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Abstract.

Neural networks (NN) have been recently applied together with
evolutionary algorithms (EAs) to solve dynamic optimization prob-
lems. The applied NN estimates the position of the next optimum
based on the previous time best solutions. After detecting a change,
the predicted solution can be employed to move the EA’s population
to a promising region of the solution space in order to accelerate
convergence and improve accuracy in tracking the optimum. While
previous works show improvement of the results, they neglect the
overhead created by NN. In this work, we reflect the time spent for
training NN in the optimization time and compare the results with a
baseline EA. We explore if by considering the generated overhead,
NN is still able to improve the results, and under which conditions is
able to do so.

The main difficulties to train the NN are: 1) to get enough samples
to generalize predictions for new data, and 2) to obtain reliable sam-
ples. As NN needs to collect data at each time step, if the time horizon
is short, we will not be able to collect enough samples to train the NN.
To alleviate this, we propose to consider more individuals on each time
to speed up sample collection in shorter time steps. In environments
with high frequency of changes, the solutions produced by EA are
likely to be far from the real optimum. Using unreliable train data for
the NN will, in consequence, produce unreliable predictions. Also, as
the time spent for NN stays fixed regardless of the frequency, a higher
frequency of change will mean a higher produced overhead by the NN
in proportion to the EA. In general, after considering the generated
overhead, we conclude that NN is not suitable in environments with
high frequency of changes and/or short time horizons. However, it
can be promising for the low frequency of changes, and especially for
the environments that changes have a pattern.

1 INTRODUCTION

In this section, the background on the topic and our contribution are
presented.

1.1 Background

Many real-world problems have uncertainties due to factors such
as variation in the demand market, unpredicted events, variable re-
sources, or estimated parameters that may change over time [5].
These problems in which the objective function or/and the constraints
change over time, are called as dynamic constrained optimization
problems (DCOPs) [14]. The goal is to find and track the optimum
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in each instance of the dynamic problem given a limited computa-
tional budget. One approach is to apply an independent optimization
method to solve each problem instance separately, however, a more
efficient approach solves them in a dynamic manner, in which the
algorithm detects and responds to the changes on-the-fly [20]. Math-
ematically, the objective is to find a solution vector (�x ∈ R

D) at
each time period t such that: min�x∈Ft f(�x, t), where f : S → R is
a single objective function, and t ∈ N+ is the current time period.
Ft = {�x | �x ∈ [L,U ], gi(�x, t) ≤ 0} is the feasible region at time t,
where L and U are the boundaries of the search space and gi(x, t) is
the linear ith inequality constraint at time t. To tackle these problems
evolutionary algorithms (EAs) are commonly used [20]. However, in
order to apply previously proposed EAs in static domains for such
dynamic problems, some adaptations are needed for them to han-
dle dynamic environments. Mechanisms like change detection and
the ability to react to the changes should be applied, otherwise the
whole population may converge and stuck in an area of the search
space without noticing the change. Previously proposed approaches
include introducing [10] or maintaining diversity [7], memory-based
approaches [21], multi-population approaches [4] or prediction meth-
ods [6]. Previous work on prediction has used different methods
including Markov chains [23], Kalman filters [22], linear [12] and
nonlinear regression techniques [24], and recently neural networks
(NN) become increasingly popular [13, 15, 17, 18]. These works have
been applied in a variety of optimization classes including multi-
objective optimization [1, 26], discrete optimization [25], dynamic
constrained optimization [6], and time-linkage problems [3].

All of the previous works show how environmental change pattern
can be extracted from the previous environments to provide effec-
tive guidance for the EA to predict the future optimum. For instance,
in [22] the Kalman filter is adopted to model the movement of the
optimum and predict the possible optimum in new environments. Sim-
ilarly, in [23] linear regression is used to estimate the time of the
next change and Markov chains is adopted to predict new optimum
based on the previous times optimum. Likewise, in [26] the center
points of Pareto sets in past environments are used as data to simulate
the change pattern of the center points by using a regression model.
In other works [13, 15], where the change pattern is not stable, it is
proposed to directly construct a transfer model of the solutions/fitness,
considering the correlation and difference between the two consecu-
tive environments.

