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Abstract.1 Recently, it has repeatedly been reported that the search 
ability of Pareto dominance-based multi-objective evolutionary 
algorithms severely deteriorates with the increase in the number of 
objectives. In this paper, we examine the generality of the reported 
observations through computational experiments on a wide variety 
of test problems. First, we generate 18 types of test problems by 
combining various properties of Pareto fronts and feasible regions. 
Next, we examine the performance of a frequently-used Pareto 
dominance-based evolutionary algorithm called NSGA-II on the 
generated test problems in comparison with four decomposition-
based algorithms. We observe that the performance of NSGA-II 
severely degrades for three types of many-objective test problems 
which are similar to frequently-used DTLZ1-4 test problems with 
triangular Pareto fronts. However, better results are obtained by 
NSGA-II than all the examined decomposition-based algorithms 
for nine types of test problems even when they have ten objectives. 
Then, we discuss why NSGA-II does not work well on DTLZ type 
test problems whereas it works well on other test problems. 

1 INTRODUCTION 
A multi-objective optimization problem with m objectives to be 

minimized can be written as follows [1]: 

 

Minimize  f1(x),  f2(x),  ...,  fm(x), (1) 

subject to x� S� n� , (2) 

 

where fi(x) is the ith objective function (i = 1, 2, ..., m), x is an n-

dimensional decision vector, and S is the feasible region of x. The 

objective functions map a solution x in an n-dimensional decision 

space to a point f(x) = (f1(x),  f2(x),  ...,  fm(x))T in an m-dimensional 

objective space. We assume that the number of decision variables 

is larger than the number of objectives (i.e., n > m). 

In general, multi-objective problems do not have a single 

optimal solution since objectives are conflicting with each other. 

No single solution simultaneously optimizes all objectives. Thus, 

multi-objective problems have a set of solutions which are viewed 

as having the same optimality called “Pareto optimal”. In multi-

objective optimization, solutions are compared using the following 

Pareto dominance relation: A solution a is referred to as being 
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dominated by another solution b when the following relations hold: 

fi(b) �  fi(a) for i = 1, 2, ..., m and fj(b) < fj(a) for at least one j. If a 

solution a is not dominated by any other solutions, a is a Pareto 

optimal solution. The set of all Pareto optimal solutions is the 

Pareto optimal solution set, which is the solution set of the multi-

objective problem. The set of points f(x) corresponding to all 

Pareto optimal solutions is called the Pareto front. That is, the 

Pareto front is the projection of the Pareto optimal solution set to 

the objective space by f(x). The Pareto front of the m-objective 

problem in (1)-(2) is an (m�1)-dimensional manifold in the m-

dimensional objective space except for the case of degenerate 

Pareto fronts [2]. The Pareto front shows the tradeoff relation 

among the m objectives in the objective space. 

A large number of evolutionary multi-objective optimization 

(EMO) algorithms have been proposed in the literature (e.g., [3]-

[16]). Each EMO algorithm is designed to search for a set of well-

distributed solutions over the entire Pareto front. The obtained 

solution set is evaluated by its approximation quality of the Pareto 

front. Various quality indicators have been proposed to evaluate 

the overall approximation quality of the obtained solution set as 

well as its different aspects such as the convergence of solutions 

towards the Pareto front and the diversity of solutions over the 

Pareto front [1], [17]-[19]. The hypervolume (HV [20]) indicator 

and the inverted generational distance (IGD [21]) indicator have 

been frequently used as overall performance indicators.  

EMO algorithms are often categorized into three classes based 

on their fitness evaluation mechanisms: Pareto dominance-based, 

indicator-based, and decomposition-based EMO algorithms. Pareto 

dominance-based algorithms such as SPEA [3] and NSGA-II [4] 

use the Pareto dominance relation among solutions in the current 

population as the primary fitness evaluation criterion. Non-

dominated solutions have higher fitness values than dominated 

ones. A diversity-based fitness evaluation is used as a secondary 

criterion. Indicator-based algorithms such as SMS-EMOA [5] and 

HypE [7] have a performance indicator for fitness evaluation. The 

contribution of each solution to the performance indicator value of 

the current population is calculated as the fitness of the solution. In 

decomposition-based algorithms such as MOEA/D [6] and NSGA-

III [8], a multi-objective problem is decomposed into a number of 

single-objective problems. Each single-objective problem has the 

same scalarizing function and a different weight vector. A single 

solution is assigned to each single-objective problem. All single-

objective problems are optimized in a cooperative manner towards 

different directions in the objective space along the weight vectors.  

Many-objective optimization has been a hot topic in the last 

decade in the EMO community [22]-[24]. It was reported in many 

studies (e.g., [25]-[28]) that the performance of Pareto dominance-
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based algorithms severely degrades with the increase in the number 

of objectives. This is because almost all solutions become non-

dominated with each other in very early generations when a multi-

objective problem has many objectives (e.g., ten objectives). If all 

solutions in the current population are non-dominated with each 

other, the same fitness value is assigned to all solutions by the 

Pareto dominance relation. As a result, no strong selection pressure 

to push the population towards the Pareto front is generated. This is 

the main reason for the severe performance deterioration of Pareto 

dominance-based algorithms with the increase in the number of 

objectives. Indicator-based algorithms with the HV indicator work 

well on many-objective problems [26]. However, due to the large 

computation load for calculating the HV contribution of each 

solution, some modifications are needed when they are applied to 

many-objective problems (e.g., approximate HV calculation [7], 

the use of a different indicator such as IGD [15]).  

