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Abstract. This paper studies a sale promotion mechanism design
problem on a social network, where a node (a seller) sells one item
to the other nodes on the network to maximize her revenue. How-
ever, the seller does not know other nodes except for her neighbours
and her neighbours have no incentive to promote the sale. Hence,
the goal is to design an auction mechanism such that the seller’s
neighbours are incentivized to invite their neighbours to join the auc-
tion, while the seller’s revenue is guaranteed to increase. This is not
achievable with traditional mechanisms. One solution has been pro-
posed recently by carefully designing a reward scheme for the nodes
who have invited others. However, the solution only gives rewards
to some cut-points of the network, but cut-points rarely exist in a
well-connected network, which actually disincentivizes nodes’ par-
ticipation. Therefore, we propose another novel mechanism to re-
ward more related participants with fairer rewards, and the seller’s
revenue is not reduced.

1 Introduction

Marketing is a vital element in the development of the economy.
Due to limited personal social connections, sellers often seek vari-
ous kinds of ways to enlarge the market and attract more potential
buyers. Traditionally, they tend to sell products via online shopping
platforms such as Amazon and eBay. However, the platforms can-
not always improve the sellers’ revenue because it may cost a large
amount of money for using the platforms’ services such as advertise-
ment.

Alternatively, a seller can hold an auction among her neighbours
using the classic auction protocol Vickrey-Clarke-Groves (VCG) [3,
18, 7] with an optimal reserve price [15], which optimizes the seller’s
revenue locally. To further increase the seller’s revenue, diffusion
mechanisms on social networks have been proposed to attract more
buyers. Li et al. proposed the first such auction on social networks,
called information diffusion mechanism (IDM) [14]. IDM can incen-
tivize the seller’s neighbours to propagate the auction information to
their neighbours, and these newly informed neighbours will do the
same. Eventually, all potential buyers on the network are informed,
which ultimately improves the seller’s revenue. To achieve this goal,
IDM distributes dedicated rewards to the cut-points from the seller to
the winner who receives the item. However, according to the theorem
of small-world networks [1], the chance for a node to be a cut-point
in a well-connected network is very low. Hence, only a very small
proportion of the buyers on the network can benefit from the mecha-
nism, which disincentivizes their participation.

Therefore, in this paper, we propose another novel diffusion mech-
anism, which distributes the rewards to all the related buyers not only
the cut-points on the paths to the winner. In addition to the cut-points,
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we also pay a group of buyers who are not cut-points but can discon-
nect the winner from the seller together with other non-cut-points.
They are less important compared to the cut-points, but still critical
in terms of connecting the seller and the winner. Under this mecha-
nism, we still ensure that buyers will report their truthful valuation
for the item and invite all their neighbours without a predefined re-
ward. More importantly, we tackled the challenge without sacrificing
the seller’s revenue, i.e., the seller’s revenue in our mechanism is at
least as good as that in the previous mechanism, which incentivizes
the seller to apply our mechanism.

Much work has been devoted to social networks. Granovetter first
analyzed the social networks and put emphasis on the strength of
weak ties, which to some extent confirms the low chance to be a
cut-point [6]. Matthew studied the models and techniques for analyz-
ing social and economic networks [11]. Their work showed the im-
portance of networks for social economy. Also, there is some work
concerning auctions on networks. Wang and Chiu presented a rec-
ommendation system to calculate the level of recommendation for
online auctions using social network analysis [19]. Pandit et al. de-
signed a system based on social networks to avoid auction fraud [16].
They mainly focused on the real-world applications without consid-
ering the mathematical properties of the mechanisms, while we look
at the game theoretical properties of the mechanism on networks.

There exist some closely related work on information diffu-
sion [4, 17]. For instance, Li et al. gave a class of mechanisms sim-
ilar to IDM and proved that IDM gives the lowest revenue in the
class [13]. However, they still focused on distributing rewards to the
cut-points while our mechanism does not belong to this class and our
goal is to give rewards to all the buyers who have made a contribu-
tion to the sale. Emek et al. studied mechanism design problem for
multi-level marketing [5]. In their setting, all the nodes in a refer-
ral tree should purchase the product and they focused on false-name
attacks. However, we do not have the constraint and aim for sell-
ing one item with more participants on the network to increase the
seller’s revenue.