1.2 Our contribution

What is neglected in previous works is the time used for training
and calling the predictor. In one recent work [16], the time spent
for training the NN is reported, however, it is not compared to the
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overall optimization time. Such a comparison is needed, to reflect the
overhead caused by using NN. In the relevant literature of dynamic
problems, often a change is designed to happen after a constant num-
ber of fitness evaluations or generations [20]. But we need to consider
the difference between the algorithm using NN and the baseline al-
gorithm in terms of the real computational cost. In some real-world
problems [5], the condition that leads to the dynamic behaviour of
the problem, happens after a time constraint (for instance prices are
updated hourly in a power market). In this situation, we want an opti-
mization algorithm to achieve an optimum solution in a limited time
budget, regardless of the number of fitness evaluations. In particular,
time is important to be accounted when using a NN, since by including
several stages (data collection, training and predicting new solutions)
can produce a noticeable time overhead in the optimization. Therefore,
we propose to create a change after an actual running time. With this,
the time spent for training NN, is subtracted from the EA time. In
consequence, all the methods have the same time budget for overall
optimization in each time. The purpose is to observe, considering
the assigned time to NN that is indeed taken from the EA time for
optimization, if still NN helps the EA to improve the results.

Aside from the time constraint, our other concerns are regarding
collecting sufficient samples to generalize predictions for new data,
and the reliability of the samples. For those dynamic problems that
the overall time horizon is short, we are not able to collect enough
samples to train the NN in proper time. To alleviate this, we propose to
consider more individuals on each time to speed up sample collection
in shorter time steps. In problems with high frequency of changes, the
solutions produced by EA at the end of each time are likely to be far
from the real optimum. In such cases, using unreliable train data for
the NN, in consequence, will produce unreliable predictions. Also,
as the time spent for NN stays fixed regardless of the frequency, a
higher frequency will mean a higher produced overhead by the NN in
proportion to the EA.

We choose differential evolution (DE) as our baseline algorithm
as it has shown competitive results in constrained and dynamic opti-
mization [2]. Using this baseline, we experiment with different NN
specifications. We explore how to introduce predicted solutions to
population and the effect of the number of individuals introduced to
be replaced on each change.

The remainder of the paper is as follows. Section 2 introduces DE
algorithm and the NN design. Experimental setup will be presented in
Section 3. Experimental results are reviewed in Section 4 and finally
in Section 5 the results are concluded.

2 PRELIMINARIES

In this section, an overview of the adapted differential evolution (DE)
algorithm to solve DCOPs and the design of the NN are presented.

2.1 Differential evolution for dynamic problems

Differential evolution (DE) is a stochastic search algorithm that is
simple, reliable and fast which showed competitive results in con-
strained and dynamic optimization [2]. Each vector �xi,G in the current
population (called as target vector at the moment of the reproduction)
generates one trial vector �ui,G by using a mutant vector �vi,G. The
mutant vector is created applying �vi,G = �xr0,G +F (�xr1,G −�xr2,G),
where �xr0,G, �xr1,G, and �xr2,G are vectors chosen at random from the
current population (r0 �= r1 �= r2 �= i); �xr0,G is known as the base
vector and �xr1,G, and �xr2,G are the difference vectors and F > 0
is a parameter called scale factor. The trial vector is created by the

(a) nt of previous times are used to predict next optimum

(b) k-best individuals of each time are selected to train NN

Figure 1: Building samples for NN

recombination of the target vector and mutant vector using a crossover
probability CR ∈ [0, 1]. In this paper, a simple version of DE called
DE/rand/1/bin variant is chosen; where “rand" indicates how the base
vector is chosen, “1" represents how many vector pairs will contribute
in differential mutation, and “bin" is the type of crossover (binomial
in our case). Feasibility rules [8] is applied for the constraint handling.

In addition to constraint handling, the algorithms in DCOPs need a
mechanism to detect the changes. In the literature, re-evaluation of
the solutions is the most common change-detection approach [20].
The algorithm regularly re-evaluates specific solutions (in this work
the first and the middle individual of the population) to detect changes
in their function values or/and the constraints. If a change is detected,
then the change reaction approach will be activated. In this work,
two approaches are considered. In the first approach, called noNN,
the whole population is re-evaluated. In the second approach (detail
explanations in next Section), some individuals of the population will
be replaced with the predicted solutions and the rest of the individuals
are re-evaluated.