Recently a large number of decomposition-based algorithms 

have been proposed for many-objective optimization [8]-[14], [16]. 

They have the same (or similar) basic framework as MOEA/D [6]. 

Decomposition-based algorithms work well on many-objective 

problems since the fitness evaluation of each solution is based on a 

scalarizing function. Some scalarizing functions can generate a 

strong selection pressure towards the Pareto front even in a high-

dimensional objective space. Usually the calculation of scalarizing 

function values is much faster than Pareto dominance-based and 

indicator-based fitness evaluation for many-objective problems. 

Whereas NSGA-II is the most well-known and frequently-used 

EMO algorithm, it has not been used in computational experiments 

for performance comparison in recent studies on many-objective 

optimization [9]-[16]. NSGA-II is implicitly assumed to be clearly 

outperformed by new many-objective algorithms. However, this 

implicit assumption has not been examined on a wide variety of 

test problems yet. Severe performance deterioration of NSGA-II 

with the increase in the number of objectives was demonstrated in 

[28] where NSGA-II was outperformed by random search on the 

DTLZ2 test problem [29] with 10-20 objectives. The DTLZ1 and 

DTLZ2 test problems were used in the MOEA/D paper [6] to 

demonstrate that MOEA/D clearly has higher search ability than 

NSGA-II. In the NSGA-III paper [8], the DTLZ1-4 test problems 

were used to show that NSGA-III has higher search ability than 

MOEA/D. Severe performance deterioration of NSGA-II was also 

reported for many-objective knapsack problems in [22], [25]. 

However, in some studies [30], [31], it was also reported that the 

performance of NSGA-II does not always severely deteriorate with 

the increase in the number of objectives. For example, it was 

reported in [31] that MOEA/D and HypE were outperformed by 

NSGA-II on knapsack problems with 8-10 objectives when the 

objectives were strongly correlated. These studies suggest the 

possibility of NSGA-II to outperform recent decomposition-based 

algorithms on some other many-objective test problems whereas it 

does not work well on many-objective DTLZ test problems [28]. 

In this paper, we examine the performance of NSGA-II in 

comparison with four decomposition-based algorithms (MOEA/D 

[6], NSGA-III [8], MOEA/DD [9] and � -DEA [10]) by generating 

18 types of test problems with different shapes of Pareto fronts and 

feasible regions. Our experimental results demonstrate that the 

performance of NSGA-II does not always severely deteriorate with 

the increase in the number of objectives. Actually, better results are 

obtained by NSGA-II than all the examined decomposition-based 

algorithms for a half of ten-objective test problems (i.e., nine types 

of ten-objective test problems). 

The remainder of this paper is organized as follows. In Section 

2, we propose 18 types of test problems by combining different 

properties of the Pareto front shape and the feasible region shape. 

Frequently-used DTLZ2-4 [29] are classified as one of the 18 types, 

and WFG4-9 [32] are classified as another type. This means that 

the performance evaluation in recent many-objective studies [8]-

[16] has been performed on a limited set of test problems. Nine 

types of test problems in this paper have not been examined in the 

literature. In Section 3, NSGA-II is compared with MOEA/D [6], 

NSGA-III [8], MOEA/DD [9] and � -DEA [10] by applying them 

to the 18 types of test problems with 3-10 objectives. Severe 

performance deterioration of NSGA-II is observed only on three 

types of test problems which are similar to DTLZ1-4. It is also 

observed that NSGA-II works well on a half of test problems even 

when they have ten objectives. In Section 4, we discuss our 

experimental results. We explain why the performance of NSGA-II 

severely degrades on many-objective test problems similar to 

DTLZ1-4. We also explain why NSGA-II works well on a half of 

the 18 types of test problems. In Section 5, we conclude this paper.  

2 TEST PROBLEMS 
We generate 18 types of test problems by combining all of the 

following properties (i.e., 3� 2� 3 combinations):  

(i) Curvature of the Pareto front: linear, concave and convex. 

(ii) Shape of the Pareto front: Triangular and inverted triangular. 

(iii) Shape of the feasible region in the objective space: 

  DTLZ type, WFG type, Minus-DTLZ type. 

These three aspects (Pareto front curvature, Pareto front shape, 

and feasible region shape) are explained in Figs. 1-3, respectively.  
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             (a) Linear.                      (b) Concave.                   (c) Convex. 

Figure 1. Three types of the Pareto front curvature. 
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Figure 2. Two types of the Pareto front shape. 
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Figure 3. Three types of the feasible region shape in the objective space. 
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The effects of the feasible region shape on the performance of 

EMO algorithms have not been discussed in detail in the literature. 

When solutions approach the Pareto front, the size of the feasible 

region in the objective space decreases in DTLZ [29] in Fig. 3 (a), 

does not change in WFG [32] in Fig. 3 (b), and increases in Minus-

DTLZ [33] in Fig. 3 (c).  

Table 1 summarizes the 18 types of our test problems together 

with the related existing test problems. The frequently-used many-

objective DTLZ2-4 and WFG4-9 test problems have concave 

triangular Pareto fronts (types 07 and 08 in Table 1). From Table 1, 

we can see that the comparison of many-objective algorithms has 

been performed on a limited set of test problems in the literature.  

 

Table 1. Summary of 18 types of our test problems. 