In our mechanism, in order to pay the non-cut-points, we have
applied some techniques from the redistribution mechanism design
literature. Many redistribution mechanisms have been proposed to
redistribute the surplus from the seller back to the buyers [2, 9, 8].
The objective of their redistribution mechanisms is to satisfy the bud-
get balance property, which the goal is to give back the payments to
the participants as much as possible. However, in our setting, we are
aiming to improve the seller’s revenue through getting more poten-
tial buyers. Thus, we only borrow the idea of redistribution to reward
more buyers in our mechanism while improving the seller’s revenue
(budget-balance would not give any revenue to the seller).

The remainder of the paper is organized as follows. In Section 2,
we describe the preliminaries of the problem. In Section 3, we de-
fine the basic concepts and introduce our novel mechanism in detail,
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and show the advantages of our mechanism compared to the previ-
ous work. Then we show the key properties of our mechanism in
Section 4. Finally, we conclude and discuss future work in Section 5.

2 Preliminaries

We consider a market where a seller s sells an item in a social net-
work. The network is modelled as an undirected graph G = (V,E),
where V = N ∪ {s} = {1, 2, . . . , n} ∪ {s} denotes the set of all
nodes of the network and E denotes the set of all the edges. Each
i ∈ N represents a potential buyer of the item, and she has a set of
neighbours ri ⊆ V . Node j ∈ ri if there is an edge eij ∈ E con-
necting buyer i and buyer j. Each buyer i ∈ V has a depth di > 0
representing the length of the shortest path from the seller to i. Each
buyer i ∈ V has a private valuation vi ≥ 0 for receiving the item.
We assume that the seller’s valuation for the item is zero. Figure 1
shows an example of the social network, where the letter beside each
node is the label of a buyer and the value in each node is the buyer’s
private valuation for receiving the item.
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Figure 1. A social network example

Traditionally, since the seller s has no prior knowledge about the
network, she can only sell the item among her neighbours rs without
doing any advertising. In order to gain more revenue, the seller has to
invite more potential buyers with higher valuations to join the sale.
This can be achieved by asking her neighbours to invite their neigh-
bours to join the sale. However, they would not invite their neigh-
bours to compete with them without any incentive. Hence, we build
incentives to tackle this challenge in this paper.

In this paper, we propose a novel diffusion mechanism, which aims
to reward all buyers who make a contribution for inviting the winner.
Under this mechanism, all the buyers are incentivized not only to
report their private valuations for the item to the mechanism but also
to propagate the sale information to all their neighbours voluntarily
without prepaid rewards.

For each buyer i ∈ N , let θi = (vi, ri) be i’s type and the type
profile of all the buyers is denoted as θ = (θ1, . . . , θn). Let θ−i be
the type profile for buyers except i, and we can also represent the
type profile as θ = (θ−i, θi). Let Θi be the type space for buyer i
and Θ = (Θ1, . . . ,Θn) = (Θ−i,Θi) be the type profile space for
all buyers.

In the mechanism, each buyer i ∈ N is required to report her type.
Let ai = (v′i, r

′
i) be i’s reported type where v′i represents the valua-

tion she reported and r′i represents the neighbours she has invited. If
she is not involved in the mechanism, let ai = nil.

Definition 1. We say an action profile a is feasible if for each buyer
i ∈ N with ai �= nil, there must exist at least one path Psi =
(s, k1, . . . , km, i) from s to i, where k1 ∈ rs, i ∈ r′km

and kt+1 ∈
r′kt

for 1 ≤ t < m. In other words, without invitation, the buyers
cannot join to the sale. Let F(θ) ⊆ Θ be the set of all feasible action
profiles.

In reality, if a buyer is not invited, the mechanism will not ob-
serve any action from the buyer. To simplify the notations, instead of
removing these uninformed buyers from the reports, we use ”nil” ac-
tion to represent their absence. Hence, feasibility always holds, and
it will simplify the following definitions.

Definition 2. A diffusion mechanism M on the social network is
defined by an allocation policy π = (π1, π2, . . . , πn) and a payment
policy p = (p1, p2, . . . , pn), where πi : Θ → {0, 1} and pi : Θ →
R.