2.2 Neural network design

NN is intended to precisely model the optimum movement to make
a reliable forecast of the future optimum position. To do so, the
best solutions of the previous change periods found by the EA are
required to build a time series ( �x0, ..., �xt−2, �xt−1) for which the
optimum �xt of the next change period t has to be predicted (Figure 1a).
To learn the change pattern of the optimum position, NN will go
through a training process. To train the network, k-best individuals
(Figure 1b: example with k = 3) of each time are collected for a
couple of the previous times (based on a time-window (nt)). There
is the question of how far into the past should information be used
to base the prediction upon. In [16], the results of changes in nt

show the addition of the older data brings noise and misleads the
NNs. It is concluded that the accumulation of old data is useful only
to extract the overall environment change information. Therefore, a
suggestion is, when constructing the training set, to select the data that
has strong correlation to the predicted targets. In this work, nt = 5
is chosen for the experiments. For future work, we plan to explore
the effect of time window (nt). Considering an effective time window
in which the shape of changes has a pattern is effective, as in some
real-world problems the form of the dynamism could change overtime.
In addition, we plan to apply relational NN that considers priority for
the data based on the distance to the predicted value in a time-series
prediction (higher priority for closer ones accordingly).

We consider two cases: first one collects only one best individual
(k = 1) for 5 previous times (nt = 5) and predict the next one

M. Hasani-Shoreh et al. / Neural Networks in Evolutionary Dynamic Constrained Optimization: Computational Cost and Benefits276



(Figure 1a). The second procedure considers k-best individuals of
each time for nt = 5 and considers a combination of all possibil-
ities (knt ) to build training data (Figure 1b). In the latter case, the
samples are collected in faster speed. However, we consider to limit
the number of samples collected by choosing a random subset of the
above mentioned combination. As if we do not consider limits, the
time spent for training data exponentially increases due to the large
number of samples collected. Also, as we have enough number of
samples when using k > 1, we can limit the NN to use the samples
from nw previous changes. However, for the case with k = 1, we
keep collecting data and thus do not consider limits for number of
collected samples (nw = ∞) as otherwise the amount of samples
will remain too low. Notice that, for the first environment changes we
have a small amount of samples. Hence, it is difficult for the NN to
generalize from these data. To avoid this, we wait until a minimum
amount of samples are collected in order to train the NN. We call this
min_batch size and empirically assign it a value of 20. When k = 1
we have to wait a large number of time changes in order to start using
the NN. But for the case where k > 1, we collect samples in faster
speed, so the time lag to start using the NN is shorter.

The structure of the applied neural network has two hidden layers.
The first layer takes as an input an individual position �xi with d dimen-
sions and outputs a hidden representation hi of the individual with
4 dimensions. As the network uses the last 5 times best individuals
to predict a next one (Figure 1a), the first layer is applied to each of
these 5 individuals �x1, ..., �x5 independently. As a result, we obtain
5 hidden representation with 4 dimensions h1, ..., h5; to aggregate
their information, we choose to concatenate them into a variable H
with 4× 5 dimensions. The second layer takes H as input and then
outputs a prediction with d dimensions, representing the next best
individual. The layer one has rectified linear units (ReLU) activation
function and the second layer has a linear output without activation
function. To train the network, we use mean squared error as a loss
function. The predicted solution or its neighboring positions then can
be used by EA to intensify the search in that region of the solution
space. The mechanism to insert the predicted solutions in population
can be either by replacing the worst individuals of the population, or
random individuals.

3 EXPERIMENTAL SETUP

In this section, designed experiments, the applied performance indica-
tors, the test problems and the applied parameters are reviewed.

3.1 Designed experiments

Regarding to integration of NN with DE algorithm, there are a couple
of experiments designed as follows.

• Frequency changes: In this experiment, we observe how the fre-
quency of changes will affect the results. The frequency of change,
denoted by τ , represents the width that each time lasts. Notice that
when we refer to higher frequencies of change, we mean lower val-
ues for τ , since higher frequencies of change happens when there is
shorter time interval between each change (τ ). Three frequencies of
change: 0.5, 1 and 4 will be used to experiment with high, medium
and low environmental changes respectively. As mentioned, in this
work the real time is considered, so the values above represents
time in seconds between the two consecutive changes. To have
an idea, these values represent the following number of fitness
evaluations: 0.5 ≈ 1000, 1 ≈ 2000, 4 ≈ 9000. Undoubtedly,

these numbers are not constant for all test cases due to different
time-complexity of each function and stochastic nature of EA.