Type Curvature Pareto Front Feasible Region Related Problems 

01 Linear Triangular DTLZ DTLZ1 [29] 

02 Linear Triangular WFG - 

03 Linear Triangular Minus-DTLZ - 

04 Linear Inverted  DTLZ Inverted DTLZ1 [34] 

05 Linear Inverted WFG - 

06 Linear Inverted Minus-DTLZ Minus-DTLZ1 [33] 

07 Concave Triangular DTLZ DTLZ2-4 [29] 

08 Concave Triangular WFG WFG4-9 [32] 

09 Concave Triangular Minus-DTLZ - 

10 Concave Inverted DTLZ Inverted DTLZ2 [34] 

11 Concave Inverted WFG - 

12 Concave Inverted Minus-DTLZ - 

13 Convex Triangular DTLZ Convex DTLZ2 [8] 

14 Convex Triangular WFG - 

15 Convex Triangular Minus-DTLZ - 

16 Convex Inverted DTLZ - 

17 Convex Inverted WFG Minus-WFG4-9 [33] 

18 Convex Inverted Minus-DTLZ Minus-DTLZ2-4 [33] 

 

Now let us explain how to generate the 18 types of test 

problems in detail. Objective functions of our test problems with 

DTLZ type feasible regions in Fig. 3 (a) are written as follows: 

 

Minimize )())(1()( posxxx jmj hgf 	
 ,  j = 1, 2, ..., m, (3) 

 

where x=(x1, x2, …, xm+k�1) is a decision vector with 0 � xi � 1 (i = 

1, 2, ..., m+k�1), hj (xpos) is a position function which specifies the 

Pareto front shape (hj (xpos) � 0), and g(xm) is a distance function 

which specifies the distance from the Pareto front (g(xm) � 0). The 

decision vector x is divided into xpos = (x1, x2, ..., xm�1) in hj (xpos) 

and xm  = (xm, xm +1, ..., xm + k �1) in g(xm), where k is the number of 

the decision variables called the distance variables in g(xm). All 

solutions with g(xm) = 0 are Pareto optimal. The same formulation 

as (3) was used in the DTLZ test suite [29]. Eq.(3) can be rewritten 

as follows: 

 

Minimize )())(1()( posxhxxf mg	
 . (4) 

 

The Pareto front is specified by z* = h(xpos) for 0 � xi � 1, i = 1, 

2, ..., m �1. From (4), z is a feasible solution in the objective space 

when the following relation holds for z* on the Pareto front: 

 

*))(1( zxz mg	
 . (5) 

 

If the Pareto front is the line between (1, 0) and (0, 1) in the 

objective space as in Fig. 3 (a), all points on the line between (a, 0) 

and (0, a) are feasible solutions for a = 1 + g(xm). Thus the size of 

the feasible region increases with the increase of the distance from 

the Pareto front (i.e., with the increase of the distance function 

value g(xm) ). 

Objective functions of our test problems with WFG type 

feasible regions in Fig. 3 (b) are written as follows: 

 

Minimize )()()( posxxx jmj hgf 	
 ,  j = 1, 2, ..., m. (6) 

 

The difference between (3) and (6) is whether the position 

function hj(xpos) is multiplied or added by the distance function 

g(xm) . This difference in their formulations leads to the difference 

in the shape of the feasible regions. All solutions with g(xm) = 0 are 

Pareto optimal. The same formulation as (6) was used in the WFG 

test suite [32]. 

Eq.(6) can be rewritten as follows:  

 

Minimize )()()( posxhxxf 	
 1mg , (7) 

 

where 1 = (1, 1, ..., 1)T. The Pareto front is specified by z* = h(xpos) 

for 0 � xi � 1, i = 1, 2, ..., m �1. That is, the two formulations in (3) 

and (6) have exactly the same Pareto front.  

Eq.(7) shows that z is a feasible solution in the objective space 

when the following relation holds for z* on the Pareto front: 

 

*)( zxz 	
 1mg . (8) 

 

If the Pareto front is the line between (1, 0) and (0, 1) in the 

objective space as in Fig. 3 (b), all points on the line between (1+a, 

a) and (a, 1+a) are feasible solutions for a = g(xm). Thus the size 

of the feasible region does not change with the increase of the 

distance from the Pareto front (i.e., with the increase of the 

distance function value g(xm)). 

Our test problems with Minus-DTLZ type feasible regions are 

generated by multiplying a minus sign “�” to all objectives of our 

test problems with DTLZ type feasible regions as illustrated in Fig. 

4. In [33], Minus-DTLZ and Minus-WFG test problems were 

generated in the same manner. After multiplying all objectives in 

(3) by “�”, the objective space is normalized so that the ideal and 

nadir points are (0, 0, ..., 0)T and (1, 1, ..., 1)T, respectively. It 

should be noted that all test problems in this paper have the same 

ideal point (0, 0, ..., 0)T and the same nadir point (1, 1, ..., 1)T. 
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Figure 4. Illustration of our test problems with Minus-DTLZ type feasible 

regions. 

 

After the normalization, objective functions of our test problems 

with Minus-DTLZ type feasible regions are written as follows: 

 

 Minimize )(
1

)(
11)( pos

max

xxx j
m

j h
g

gf ��


�
��
�

�
	

��
 , j = 1, 2, ..., m. (9) 

 

All solutions with g(xm) = 0 are Pareto optimal. Eq. (9) can be 

rewritten as follows: 
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Minimize )(
1

)(
1)( pos

max

xhxxf ��


�
��
�

�
	

��

g

g m1 . (10) 

The Pareto front is specified by z* = 1 � h(xpos). Note that the 

Pareto fronts of the test problems with the DTLZ and WFG type 

feasible regions are specified by z* = h(xpos) in (5) and (7). 