Given an action profile a = (a1, . . . , an) ∈ F(θ), the payment
policy p(a) = (p1(a), . . . , pn(a)) represents the money each buyer
is asked to pay. For buyer i ∈ N , if pi(a) ≥ 0, then she needs to pay
pi to the seller, and if pi(a) < 0, she will receive |pi(a)| from the
seller. The allocation policy π(a) = (π1(a), . . . , πn(a)) represents
the item allocation, and we have

πi(a) =

{
1 if buyer i receives the item
0 if buyer i does not receive the item

Since there is only one item to sell, we say the allocation π is fea-
sible if no more than one buyer with ai �= nil receives the item under
all feasible action profiles. We will only consider feasible allocation
policies in the following discussion.

Definition 3. Given a feasible action profile a ∈ F(θ) and a feasible
allocation π, the social welfare of allocation π(a) is

∑
i∈N πi(a)v

′
i.

Under the diffusion mechanism M = (π, p), we assume that there
is no cost for a buyer to spread the sale information to her neigh-
bours2. Thus, for buyer i ∈ N of type profile θi, given a feasible
action profile a of all buyers, i’s utility is defined as

ui(θi, a) = πi(a)vi − pi(a)

We say a diffusion mechanism is individually rational if the utility of
each buyer involved is non-negative as long as she reports the valua-
tion truthfully no matter how many neighbours she invites to join the
mechanism. Notice that the definition does not rely on diffusion as
we do not want to force people to invite others to guarantee a non-
negative gain.

Definition 4. A diffusion mechanism M = (π, p) is individually
rational (IR) if ui(θi, a) ≥ 0, where ai = (vi, r

′
i) for all i ∈ N , all

θ ∈ Θ and all a ∈ F(θ).

Traditionally, if all the buyers are willing to report their truthful
valuations for the item, we say the mechanism satisfies the property
of incentive compatibility or truthfulness. However, in our mecha-
nism, buyers also need to invite their neighbours. Thus, we want to
incentivize buyers not only to report their truthful valuations but also
to invite all their neighbours. Therefore, we define incentive compat-
ibility as follows.

2 If we consider cost for information diffusion, we will not be able to guaran-
tee revenue improvement for the seller.
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Definition 5. A diffusion mechanism M = (π, p) is incentive com-
patible (IC) if ui(θi, (ai, a−i)) ≥ ui(θi, (a

′
i, a

′
−i)), for all i ∈ N ,

all θ ∈ Θ and all (ai, a−i) ∈ F(θ) such that ai = θi and for all
j �= i, a′j = aj if j is still connected to the seller when only i’s action
is changed from ai to a′i, otherwise a′j = nil.

In the following section, we will introduce a novel diffusion mech-
anism rewarding all the related buyers who make a contribution for
inviting the winner, which satisfies the properties of IR and IC. We
further prove that the revenue of the seller under our mechanism is
higher than that of the traditional VCG in which the seller sells the
item among her neighbours, and also higher than that of the previous
work.

3 Fair Diffusion Mechanism

In this section, we will introduce our advanced mechanism called the
fair diffusion mechanism (FDM). This mechanism aims to distribute
rewards to all the buyers (not only the cut-points) who contributed
to connect the winner with IR and IC guaranteed, which is achieved
without sacrificing the seller’s revenue (even better than the previous
work [14]).

Before we introduce our mechanism, we need some additional def-
initions.

Definition 6. Given a feasible action profile a ∈ F(θ), for each
buyer i ∈ N , if there exists no path from the seller to i without the
participation of a set Di ⊆ N , we say Di is a cut set of buyer i. If
there is no proper subset D′i ⊂ Di which is also a cut set of i, we
say Di is a minimal cut set of buyer i.

The cut sets of a buyer are the buyers who can separate the buyer
from the seller and all the minimal cut sets can be induced from the
cut sets. For example, in Figure 2(a), {b, g},{d, f, g, h} and {l, k}
are three cut sets of buyer l, while {b}, {f, g, h} and {l} are three
minimal cut sets of l.

Definition 7. Given a feasible action profile a ∈ F(θ), for each
buyer i, j ∈ N , we say j is a critical ancestor of i if j belongs to a
minimal cut set of buyer i.

Definition 8. Given a feasible action profile a ∈ F(θ), for each
buyer i, j ∈ N , we say j is a strong critical ancestor of i if j alone
forms a minimal cut set of i. We say j is a weak critical ancestor of
i if j is a critical ancestor, but not strong critical ancestor of i.