• Building train data set: In this experiment, we explore the effect
of using more individuals (k-best) of population at each time for
training the NN. We change the parameters of NN like batch size,
epochs, and number of samples accordingly to have roughly the
same timing budget for NN with respect to the overall time in each
case. In the case for one individual (k = 1), we do not limit the
overall sample size, so as time increases, the samples aggregate. In
other words at every time, NN is trained with all previous times
best individuals. The reason is as we consider one individual at
each time, the collected samples are a few; hence in order to have
a reasonable number of samples we keep the previous samples.
Conversely, for k > 1 case, we use a window as the samples
aggregation limit window (denoted as nw=5). For this case, we
limit the number of samples since otherwise as the time increases,
they will exponentially increase. In such case, as we have a constant
budget then the time assigned to the EA decreases severely.

• Number and mechanism to insert predictions: In this experi-
ment, number of individuals to be replaced (denoted by np) with
predicted solutions are varied and tested. More number of predicted
individuals are created by adding noise to the one predicted value
by NN. In this experiment, the added noise is constantly at 10%
of the variable boundaries. In a future study, we do the sensitivity
analysis for the noise effect on the results. In addition to the number
of replaced individuals, two different replacement approaches are
also compared. The first one, denoted by NNR, replaces randomly
chosen individuals of population with the predicted solutions. The
second one, denoted by NNW, first ranks the individuals of popula-
tion and then replaces the top worst among them with the predicted
solutions.

3.2 Test problems and parameters settings

We created dynamic environments in two general cases for common
functions in literature: Sphere, Rosenbrock and Rastrigin. In the first
two experiments, objective function is constant while the constraints
change, and for the third and fourth experiments, we define the prob-
lem as unconstrained with dynamic objective function. Details of the
designed dynamism in each experiment is as Table 1.

Table 1: Designed test problems

exp1 Uniformly random changes on the boundaries of one linear constraint
exp2 Patterned sinusoidal changes on the boundaries of one linear constraint
exp3 Linear transformation of the optimum position

exp4
Transformation of the optimum position in sinusoidal pattern with ran-
dom amplitudes

In the first two experiments, the changes are targeted on b val-
ues (constraint boundary) of one linear constraint in the the form of
aixi ≤ b [11]4. Figure 2 shows the pattern in which the position of
optimum changes in each experiment5, using principal component
analysis (PCA) method to map the thirty dimension to one dimension
scale.

The other parameters are: frequencies of change τ= 0.5, 1, 4; prob-
lem dimension=30, runs=30 and the number of changes or times=100.
Parameters of DE are chosen as NP = 20, CR = 0.2, F is a random
number in [0.2, 0.8], and rand/1/bin is the chosen variant of DE [2].

4 ai is the coefficient of the variables in the linear constraint
5 The results belong to best_known solutions of each time retrieved by execut-

ing 100,000 runs of our baseline DE algorithm.
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Figure 2: PCA plot of best_known positions for each experiment over time

Variable boundaries are limited in xi ∈ [−5, 5]. Parameters of NN are
different based on number of individuals considered to build training
data: case k = 1: epochs=10, nw = ∞ and case k > 1: epochs=3,
nw = 5. Also in both cases, we use batch_size=4, min_batch=20
and np = 3. All the experiments were run on a cluster, allocating 1
core (2.4GHz) and 4GB of RAM. Our code is publicly available on
GitHub: https : //github.com/renato145/DENN .

3.3 Performance indicators

The applied performance indicators are as follows:
Modified offline error (MOF) represents the average of the sum

of errors in each generation divided by the total generations [19].

MOF =
1

Gmax

Gmax∑

G=1

(|f(�x∗, t)− f(�xbest,G, t)|) (1)

Where Gmax is the maximum generation, f(�x∗, t) is the global opti-
mum at current time t, and f(�xbest,G, t) represents the best solution
found so far at generation G at current time t. Only feasible solutions
are considered to calculate the best errors at every generation. If there
were no feasible solution at a particular generation, the worst possible
value that a feasible particle can have would be taken.

Absolute recovery rate introduced in [19] is used to analyze the
convergence behaviour of algorithms in dynamic environments. This
measure infers to how quick an algorithm is to start converging to the
global optimum before the next change occurs.