As g(xm), we use the distance function in DTLZ1 [29]: 

 

��


�
��
�

�
���	�
 �

�




1

1

2 ))}5.0(20cos()5.0{(||100)(
m

i
iimm xxg �xx . (11) 

 

Of course, we can use any distance function. In this paper, we 

always use the distance function in (11) for all test problems. The 

number of distance variables is specified as k = 5 as in DTLZ [29].   

We generate linear, concave and convex triangular Pareto fronts 

using the position functions of DTLZ2 [29] in the same manner as 

in [35]. First we define the following m functions with xpos = (x1, 

x2, ..., xm�1) and 0 � xi � 1 for i = 1, 2, ..., m�1: 

 
���� )]2/cos()2/cos(...)2/[cos()( 121pos1 ��
 mm xxxs x , 
���� )]2/sin()2/cos(...)2/[cos()( 121pos2 ��
 mm xxxs x , 

       .                 .        .                 .        .                 . 
��� )]2/sin()2/[cos()( 21pos1 xxsm 
� x , 

�� )]2/[sin()( 1pos xsm 
x , 

 

(12) 

 

where � is a positive parameter. Depending on the value of �, these 

functions generate triangular concave (� < 2), linear (� = 2) and 

convex (� > 2) Pareto fronts as shown in Fig. 5. When � = 1, these 

functions are the same as the position functions in DTLZ2 [29]. 

 

f2

f3

f1

1

0

1

00

1     
f2

f3

f1

1

0

1

00

1     
f2

f3

f1

1

0

1

00

1  

      (a) Linear (� = 2).          (b) Concave (� = 1).      (c) Convex (� = 4). 

Figure 5. Triangular Pareto fronts generated by sj(xpos) in (12). 

 

Inverted triangular Pareto fronts can be generated from the 

following functions: 

 

uj(xpos) = 1 � sj(xpos),  j = 1, 2, ..., m, (13) 

 

where sj(xpos) is the same as in (12). Depending on the value of �, 

these functions generate inverted triangular convex (� < 2), linear 

(� = 2) and concave (� > 2) Pareto fronts as shown in Fig. 6. 
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      (a) Linear (� = 2).          (b) Concave (� = 4).      (c) Convex (� = 1). 

Figure 6. Inverted triangular Pareto fronts generated by uj(xpos) in (13). 

The 18 types of test problems are generated by combining the 

three formulations for feasible regions and the six settings for 

Pareto fronts as shown in Table 2. It should be noted that the 

Pareto front is specified by z* = 1 � h(xpos) in the Minus-DTLZ 

type problems whereas it is specified by z* = h(xpos) in the DTLZ 

and WFG type problems. This difference makes Table 2 look 

inconsistent. For example, the type 18 test problem has the inverted 

convex Pareto front which is generated by u(xpos) = 1 � s(xpos) with 

� = 1 as shown in Fig. 6 (c). However, since it has the Minus-

DTLZ type feasible region, the Pareto front is specified by z* = 1 � 

h(xpos). As a result, h(xpos) is defined by h(xpos) = s(xpos) for the 

type 18 test problem in Table 2. 

Table 2. Formulations of 18 types of our test problems. 

Type Curvature Pareto F. Feasible R. f(x) h(xpos) ��
01 Linear Triangular DTLZ (4) s(xpos) 2 

02 Linear Triangular WFG (7) s(xpos) 2 

03 Linear Triangular Minus-D. (10) 1 � s(xpos) 2 

04 Linear Inverted  DTLZ (4) 1 � s(xpos) 2 

05 Linear Inverted WFG (7) 1 � s(xpos) 2 

06 Linear Inverted Minus-D. (10) s(xpos) 2 

07 Concave Triangular DTLZ (4) s(xpos) 1 

08 Concave Triangular WFG (7) s(xpos) 1 

09 Concave Triangular Minus-D. (10) 1 � s(xpos) 1 

10 Concave Inverted DTLZ (4) 1 � s(xpos) 4 

11 Concave Inverted WFG (7) 1 � s(xpos) 4 

12 Concave Inverted Minus-D. (10) s(xpos) 4 

13 Convex Triangular DTLZ (4) s(xpos) 4 

14 Convex Triangular WFG (7) s(xpos) 4 

15 Convex Triangular Minus-D. (10) 1 � s(xpos) 4 

16 Convex Inverted DTLZ (4) 1 � s(xpos) 1 

17 Convex Inverted WFG (7) 1 � s(xpos) 1 

18 Convex Inverted Minus-D. (10) s(xpos) 1 

3 COMPUTATIONAL EXPERIMENTS 
Using the generated 18 types of test problems with 3, 5, 8 and 10 

objectives (m = 3, 5, 8, 10), we compare NSGA-II with the 

following well-known decomposition-based EMO algorithms: 

MOEA/D [6], NSGA-III [8], MOEA/DD [9] and � -DEA [10]. In 

MOEA/D, we use the same scalarizing function as in the MOEA/D 

paper [6] for DTLZ1-2: the PBI function with �  = 5. The following 

settings are used in all the examined EMO algorithms:  

Population size: 105 (m = 3), 210 (m = 5), 156 (m = 8), 275 (m = 10). 

Termination conditions: 1000 generations. 

Crossover: SBX (Probability 1.0, Index 20). 

Mutation: PM (Probability 1/n, Index 20). 