Intuitively, for each buyer i ∈ N , her critical ancestors are those
who are on some simple path from the seller to i. Strong critical
ancestors are the cut points from the seller to i, while weak critical
ancestors are those who connect strong critical ancestors. All these
critical ancestors have a contribution to connect the seller and buyer
i. In Figure 2(a), all the colored nodes are the critical ancestors of
buyer m, where nodes in orange are strong critical ancestors and
nodes in yellow are weak critical ancestors.

Definition 9. Given a feasible action profile a ∈ F(θ), for each
buyer i, j ∈ N , we say j is i’s critical descendant if i is a strong
critical ancestor of j. Let Vi = {j| j is i’s critical descendant, j ∈
N} be the critical descendant set of buyer i. Similarly, for any set
K ⊆ N , we say j is K’s critical descendant if K is a cut set of j.
Let VK = {j| j is K’s critical descendant, j ∈ N} be the critical
descendant set of the set K.
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Figure 2. (a) The orange nodes represent the strong critical ancestors of
buyer m, while the yellow nodes represent the weak critical ancestors of
buyer m on the social network; (b) The red nodes represent the critical

descendant set of buyer b.

We can easily observe that on a social network, if a buyer i quits
the mechanism, her critical descendant set will not be involved in the
mechanism. Here, we use the notation N−i to represent the vertex set
in the new network without the participation of i, which is equivalent
to N \ Vi. Similarly, N−K = N \⋃

i∈K Vi. Take Figure 2(b) as an
example, as all the red nodes cannot be involved in the mechanism
without the participation of buyer b, they are critical descendant set
of b. Thus, Vb = {b, e, f, g, h, j, k, l,m, n} and N−b = {a, c, d, i}.

Definition 10. Given a feasible action profile a ∈ F(θ), for each
buyer i ∈ N , let Ci be the strong critical ancestor sequence of i,
denoted by Ci = {ci1, ci2, · · · , cik}, where cik = i. Each cij ∈ Ci is a
strong critical ancestor of buyer i and the order is determined by the
relation of depth dci1

< dci2
< · · · < dci

k
.

To simplify the description, let C = {c1, c2, · · · , ch} be the
strong critical ancestor sequence of the highest bidder h among all
the buyers on the network (with random tie-breaking).

Definition 11. Given a feasible action profile a ∈ F(θ),
for each ci, ci+1 ∈ C, let Mcici+1 be the weak critical
ancestor set between ci and ci+1, denoted by Mcici+1 =

{m1
cici+1

,m2
cici+1

, · · · ,mk
cici+1

}, where vm1
cici+1

≥ vm2
cici+1

≥
· · · ≥ vmk

cici+1
. Each mj

cici+1
∈ Mcici+1 is a weak critical ances-

tor of buyer i, who is on some simple path from ci to ci+1.

As shown in Figure 2(a), buyer m is the highest bidder with re-
ported valuation v′m = 14. Therefore, the strong critical ancestor
sequence of m is C = {b, l,m} and the weak critical ancestor sets
are Mbl = {h, k, g, j, f} and Mlm = ∅.

Li et al. proposed a diffusion mechanism IDM on the social net-
work [14]. Their mechanism does satisfy the IC property we have
defined. However, it only distributes rewards to the winner’s strong
critical ancestors on the network and ignores the contribution of the
winner’s weak critical ancestors. Therefore, only a few specific nodes
may receive a non-zero utility for diffusing the information.

In contrast, the diffusion rewards in our mechanism are distributed
more fairly. Especially, not only strong critical ancestors are re-
warded, but also weak critical ancestors who are not cut-points but
do diffuse the sale mechanism to the winner are rewarded. Moreover,
the seller’s revenue under our mechanism is at least as good as that
in IDM.
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Our mechanism is defined as follows.

Fair Diffusion Mechanism (FDM)

1. Given a feasible action profile a ∈ F(θ), find the high-
est bidder h ∈ argmaxi∈N v′i (with random tie-breaking).
Let v1

st

D = maxi∈D v′i be the maximum reported valu-
ation in the subset D ⊆ N , and then v′h = v1

st

N . Let
g1

st

D ∈ argmaxi∈D v1
st

Vi
(with random tie-breaking) be the

strong critical ancestor in the subset D ⊆ N of the highest
bidder in VD .

