the second word
put on row i comes from the thematic dictionary and is of length
5, then bri,2 = 5. But if instead there is just one word (of size n)
put on row i, then bri,2 is necessarily equal to 0.

• bcj,k, the benefit of putting the kth word on column j, from top to
bottom, with j ∈ 1..n ∧ k ∈ 1..m.

The objective is to maximize the sum of variables bri,k and bcj,k.
Let us first introduce the model CDseg

b . For each row i, we have
exactly one segmented constraint whose scope is {xi,j : j ∈ 1..n}∪
{bri,k : k ∈ 1..m}; the arity of such constraints is then n+m. The
segmented table contains a segmented tuple for each valid n-pattern.
To build a unique segmented table per valid n-pattern, we need to
relax the order imposed by Definition 2 on (variables of) segments;

this is mainly a form of technical subtlety. We proceed similarly with
columns. This model CDseg

b is more complex than CDseg
a but has the

advantage of reducing the size of the segmented tables.
It is also possible to consider a more classical way of modeling,

where each word is managed independently. Actually, this is the
model used for generating the instances of the 2018 XCSP3 Com-
petition. The model, called CD∗

b , of the competition, involves the
three 2-dimensional arrays of variables introduced above for CDseg

b ,
and also some additional arrays. Due to lack of space, we do not
provide further details about this model (with its short tables), but
the interested reader can consult the model description in [23]. It is
also possible to derive MDD constraints from short table constraints:
each short table is transformed into an MDD (where some arcs can
be labeled with ’*’). We then obtain model CDmdd∗

b .

Practical Evaluation. Words have been taken from some Ro-
manian dictionaries: (i) a long main dictionary containing a list of
134, 938 words and (ii) a short thematic dictionary containing 278
words. For our experimentation, we have compared the six mod-
els described above. We have used a CP solver (AbsCon) that per-
forms a classical backtrack search. For guiding search, we have used
the classical heuristic dom/wdeg [5] and the value ordering heuristic
LastVal that selects the last value in the domain of the selected vari-
able. We have generated all CD instances for n ranging from 5 to 15.
All experiments have been conducted on a dual socket Intel XEON
X5550 quad-core 2.66 GHz with a RAM limit of 16GB.

n seg
a

mdd
a

reg
a

seg
b

mdd∗
b

∗
b

5 bnd 38 38 38 38 38 38
cpu 4.9 9.4 6.7 6.1 87 55

6 bnd 54 54 54 54 54 54
cpu 64.2 296 159 196 461 8.2k

7 bnd 70 70 70 68 64 52
cpu 9.5k 1.4k 1.5k 447 9.9k 8.3k

8 bnd 86 MO 80 75 76 TO
cpu 3.6k MO 1.8k 3.5k 4.9k TO

9 bnd 91 MO 91 81 82 TO
cpu 2.5k MO 1.6k 1.5k 4.9k TO

10 bnd 110 MO 90 92 70 TO
cpu 9.8k MO 7.8k 6.4k 6.8k TO

11 bnd 111 MO 107 100 MO TO
cpu 9.8k MO 2.6k 3.7k MO TO

12 bnd 120 MO 119 115 MO TO
cpu 6.0k MO 3.2k 9.5k MO TO

13 bnd 113 MO 111 138 MO TO
cpu 5.4k MO 5.6k 4.6k MO TO

14 bnd 143 MO 130 160 MO TO
cpu 7.5k MO 9.4k 4.1k MO TO

15 bnd 156 MO TO 185 MO TO
cpu 8.2k MO TO 4.6k MO TO

Table 1: Results obtained on Crosswords Design (CD) instances, for
n ranging from 5 to 15. A backtrack search is run on five different
models. Results are presented in terms of the best obtained bound
(bnd) and the CPU time (k stands for kilo-seconds) to get it within
10, 000 seconds; TO and MO respectively stand for ’Time-Out’ and
’Memory-Out’.

Table 1 shows the experimental results when the solver is given
10, 000 seconds to run. The best results are displayed in bold face.
The best bound (bnd) found within the allowed time is indicated for

G. Audemard et al. / Segmented Tables: An Efficient Modeling Tool for Constraint Reasoning320



each model, as well as the CPU time required to reach it. When op-
timality is proved, the bound is displayed in italic shape (and the
CPU time indicates the total time). First, one can observe that build-
ing MDDs from segmented tables is only effective for small values
of n, although we tested various orders (and chose the most rele-
vant one) to apply merging operations: the size of the combined re-
duced MDDs was quite moderate, but from n = 8, the size of the
generated intermediate diagrams provoked a memory-out (MO). The
model CDreg

a does not suffer from this drawback, and even obtains
quite good results for intermediate values of n (8 and 9). However,
for higher values (n ≥ 10), CDseg

a and CDseg
b clearly outperform

the other models. Besides, we found that the good results of CDreg
a

for some values of n are opportunistically due to the versatility of
the heuristic (different search trees are built because of minor differ-
ences in constraint weighting). Indeed, we performed an experiment
with the classical heuristic dom [15] that guarantees that CDreg

a and
CDseg

a perform the very same search exploration. Figure 5 shows
which parts of the search trees (measured by the number of wrong
decisions [4]) are explored by CDreg

a and CDseg
a in 10, 000 seconds,

with n ranging from 7 to 16. CDseg
a is between 5 and 20 times faster

than CDreg
a ; note that we use a logarithmic scale for the y axis.