The same or similar settings were often used in recent studies on 

evolutionary many-objective optimization [8]-[16]. When the 

decomposition-based EMO algorithms are applied to test problems 

with 3 and 5 objectives, all weight vectors w = (w1, w2, ..., wm)T 

satisfying the following relations are generated as in the MOEA/D 

paper [6]: 

 

w1 + w2 +  ...  + wm = 1, (14) 

wi�
�
�
�

�
�
�

H
H

HH
...,,

2
,

1
,0 , (15) 

 

where H is an integer parameter which defines the number of 

weight vectors (H = 13 for m = 3 and H = 6 for m = 5 in this paper). 
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For test problems with 8 and 10 objectives, the two-layered method 

in NSGA-III [8] is used to generate weight vectors in all the four 

decomposition-based EMO algorithms in this paper. 

As explained in Section 2, the DTLZ1 distance function in (11) 

is used in all test problems in this paper. The number of distance 

variables is specified as k = 5. Thus the total number of decision 

variables n is n = m + 4. Each variable has the same box constraint: 

0 �  xi �  1 for i = 1, 2, ..., n.  

Each EMO algorithm is applied to each test problem 51 times. 

The obtained solution set from each run is evaluated by the HV 

indicator [20], IGD indicator [21], and IGD+ indicator [36]. Since 

HV-based comparison results depend on the specification of the 

reference point r = (r, r, ..., r)T for HV calculation, we examine its 

two specifications: r = (1.1, 1.1, ..., 1.1)T and r = (1+1/H, 

1+1/H, ..., 1+1/H)T where H is the integer parameter used for 

generating the weight vectors in MOEA/D. More specifically, H = 

13 (m = 3), H = 6 (m = 5), H = 3 (m = 8), and H = 3 (m = 10). This 

specification was proposed for fair performance comparison in [37]. 

Due to the page limitation as a conference paper, we mainly report 

the HV-based comparison results with the second specification: r = 

1+1/H. All experimental results are available from the authors’ 

webpage together with other related materials such as the code of 

each algorithm, explanations about each test problem, and a 

reference point set for each test problem for IGD and IGD+ (see 

http://www.cs.osakafu-u.ac.jp/ci/EnglishPage/Download.php). We 

run all experiments in MATLAB using PlatEMO [38]. 

HV-based comparison results (r = 1+1/H) on the 8-objective 

and 10-objective test problems are summarized in Tables 3 and 4, 

respectively. Each algorithm is compared with NSGA-II using a 

statistical test at the 5% significance level (Wilcoxon’s rank sum 

test, Welch’s t-test, or Student’s t-test depending on the property of 

the distribution of HV values obtained by each algorithm). In each 

table, statistical test results are shown by “+” and “�”, which mean 

that the compared results are significantly better than and worse 

than those of NSGA-II, respectively. When there is no significant 

difference, “=” is assigned. The number of “+”, “=” and “�” is 

counted for each algorithm at the bottom of each table. 

 
Table 3. Average HV values (r = 1 + 1/H) on the 8-objective test problems. 
The best and worst results are shown by red and blue fonts, respectively. 
The statistical comparison results are summarized in the last row. 

Type MOEA/DD MOEA/D NSGA-II NSGA-III � -DEA 

01 9.98e+00 (+) 9.98e+00 (+) 0.00e+00 9.95e+00 (+) 9.97e+00 (+) 

02 9.96e+00 (+) 9.93e+00 (=) 9.94e+00 9.96e+00 (+) 9.97e+00 (+) 
03 9.98e+00 (+) 9.98e+00 (+) 9.91e+00 9.98e+00 (+) 9.98e+00 (+) 

04 0.66e�02 (�) 0.46e��02 (��) 1.80e��02 1.17e�02 (�) 0.91e�02 (�) 

05 0.61e�02 (�) 0.50e��02 (��) 1.93e��02 1.19e�02 (�) 0.93e�02 (�) 

06 0.61e��02 (��) 0.66e�02 (�) 1.91e��02 1.17e�02 (�) 0.99e�02 (�) 

07 9.82e+00 (+) 9.77e+00 (+) 0.00e+00 9.74e+00 (+) 9.77e+00 (+) 

08 9.80e+00 (+) 9.68e+00 (+) 9.46e+00 9.60e+00 (+) 9.79e+00 (+) 

09 9.82e+00 (+) 9.81e+00 (+) 9.46e+00 9.79e+00 (+) 9.82e+00 (+) 
10 1.84e�03 (�) 0.80e��03 (��) 6.22e��03 1.98e�03 (�) 1.39e�03 (�) 

11 1.78e�03 (�) 0.74e��03 (��) 6.19e��03 2.15e�03 (�) 2.06e�03 (�) 

12 1.78e��03 (��) 2.18e�03 (�) 5.67e��03 3.17e�03 (�) 1.93e�03 (�) 

13 9.78e+00 (+) 9.74e+00 (+) 0.00e+00 9.98e+00 (+) 9.97e+00 (+) 

14 9.78e+00 (�) 9.72e+00 (��) 9.99e+00 9.97e+00 (�) 9.96e+00 (�) 

15 9.80e+00 (�) 9.74e+00 (��) 9.99e+00 9.98e+00 (�) 9.97e+00 (�) 

16 1.15e��01 (��) 1.30e�01 (+) 1.21e�01 1.86e��01 (+) 1.45e�01 (+) 

17 1.18e��01 (��) 1.30e�01 (�) 1.67e�01 1.85e��01 (+) 1.43e�01 (�) 

18 1.14e��01 (��) 1.31e�01 (�) 1.87e��01 1.65e�01 (�) 1.44e�01 (�) 

+/=/� 7/0/11 7/1/10 �� 9/0/9 8/0/10 

Table 4. Average HV values (r =1+1/H) on the 10-objective test problems. 
The best and worst results are shown by red and blue fonts, respectively. 
The statistical comparison results are summarized in the last row.  