ARR =
1

m

m∑

i=1

(

∑p(i)
j=1 |fbest(i, j)− fbest(i, 1)|
p(i)[f∗(i)− fbest(i, 1)]

) (2)

Success rate (SR) calculates in how many times (over all times)
each algorithm is successful to reach to ε-precision from the global
optimum before reaching to the next change.

NN-time reports the percentage of the time spent to train and use
NN per overall optimization time.

4 EXPERIMENTAL RESULTS

In this section, the main findings about designed experiments ex-
plained in Section 3 are presented.

4.1 Frequency changes:

For most experiments and functions, by increasing τ , MOF values
decrease, presented in Figure 4. However, there are some exceptions:
for all functions using noNN (exp1 and exp4) and also for Rastrigin

function in all methods (exp3). Looking to PCA plot of the optimum
positions in Figure 2 for exp4 (and exp1 for some changes), the opti-
mum alters drastically between two consecutive changes. As noNN
only reevaluates the solutions when a change is detected, they are far
away from new optimum and lacking a diversity promotion technique
to aid exploring other regions of the search space lead to higher MOF
values. However, this is only happening in τ = 4 as the solutions
are more converged in this case compared to the other τ values. As
for exp1, drastic changes repeat less often, the drop in performance
of MOF value is less severe compared to exp3 (drop in values as
τ increases). The best fitness values achieved by each method are
presented in Figure 3 over time. From this figure, it is also observable
that in most functions and experiments, the best value achieved by
NN variants is tracking the optimum more closely. Figure 5 illustrates
the overall performance of the methods compared to each other color-
coded with different functions considering their performance on all
the frequencies. Overall comparison of methods is not easily possible
with MOF values as they are not of the same scale. So we use another
measure denoted as MOF_norm that enables an overall comparison
of methods as they represent standard MOF values (Figure 5). To
achieve standard values in each set of function and experiment, the
values are divided by the minimum value among all methods. So the
method with lowest MOF value has MOF_norm value equal to one
and the others are proportionally calculated.

From aforementioned figures (3, 4, and 5) it can be observed that
NN variants show their best performance for the experiments where
there is a trend in the position changes. Looking to PCA plots (see Fig-
ure 2) for exp3 until the time around 50, we have a linearly decreasing
trend and from then it is saturated in variable boundary remaining
constant. As the training data for NN depends to previous behaviour
of the algorithm, it is unable to self-improve as time passes. The NN
variants can obtain better results even in exp1 without a consistent
trend. In this experiment, as we consider 5 previous times to train the
NN (nt = 5), for this nt there is not a consistent trend observable.
The better results achieved is partly because the newly generated solu-
tions can increase diversity (as our baseline algorithm lacks a proper
diversity mechanism to be activated when a change happens). Thus,
even though the change pattern is not fully consistent, but for the al-
gorithm without other proper mechanism for reacting to changes still
can improve the results. In addition, this is the reason the difference
between MOF values (Figure 4) for this experiment between noNN
and NN variants is more significant. Figure 3 also shows for this
frequency, the optimum is not tracked closely for noNN. However, for
τ=0.5, as still population has a fair amount of diversity, the optimum
is tracked more closely (due to space limitation, we discard other
frequencies results).

To validate the results, the 95%-confidence Kruskal-Wallis statis-
tical test and the Bonferroni post hoc test, as suggested in [9] are
presented. Nonparametric tests were adopted because the samples of
runs did not fit to a normal distribution based on the Kolmogorov-
Smirnov test. Figure 6 shows a heat-map of the test results on MOF
values. In this figure, as the legend represents, the pink squares show
the methods with not-significantly different (NS) results, and the
squares in the spectrum of the green colors show the significantly
different methods with the mentioned p-values. Results show in most
test cases in different frequencies, the methods have significant dif-
ference to each other. However, for higher τ values (1 and 4) the NN
variants show similar behaviour for almost half of the test cases. The
reason is as the solutions are converged in high frequencies, there is
not significant difference between replacing the worst solutions or
select them randomly.
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Figure 3: Fitness values of Rastrigin for τ = 1, color-coded with each method over time

Figure 4: Distribution of MOF values for each method color-coded with τ for 30 runs