100

1000

10000

100000

1× 106

1× 107

7 8 9 10 11 12 13 14 15 16

CDseg
a

CDreg
a

Figure 5: Number of wrong decisions (logarithmic y axis) taken in
10, 000 seconds by CDreg

a and CDseg
a against n (x axis).

We insist that Problem CD is very challenging, and cannot be tack-
led by classical (ordinary) table constraints. This is why the compar-
ison is primarily performed against MDD/regular constraints. Com-
parison with other forms of compressed tables is further discussed
now. On the one hand, using short tables is possible, and this com-
parison has been made (see Model CD∗

b , rightmost column, in Table
1, and also the results obtained by all solvers at the 2018 XCSP3

competition). The algorithm behind this model is STR2 [20] which
is faster than STR3 [21] and CT [12] on this particular problem (CD);
actually, it appears that CT is less efficient than STR2 on Problem CD
due to the huge size of domains. On the other hand, in general, com-
pressing dictionaries with sliced tables or compressed tuples is not
very effective (for example, this is shown for sliced tables in Tables
3 and 4 in [13]). Concerning Problem CD, there is absolutely no clue
about how to represent rows and columns with sliced or compressed
tables without any memory explosion (similarly to ordinary tables).

7 Perspectives of Segmented Tables

We have just shown how segmented tables can be the right represen-
tation choice for a specific problem. Indeed, it is rather simple and
natural to express constraints of Problem CD with segmented tables.
And, this modeling approach has been shown to be quite efficient in
practice. However, the reader must be aware that segmented tables
are not appropriate for every problem where some table constraints
are involved. And it is far from being obvious how to automatically
convert ordinary tables into compressed segmented ones.

Nevertheless, we think that segmented tables are really a
useful modeling tool with some promising perspectives. Firstly,
for certain constraints, one may identify some relevant patterns
for segmentation. For example, let us consider a global con-
straint allDifferent with scope 〈x1, . . . , xr〉 and dom(xi) =
{1, . . . , r}; a permutation is enforced. This constraint can be trans-
lated into a segmented table composed of exactly

(
r

r/2

)
segmented

tuples. Each segmented tuple is formed by a first sub-table (all per-
mutations of the r/2 selected values) followed by a second sub-table
(all permutations of the r/2 non selected values). This means that
for r = 10, there are 252 segmented tuples, the size of each one be-
ing equivalent to 120 tuples of arity r. Compared to the 3, 628, 600
ordinary tuples, these 30, 240 equivalent “tuples” are far less mem-
ory expensive. Contrary to the constraint allDifferent, impos-
ing some additional restrictions on (some of) these r variables can
be envisioned by transforming further the segmented table. Note that
the same kind of segmentation can be performed on other constraints
(e.g., sum).

Secondly, segmented tables allow us to merge easily constraints
having non-trivial intersections (i.e., sharing at least two variables).
For example, in Figure 6, we have on the left two 4-ary ordinary
table constraints whose scopes share the variables x and y. Merging
these two constraints gives the segmented table constraint depicted
on the right; for each instantiation of x and y, we collect two sub-
tables from the two constraints. This means that enforcing GAC on
this constraint is equivalent to enforcing Pairwise consistency [16] on
the original pair of constraints. This opens the door to an approach
for enforcing pairwise consistency (totally or partially) without any
additional structures [22] or variables [25].

v w x y x y z t

a a a a a a a a
a b a a a a a b
a b a b a a b b
b a a b a b b a
b b a b b a a a
b b b a b a a b
a a b b b b a b
b a b b b b b a
b b b b

v w x y z t
[
a a
a b

]
a a

⎡
⎣
a a
a b
b b

⎤
⎦

⎡
⎣
a b
b a
b b

⎤
⎦ a b

[
b a

]

[
b b

]
b a

[
a a
a b

]

⎡
⎣
a a
b a
b b

⎤
⎦ b b

[
a b
b a

]

Figure 6: On the left, two ordinary table constraints sharing the vari-
ables x and y. On the right, an equivalent segmented table constraint.

8 Conclusion

We have introduced the concept of segmented tables that represent
a very general form of expressing constraints. Indeed, they general-
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ize compressed tables for which subsets (sub-tables) are limited to
one variable only. They also generalize sliced tables where a pattern
(sub-tuple) is combined with a unique sub-table. We have presented a
detailed description of a filtering algorithm. Interestingly, segmented
tables could be further extended to integrate short table segments, and
other arithmetic constraints (e.g., other unary constraints like in basic
smart tables). This is a perspective of this work. Because of their seg-
mented structure, developing efficient parallel filtering algorithms for
segmented table constraints seems also a promising avenue. Finally,
segmented tables are a new powerful modeling tool, as shown in the
paper with a challenging problem, and some promising perspectives;
one of them being related to pairwise consistency.
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