Type MOEA/DD MOEA/D NSGA-II NSGA-III � -DEA 

01 1.77e+01 (+) 1.77e+01 (+) 0.00e+00 1.77e+01 (+) 1.77e+01 (+) 

02 1.77e+01 (+) 1.77e+01 (=) 1.77e+01 1.77e+01 (+) 1.77e+01 (+) 
03 1.77e+01 (+) 1.77e+01 (+) 1.77e+01 1.77e+01 (+) 1.77e+01 (+) 

04 0.73e�03 (�) 0.48e��03 (��) 3.06e��03 1.78e�03 (�) 1.28e�03 (�) 

05 0.66e�03 (�) 0.52e��03 (��) 3.41e��03 1.81e�03 (�) 1.21e�03 (�) 

06 0.54e��03 (��) 0.73e�03 (�) 3.60e��03 1.67e�03 (�) 1.01e�03 (�) 

07 1.76e+01 (+) 1.74e+01 (+) 0.00e+00 1.74e+01 (+) 1.76e+01 (+) 

08 1.76e+01 (+) 1.74e+01 (+) 1.72e+01 1.75e+01 (+) 1.76e+01 (+) 
09 1.76e+01 (+) 1.76e+01 (+) 1.72e+01 1.76e+01 (+) 1.76e+01 (+) 
10 2.22e�04 (�) 0.94e��04 (��) 9.57e��04 2.11e�04 (�) 1.65e�04 (�) 

11 2.13e�04 (�) 0.77e��04 (��) 9.54e��04 2.21e�04 (�) 2.08e�04 (�) 

12 2.11e��04 (��) 2.69e�04 (�) 8.71e��04 3.97e�04 (�) 2.23e�04 (�) 

13 1.73e+01 (+) 1.72e+01 (+) 0.00e+00 1.77e+01 (+) 1.77e+01 (+) 

14 1.73e+01 (�) 1.72e+01 (��) 1.77e+01 1.77e+01 (�) 1.77e+01 (�) 

15 1.74e+01 (�) 1.72e+01 (��) 1.77e+01 1.77e+01 (�) 1.77e+01 (�) 

16 2.37e��02 (��) 3.52e�02 (=) 3.61e�02 6.78e��02 (+) 5.11e�02 (+) 

17 2.50e��02 (��) 3.54e�02 (�) 5.13e�02 6.98e��02 (+) 5.04e�02 (=) 

18 2.44e��02 (��) 3.56e�02 (�) 6.64e��02 6.07e�02 (�) 4.86e�02 (�) 

+/=/� 7/0/11 6/2/10 �� 9/0/9 8/1/9 

 

In Tables 3 and 4, severe performance deterioration of NSGA-II 

is observed for the following three types (see the blue font results): 

Severe Performance Deterioration of NSGA-II 
Type 01: Linear, triangular, DTLZ type. 

Type 07: Concave, triangular, DTLZ type. 

Type 13: Convex, triangular, DTLZ type. 

Independent of the curvature property, many-objective DTLZ 

type test problems with triangular Pareto fronts are very difficult 

for NSGA-II. For those test problems with 8 and 10 objectives, the 

average HV values are always zero in Tables 3 and 4. This means 

that no solutions which dominate the reference point are obtained. 

The observed poor performance of NSGA-II on the three types (01, 

07 and 13) in Tables 3 and 4 is consistent with repeatedly reported 

severe performance deterioration of NSGA-II on many-objective 

DTLZ test problems [26], [28]. As shown in Table 1, DTLZ1 and 

DTLZ2-4 are categorized as type 01 and type 07, respectively.  

Surprisingly, the best results highlighted by the red font are 

obtained by NSGA-II in both tables for the following problems: 

Best Results by NSGA-II 
Type 04: Linear, inverted triangular, DTLZ type  

Type 05: Linear, inverted triangular, WFG type 

Type 06: Linear, inverted triangular, Minus-DTLZ type 

Type 10: Concave, inverted triangular, DTLZ type 

Type 11: Concave, inverted triangular, WFG type 

Type 12: Concave, inverted triangular, Minus-DTLZ type 

Type 14: Convex, triangular, WFG type.  

Type 15: Convex, triangular, Minus-DTLZ type 

Type 18: Convex, inverted triangular, Minus-DTLZ type 

The best results are obtained by NSGA-II for these 9 (out of 18) 

types in both tables. This is a surprising observation since poor 

performance of NSGA-II on many-objective problems has been 

repeatedly reported in the literature. However, we can also see 

from Table 1 that these nine types of test problems have not been 

frequently used for the performance evaluation of many-objective 

algorithms in the literature. DTLZ1 (type 01), DTLZ2-4 (type 07) 
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and WFG4-9 (type 08) have been used in many studies [5]-[16], 

[26], [28]. In Tables 3 and 4, the worst results are always obtained 

by NSGA-II for these three types (types 01, 07, 08) of test 

problems. These observations suggest that algorithm comparison 

has been performed in the last decade using many-objective test 

problems which are difficult for NSGA-II.  