Figure 5: MOF-norm values considering all frequencies

Figures 7 and 8 show a boxplot of the ARR and SR values respec-
tively for different methods and frequencies of change. NN variants
in most experiments and functions show better ARR values; meaning
they can recover faster after a change. In addition SR values show bet-
ter results for NN variants; meaning they can reach to an ε-precision
(=10%) of optima for more changes (or times) compared to the method
without using prediction. When comparing each method for different
frequencies, there is this general trend that better results are achieved
as we proceed from frequency 0.5 to 4, as the algorithms have more
timing budget to get better results. In addition, NN variants in this
frequency, are trained with more precise data as EA has more timing

to achieve better solutions.
Table 2 represents the percentages of the amount of time spend for

calling NN unit compared to overall optimization time. Regardless of
the experiment and function, the results for τ = 0.5 show around 20-
25%, τ = 1 around 10-12% and τ = 4 around 3%. This shows when
τ is higher, it is more cheap to use NN in terms of the computational
cost. When τ is low the proportion of the time for doing optimization
itself is lower, hence, the samples used to train NN do not represent
real optimum or near optimum values and the prediction from NN is
not exact in consequence. For this, in most test cases the difference
of the performance of NN variants in τ = 0.5 and τ = 4 is bigger
compared to noNN method.

4.2 Building train data set:

We tested 1, 3, 7 and 9 individuals (k-best) to be used to train NN.
As Figure 9 represents, one individual (k = 1) has not showed good
performance based on MOF_norm values. The reason is the slow
sample collection leads to non-promising MOF values. Due to our
min_batch size (=20), our first prediction is possible at change (time)
26. On the other hand, the results for 9 individuals also degrade.
For building our sample data, we take a random combination of
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Figure 6: Kruskal-Wallis test on MOF values for different frequencies
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Figure 7: Distribution of absolute recovery rate (ARR) values color-coded with τ for 30 runs

solutions for k-best solution of each time. Therefore, if the diversity
of population is high, the first best solutions are distant from one
another and consequently might not represent the change pattern of
the optimum correctly.

Overall, too few or high number of individuals is not a proper
choice. So for the rest of the experiments, k = 3 is chosen to feed
NN trainer. Due to space limitation, for this and next experiment, we
exclude exp3 to base our conclusions on the experiments where NN
performed more promising.

4.3 Number and mechanism to insert predictions:

When we use a small np, the effect that NN have in the overall opti-
mization is minor. On the other hand, using a high np will decrease the
diversity of the population, given that all the individuals to be included
are centered around the same predicted solution with a small added
noise (10% of the variable boundary). We expect this decrease of
diversity to adversely affect the results. However, on our experiments
using high np values, we do not always observe such a behaviour, as
can be seen in exp1 and exp4 (see Figure 10). Also, looking to the
pattern of the changes for exp4 (see Figure 2), the position changes

drastically between two alternative times. Since for the rest of the
population we only reevaluate the solutions, thus replacing more in-
dividuals will help to transfer the population to a new region of the
search space. This is because our baseline algorithm does not pro-
mote any diversity, as it only reevaluates the solutions when a change
happens. Hence, replacing more individuals, particularly for the case
with correct predictions, does not have an adverse effect. However,
we believe that in cases where extra mechanisms to promote diversity
are considered, the decrease of diversity generated by choosing a high
np will decrease the overall performance. In general, there is not sig-
nificant difference in the results of MOF values when using np > 1.
In a future work, we plan to explore the effect of the noise added to
the predicted solutions on the final performance of the methods. Less
noise indicates relying more on the results of the predicted solution.
We can have an adaptive noise, that varies based on the results of the
prediction error.

Regarding to replace mechanism, based on the results for MOF
values shown in Figure 5, we can observe in general that NNW shows
better performance than NNR. The difference is clearly seen for
τ= 0.5, as seen in Figure 6a, where there is a significant difference
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Figure 8: Distribution of success rate (SR) for 30 runs; number of times algorithms reach to 10% of the vicinity of optima values per overal times

Table 2: NN-time; time spend for training and using NN in proportion to overall optimization time (mean ± std: for 30 runs)

experiment exp1 exp2 exp3 exp4
freq 0.5 1.0 4.0 0.5 1.0 4.0 0.5 1.0 4.0 0.5 1.0 4.0