2. Then, the allocation policy can be recursively defined as:

• Allocation Policy:

πi(a) =

⎧⎪⎪⎨
⎪⎪⎩
1 if i = cj ∈ C, v′i = v1

st

N−{cj+1}∪Mcjcj+1

and
∑

k∈N−i
πk(a) = 0

0 otherwise

3. According to the allocation policy, we can get a winner
cw ∈ C with πcw (a) = 1. Then we distribute re-
wards to the buyers on the strong critical ancestor sequence
Ĉ = {c1, c2, · · · , cw} and the weak critical ancestors⋃w−1

j=1 Mcjcj+1 .
4. We have the payment policy defined as:

• Payment Policy: pi =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1
st

N−cj
−v1

st

N−{cj+1}∪Mcjcj+1
−Rcj if i=cj ∈ Ĉ\cw

v1
st

N−cw
−Rcw if i = cw

−Ri if i ∈ Mcj−1cj

0 otherwise

where Ri is defined as: Ri =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1st

N
−{cj}∪g1

st
Mcj−1cj

−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

if i = cj ∈ Ĉ

v1st

N−{i}∪{cj}
−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

if i ∈ Mcj−1cj

0 otherwise

The intuition behind the FDM is that the mechanism allocates the
item to the first buyer cj in the strong critical ancestor sequence of
the highest bidder whose reported valuation is the highest among
all the buyers if {cj+1} ∪ Mcjcj+1 are not involved in the auction,
where cj+1 is the next strong critical ancestor and Mcjcj+1 is the
weak critical ancestor set between cj and cj+1.

For each strong critical ancestor cj ∈ Ĉ, her payment consists of
three parts:

• v1
st

N−cj
: the money she paid, which is used to distribute among

herself cj , the last strong critical ancestor cj−1, weak critical an-
cestors Mcj−1cj and the seller.

• v1
st

N−{cj+1}∪Mcjcj+1
: the money she received from the next strong

critical ancestor cj+1.
• Rcj : the reward she received after redistribution.
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(a) Find the strong critical ancestors.
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(b) Redistribute the rewards.

Figure 3. Buyer m is the highest bidder and l is the winner under
allocation policy. Orange nodes are the strong critical ancestors of buyer l
and yellow nodes are the weak critical ancestors. The difference of what l

pays and what b receives will be redistributed among f , g, h, j, k and l. The
remaining part after redistribution will be given to the seller.

The money paid is the highest reported valuation without her par-
ticipation and the money received is the highest reported valuation
without the participation of {cj+1} ∪ Mcjcj+1 . Specially, for the
winner, the money she received is zero as there exists no next critical
ancestor.

Since the money paid and the money received between two strong
critical ancestors cj and cj+1 are not always equal, the mechanism
redistributes the difference to the weak critical ancestors Mcjcj+1

and the strong critical ancestor cj+1. Inspired by the VCG redis-
tribution mechanism [2], the redistributed reward of buyer i ∈
Mcjcj+1 ∪ {cj+1} is calculated by the lower-bound of the new dif-
ference over all possible reported type of i divided by the number of
the buyers sharing the reward, which is |Mcjcj+1 |+1 in our mecha-
nism. In the single-item setting, the lower-bound will be achieved
when a′i = nil, i.e., she does not participate in the mechanism.
More concretely, for cj ∈ Ĉ, if she quits the mechanism, the new
strong critical ancestor among Mcj−1cj is g1

st

Mcj−1cj
whose pay-

ment is v1
st

N−{cj}∪g1
st

Mcj−1cj

. Then the lower-bound of the new differ-

ence is v1
st

N−{cj}∪g1
st

Mcj−1cj

− v1
st

N−{cj}∪Mcj−1cj
. For i ∈ Mcj−1cj ,

if she quits the mechanism, the strong critical ancestor cj will re-
main the same but her new payment will become v1

st

N−{i}∪{cj}
with-

out i’s participation. Then the lower-bound of the new difference is
v1

st

N−{i}∪{cj}
− v1

st

N−{cj}∪Mcj−1cj
.

Considering the computational complexity of the mechanism, the
allocation and payment for each agent can be calculated by run-
ning DFS. Thus, the total time complexity of the mechanism is
O(|V |(|V |+ |E|)), which is the same as the early mechanism.