Different comparison results are often obtained from different 

performance indicators. We also count the number of 10-objective 

problems for which the best results are obtained by NSGA-II based 

on other performance indicators. Performance comparison results 

are summarized as follows: The best results are obtained by 

NSGA-II for 5 types (HV with r = 1.1), 6 types (IGD), and 8 types 

(IGD+) out of the 18 types of test problems. When r = 1 + 1/H (i.e., 

r = 1 + 1/3 for m = 10), a well-distributed solution set over the 

entire Pareto front including its boundary region usually has a high 

HV value. By decreasing the distance from the nadir point to the 

reference point (i.e., by decreasing the value of r), we can give 

higher importance to inside solutions than boundary solutions [37]. 

As a result, the evaluation of NSGA-II becomes weaker by 

changing the reference point specification from r = 1 + 1/H to r = 

1.1 (since NSGA-II does not have high convergence ability for 

many-objective problems whereas it has high diversification 

ability). However, even when r is specified as r = 1.1 for HV 

calculation, the best results are obtained by NSGA-II for 5 (out of 

18) types of test problems. This observation shows high overall 

performance of NSGA-II for some many-objective test problems.  

In order to further examine this issue, we calculate the average 

distance function value for all solutions in the final population over 

51 runs of each EMO algorithm on each 10-objective test problem. 

Experimental results are summarized in Table 5.  

 
Table 5. Average distance function value on the 10-objective test problems. 
The best and worst results are shown by red and blue fonts, respectively. 
The statistical comparison results are summarized in the last row. 

Type MOEA/DD MOEA/D NSGA-II NSGA-III � -DEA 

01 0.001 (+)   0.003 (+)   1007.489   3.826 (+)   0.169 (+)   

02 0.000 (+)   0.001 (+)   0.061   0.000 (+)   0.000 (+)   
03 1.814 (+)   0.413 (+)   81.961   2.152 (+)   0.198 (+)   
04 0.000 (+)   0.001 (+)   0.046   0.000 (+)   0.000 (+)   

05 0.000 (+)   0.000 (+)   0.022   0.000 (+)   0.000 (+)   

06 0.206 (+)   0.000 (+)   69.799   53.317 (+)   2.410 (+)   

07 0.000 (+)   0.001 (+)   1037.140   3.000 (+)   0.460 (+)   

08 0.001 (+)   0.004 (+)   0.118   0.000 (+)   0.000 (+)   
09 23.429 (+)   24.241 (+)   181.540   11.918 (+)   11.503 (+)   
10 0.089 (��)   0.001 (+)   0.003   0.001 (+)   0.042 (��)   

11 0.000 (+)   0.000 (+)   0.002   0.001 (+)   0.000 (+)   

12 4.762 (+)   0.000 (+)   122.980   62.331 (+)   0.977 (+)   

13 0.001 (+)   0.002 (+)   915.301   15.939 (+)   1.935 (+)   

14 0.000 (+)   0.000 (+)   0.002   0.000 (+)   0.000 (+)   

15 0.005 (+)   0.007 (+)   6.350   0.110 (+)   0.016 (+)   

16 0.000 (+)   0.000 (+)   0.146   0.002 (+)   0.001 (+)   

17 0.000 (+)   0.000 (+)   0.043   0.001 (+)   0.001 (+)   

18 0.068 (+)   0.045 (+)   41.477   64.802 (��)   7.984 (+)   

+/=/� 17/0/1 18/0/0 �� 17/0/1 17/0/1 

 

As we have already explained, solutions are Pareto optimal 

when the distance function values are zero. Small values of the 

distance function mean that solutions are close to the Pareto front. 

In Table 5, the worst results are obtained by NSGA-II for 16 (out 

of 18) types of test problems. This observation clearly shows that 

the convergence ability of NSGA-II is weak for many-objective 

problems. However, the overall performance of NSGA-II evaluated 

by the HV, IGD and IGD+ indicators is the best for some test 

problems. These observations imply that the obtained solution sets 

by NSGA-II have larger diversity than those by the decomposition-

based algorithms examined in this paper. 

4 DISCUSSIONS 
First, we discuss why the performance of NSGA-II on the DTLZ 

type test problems with triangular Pareto fronts (i.e., types 01, 07, 

13) severely degrades with the increase in the number of objectives. 

In Fig. 7, we show the feasible region of the type 01 (linear, 

triangular, DTLZ) test problem with three objectives. All the three 

DTLZ type test problems with triangular Pareto fronts (i.e., types 

01, 07, 13) have similar feasible regions.  
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f3

f1
           f2
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Figure 7. Feasible region of the type 01 test problem (red: Pareto front). 

 

As we can see from Fig. 7, the type 01 (and also types 07, 13) 

test problem has the feasible region along each axis of the objective 

space. For example, a point (10�6, 10�6, 100) is included in the 

feasible region. This solution is far away from the Pareto front of 

the type 01 test problem since it is the plane specified by f1 + f2 + f3 
= 1 and 0 � fi � 1 for i = 1, 2, 3. Whereas (10�6, 10�6, 100) is not a 

good solution, it is not easy for NSGA-II to find a better solution 

satisfying 0 � f1 � 10�6, 0 � f2 � 10�6 and 0 � f3 � 100. This difficulty 

becomes very severe by increasing the number of objectives. For 

example, it is very difficult to find a solution with 0 � fi � 10�6 for i 
= 1, 2, ..., 9 and 0 � f10 � 100 for the 10-objective type 01 test 

problem. As a result, such a solution can remain in the population 

over many generations. Moreover, similar non-dominated solutions 

such as (0.5� 10�6, 2� 10�6, 50), (0.6� 10�6, 1.1� 10�6, 150) and 

(3� 10�6, 0.2� 10�6, 200) can be generated. All of them are non-

dominated, and they are likely to be evaluated as being better than 

solutions around the Pareto front by the crowding distance. Those 

solutions close to each axis of the objective space (and far away 

from the Pareto front) are called dominance resistant solutions 

(DRSs [39]). It is well known that the existence of DRSs severely 

degrades the performance of Pareto dominance-based EMO 

algorithms [39], [40]. When the shape of the feasible regions is 

WFG type or Minus-DTLZ type, each axis of the objective space is 

not included in the feasible region (see Fig. 3). Thus no DRSs exist 

in the WFG and Minus-DTLZ type test problems. Even when the 

shape of feasible regions is DTLZ type, no DRSs exist in test 

problems with inverted triangular Pareto fronts. This is because no 

points on the axes of the objective space are feasible.  