Sphere
NNW 0.24 (±0.00) 0.11 (±0.00) 0.02 (±0.00) 0.25 (±0.00) 0.10 (±0.00) 0.03 (±0.00) 0.24 (±0.00) 0.12 (±0.00) 0.03 (±0.00) 0.19 (±0.00) 0.10 (±0.00) 0.03 (±0.00)
NNR 0.21 (±0.02) 0.12 (±0.03) 0.03 (±0.00) 0.22 (±0.03) 0.12 (±0.01) 0.03 (±0.00) 0.24 (±0.01) 0.11 (±0.00) 0.03 (±0.00) 0.19 (±0.00) 0.12 (±0.00) 0.02 (±0.00)

Rosenbrock
NNW 0.23 (±0.00) 0.12 (±0.00) 0.02 (±0.00) 0.22 (±0.00) 0.11 (±0.00) 0.02 (±0.00) 0.23 (±0.00) 0.11 (±0.00) 0.03 (±0.00) 0.22 (±0.00) 0.11 (±0.00) 0.02 (±0.00)
NNR 0.20 (±0.02) 0.12 (±0.02) 0.03 (±0.00) 0.21 (±0.02) 0.12 (±0.01) 0.03 (±0.00) 0.24 (±0.01) 0.11 (±0.00) 0.03 (±0.00) 0.19 (±0.01) 0.12 (±0.00) 0.03 (±0.00)

Rastrigin
NNW 0.20 (±0.00) 0.14 (±0.00) 0.03 (±0.00) 0.20 (±0.00) 0.12 (±0.00) 0.03 (±0.00) 0.24 (±0.00) 0.13 (±0.01) 0.03 (±0.00) 0.19 (±0.00) 0.11 (±0.00) 0.03 (±0.00)
NNR 0.19 (±0.04) 0.12 (±0.02) 0.03 (±0.00) 0.20 (±0.02) 0.12 (±0.01) 0.03 (±0.00) 0.24 (±0.00) 0.13 (±0.01) 0.03 (±0.00) 0.19 (±0.01) 0.11 (±0.00) 0.03 (±0.00)

Mean values 0.21 0.12 0.03 0.22 0.12 0.03 0.24 0.12 0.03 0.2 0.11 0.03

Figure 9: k-best individual selection for building NN samples

Figure 10: Number of individuals of population to replace with predicted solutions

between these two methods for 10 out of 12 test cases. For larger
values of τ (1 and 4), on the other hand, approximately half of the
test cases show significant difference. The reason for this is the small
distance between worst and random picked solutions. As with a higher
τ , all individuals in population are likely to have converged close to
the same optimum position. To conclude, we suggest to insert the

predicted solutions by replacing the worst solutions of the population.

5 CONCLUSION

We studied the behaviour of using a NN together with DE for solving
DCOPs. Considering generated overhead by NN, we observed when
the frequency of changes is high, the time spent for NN becomes
more noticeable in proportion to overall time. In addition, due to
shorter time between changes, the optimization algorithm might not
achieve good solutions. In this case, the collected data is not helpful
for the prediction or even becomes misleading for the optimization
algorithm. In our experiments, for high frequencies of change, NN
variants showed their worst results.

Moreover, for the algorithms integrating with NN enough training
data is needed. Hence, for short overall time horizons, this might not
be an efficient method as for the first change periods, we need to
collect data. Moreover, training a NN with small amounts of data will
overfit the NN, making it difficult to generalize and make predictions
for new data. The proposed method to collect more individuals of
population from each time to train NN, will lead to make NN ready
faster but this is possible when there is lower diversity in population.
If the population is diverse, the first best solutions will have higher
distance and might not be a good data to train the network. In gen-
eral, we observed that diversity has a significant role when applying
prediction methods in DCOPs. For replacing predicted solutions, we

M. Hasani-Shoreh et al. / Neural Networks in Evolutionary Dynamic Constrained Optimization: Computational Cost and Benefits 281



observed when we have diversity among solutions, selection of np

worst solutions performed better than selecting them randomly. In
general we believe controlling diversity besides prediction methods is
essential. To do so, and for a better understanding of the behaviour of
the prediction it is suggested to check prediction error and based on
that, diversity mechanisms be applied properly together with predic-
tion. We observed in some experiments the lack of diversity lead to
poor results, while a basic diversity mechanism could improve results,
particularly when predictions are wrong. One suggestion for future
work is to define an adaptive parameter that considers the prediction
error to control to which extent to use diversity mechanisms.
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