Based on the social network discussed before, here we give a run-
ning example of FDM in Figure 3. Among all the buyers on the net-
work, buyer m reports the highest valuation with v′m = 14. Then
C = {b, l,m} is the strong critical ancestor sequence of m. Ac-
cording to the allocation policy, the item is given to buyer l be-
cause v′l = v1

st

N−{m}∪Mlm
. Thus, the strong critical ancestor se-

quence of l is Ĉ = {b, l} and the weak critical ancestor set is
Mbl = {h, k, g, j, f}.

We first consider the strong critical ancestors. For buyer b, the
money she pays to the seller is v1

st

N−b
= v′i = 7 and the money

she receives from buyer l is v1
st

N−{l}∪Mbl
= v′e = 8. Similarly,
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(a) A running example of FDM.
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(b) A running example of IDM.

Figure 4. 7 critical ancestors in FDM have positive utilities while only 2
strong critical ancestors have positive utilities in IDM. For each buyer, the

first number in the vector is the money paid, the second is the money
received and the third is the money redistributed.

for buyer l, the money she pays is v1
st

N−l
= v′h = 11 and she re-

ceives nothing since she is the winner. Therefore, the difference be-
tween the money paid by buyer l and the money received by buyer
b is Δ = 11 − 8 = 3. Then we redistribute the difference to
Mbl and l, and the number of buyers sharing the reward is 6. For
buyer l, if she does not participate in the mechanism, the winner
will be h whose payment is v′k = 10. Then the difference becomes
Δ′ = 10 − 8 = 2. So the reward to l is Rl = 2/6 = 1/3. Sim-
ilarly, for buyer h, if she quits the mechanism, the strong critical
ancestor is still l but her payment becomes v′k = 10. Then the dif-
ference will also become Δ′ = 10 − 8 = 2 without h’s partici-
pation. Thus, we have Rh = 2/6 = 1/3. For buyer f, g, j, k, the
difference will not change if any of them is not involved in the mech-
anism, so we have Rf = Rg = Rj = Rk = 3/6 = 1/2. Till
now, Mbl and l are redistributed the rewards. The remaining money
Δ−∑

i∈Mbl∪{l}Ri = 3− 2 ∗ 1/3− 4 ∗ 1/2 = 1/3 will be given
to the seller. Then the payment for all the critical buyers is calculated
as: pb = 7 − 8 = −1, pl = 11 − 1/3 = 32/3, ph = −1/3 and
pf = pg = pj = pk = −1/2. According to the definition of utility,
we have ub = πb(a)vb−pb = 0−(−1) = 1, ul = 13−32/3 = 7/3,
uh = 0 − (−1/3) = 1/3 and uf = ug = uj = uk = 0 − 1/2 =
1/2. The revenue of the seller is us = pb + pl + ph + pf + pg +
pj + pk = (−1) + 32/3 + (−1/3) + 4 ∗ (−1/2) = 22/3.

3.1 Comparison between FDM and IDM

To show the advantages of our mechanism over the previous related
work, here we compare the running result for the same example un-
der IDM and analyze the performance of FDM and IDM.

Compared to the IDM proposed by Li et al. [14], they only give
rewards to those strong critical ancestors. As the running example
shown in Figure 4(b) for the same social network, under IDM, buyer
l is also the winner with pl = 11 and the utility of strong critical
ancestor b is 4, but all the other buyers on the network will have zero
utilities. This is because none of the other buyers is a cut-point to
reach l from s. In contrast, five more buyers f, g, h, j and k, who are
also on some simple path from the seller to the winner, gain positive
utilities in the same setting under FDM in Figure 4(a). Although they
are not cut-points to reach l from s, they can disconnect l from s
together. Therefore, FDM also considers their diffusion contribution
from this aspect, which is fairer for all the buyers who have made

contributions to the sale in the network. Moreover, the seller’s rev-
enue under FDM is 22/3 which is greater than 7 in IDM.

FDM IDM

winner buyer l buyer l
social welfare 13 13

beneficial buyers b, f, g, h, j, k, l b, l
# of beneficial buyers 7 2

beneficial critical ancestor ratio 1 0.29
buyers’ total utility 5.67 6

seller’s revenue 7.33 7

Table 1. The performance difference of FDM and IDM.