These discussions explain why the performance of NSGA-II 

severely degrades only on the three DTLZ type many-objective test 

problems with triangular Pareto fronts (i.e., types 01, 07, 13). In 

order to further discuss this issue, we perform computational 

experiments after slightly changing the objective function vector in 

(4) of the DTLZ type test problems as follows:  
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Minimize 1)()())(1()( pos mm gg xxhxxf �		
 , (16) 

 

where � is a small positive real number. When � = 0, this objective 

function vector is the same as (4). By increasing the value of �, the 

shape of the feasible region gradually changes from the DTLZ type 

to the WFG type. We apply NSGA-II to the type 01 test problem 

with (16) using various settings of � :�� = 1, 10�1, 10�2, ..., 10�16, 0. 

Experimental results on the type 01 test problems with 8 and 10 

objectives are shown in Figs. 8 and 9, respectively. These figures 

show the average distance function values. In these figures, NSGA-

II is compared with random search. In the random search, a pre-

specified number of solutions are randomly generated. The number 

of examined solutions is exactly the same between NSGA-II and 

the random search. All non-dominated solutions are found from the 

examined solutions in the random search, and a final population is 

randomly selected from the non-dominated solutions. In Figs. 8-9, 

the convergence ability of NSGA-II is weaker than that of the 

random search when � = 0. However, a small change of the 

feasible region shape by (16) using a small value of � significantly 

improves the convergence ability of NSGA-II.  
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Figure 8. Average distance function values of the 8-objective type 01 test 

problem with the modified objective vector in (16). 

 

g(
x)

������
 

Figure 9. Average distance function values of the 10-objective type 01 test 

problem with the modified objective vector in (16). 

 

For an m-objective DTLZ type test problem with a triangular 

Pareto front, we can simultaneously optimize (m���1) objectives. 

As a result, we have DRSs such as (10�6, 10�6, ..., 10�6, 100). 

However, this property (i.e., the existence of solutions which can 

simultaneously optimize (m���1) objectives) looks unrealistic [41]. 

DTLZ type test problems with triangular Pareto fronts seem to be 

unnecessarily difficult for NSGA-II due to this unrealistic property. 

Next, let us discuss why NSGA-II works well on some other 

many-objective test problems. As explained in [33], all objective 

values of a current solution can be simultaneously improved by 

decreasing the distance function value when the objective vector is 

defined by (4), (7) and (10). Let us denote the current solution in an 

m-dimensional objective space be z. If we generate a new point y 
randomly in the neighborhood of z in the objective space, y and z 
are non-dominated with each other with the probability of 1 � 2/2m 

(since y dominates z with the probability of 1/2m, and z dominates y 
with the same probability). In the case of m=10, 1�2/2m = 511/512. 

Thus, it is likely that y and z are non-dominated with each other. 

However, if y is generated by applying a mutation operator only to 

distance variables, the distance function value is increased or 

decreased by the mutation. When the distance function value is 

decreased, y dominates z. When the distance function value is 

increased, y is dominated by z. Thus the probability of generating y 
which is non-dominated with z is zero. This explanation suggests 

that the special structure of our test problems (and the special 

structure of almost all of the frequently-used many-objective test 

problems such as DTLZ and WFG) helps NSGA-II to search for 

better solutions using the Pareto dominance relation.  

5 CONCLUSION 
In this paper, we examined the performance of NSGA-II through 

computational experiments on 18 types of test problems. NSGA-II 

was compared with four well-known decomposition-based EMO 

algorithms: MOEA/D, NSGA-III, MOEA/DD and � -DEA. We 

obtained the following observations: 

(1) The performance of NSGA-II severely deteriorated with the 

increase in the number of objectives for three types of test 

problems (types 01, 07, 13). These types include DTLZ1-4.  

(2) NSGA-II outperformed the other examined EMO algorithms on 

a half of the 18 types of test problems with 8 and 10 objectives. 

We explained the reason for the poor performance of NSGA-II, 

which is the existence of DRSs in the DTLZ type test problems 

with triangular Pareto fronts. It was shown that the convergence 

ability of NSGA-II on such a test problem with 10 objectives was 

inferior to random search. It was also shown that a slight change of 

the DTLZ type feasible region clearly improved the convergence 

ability of NSGA-II. We also discussed why NSGA-II worked well 

on some test problems. The reason is the special structure of the 

objective functions in the DTLZ and WFG test problems.  

Our experimental results clearly demonstrated the necessity of 

including NSGA-II in computational experiments for performance 

evaluation of new many-objective algorithms. The necessity of 

good many-objective test problems was also demonstrated by our 

computational experiments and related discussions in this paper. 

One important future research issue is to create a set of reliable 

many-objective test problems for fair performance evaluation of 

existing and new many-objective algorithms.  
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