Table 1 gives an intuitive display for the performance difference
between FDM and IDM of the same running example. We can ob-
viously observe that although the winner and the social welfare are
the same for the two mechanisms, the number of beneficial buyers
in FDM is far greater than that of IDM. Furthermore, the beneficial
critical ancestor ratio, i.e., the percentage of positive-utility buyers
over all the critical ancestors, is 1 in FDM while 0.29 in IDM. This
indicates that all the critical ancestors of the winner in FDM but only
a tiny fraction in IDM will be rewarded, which shows the fairness
of our mechanism. Moreover, under any network, fixing a maximal
value node, if the others’ valuation follows some distribution, then all
critical ancestors’ expected utility in our mechanism is greater than
zero, which cannot be achieved by IDM. On the other hand, FDM
does not sacrifice the seller’s revenue. In spite of the decrease of the
buyers’ total utility, the seller’s revenue under FDM is much higher
than IDM with all the desirable properties guaranteed, which encour-
ages the seller more to apply our mechanism.

4 Properties of FDM

In this section, we will prove that FDM satisfies the properties of IR
and IC, and the seller’s revenue is at least as good as the revenue
under IDM, which is no less than that of traditional VCG among
neighbours.

Firstly, we show that all the buyers in our mechanism will not have
negative utilities if they report their valuation truthfully.

Theorem 1. The fair diffusion mechanism is individually rational.

Proof. After the execution of the FDM, only critical buyers may
have non-zero utilities. Since Ri is the redistributed reward, it is ob-
vious that Ri ≥ 0 according to the definition.

• For buyer i = cj ∈ Ĉ \ cw, her utility is ucj (a) = πcj (a)vcj −
pcj = v1

st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
+ Rcj . Since buyer cj is

ahead of Mcjcj+1 on any path from seller to the winner, we have
Vcj ⊃ V{cj+1}∪Mcjcj+1

and then N−{cj+1}∪Mcjcj+1
⊃ N−cj .

Thus, we have ucj (a) = v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
+Rcj ≥

v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
≥ 0.

• For buyer i = cw, since she is the winner, according to the al-
location policy, we have vcw = v1

st

N−{cw+1}∪Mcwcw+1
. Then her

utility is ucw (a) = πcw (a)vcw − pcw = vcw − v1
st

N−cw
+Rcw ≥

vcw − v1
st

N−cw
= v1

st

N−{cw+1}∪Mcwcw+1
− v1

st

N−cw
≥ 0.
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• For buyer i ∈ Mcj−1cj , her utility is ui(a) = πi(a)vi − pi =
Ri ≥ 0.

The payments for all the other buyers are zero. Therefore, the
FDM is individually rational.

Theorem 2 proves that in FDM, all the buyers are incentivized to
report their truthful type to the seller, i.e., their truthful valuations
and all their neighbours.

Theorem 2. The fair diffusion mechanism is incentive compatible.

Proof. According to the definition of incentive compatibility, we
have to prove that for all the buyers in the graph, reporting their
truthful valuations for the item and propagating the sale informa-
tion to all their neighbours is the dominant strategy. Note that we
do not consider the collaboration between buyers. More concretely,
each buyer i ∈ N can only cut the edges to the neighbours who
also belong to her critical descendant set, which is ri ∩ Vi, because
those neighbours can only receive the sale information from i. How-
ever, the other neighbours can receive the information from the seller
through other paths to connect i, then buyer i cannot cut the edges
by herself.

The buyers on the network can be divided into four groups in
FDM:

(1) the non-winner strong critical ancestors cj ∈ Ĉ \ cw.
(2) the weak critical ancestors between strong critical ancestors.
(3) the winner cw who receives the item.
(4) all the other buyers who are not in group (1), (2) and (3).

• For any strong critical ancestor cj in Group (1):

– If the neighbour set r′cj reported is fixed, the utility of buyer cj

is defined by ucj =

v1st

N
−{cj}∪g1

st
Mcj−1cj

−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

+

v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
, which is not related to her re-

ported valuation v′cj . According to the allocation policy, she
cannot misreport valuation to become a weak critical ances-
tor. If she is still the strong critical ancestor, then the alloca-
tion is unchanged. Thus no matter what valuation she reports,
her utility remains the same. If she reports a higher valuation
to be the winner, the reward redistributed remains the same
but her utility will decrease: u′cj = vcj − v1

st

N−cj
+ Rcj <

v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
+Rcj = ucj .

– If the valuation v′cj reported is fixed and r′cj �= rcj .

∗ If she is still the strong critical ancestor, we have
N ′
−{cj+1}∪M′

cjcj+1
⊆ N−{cj+1}∪Mcjcj+1

, and then

v1
st

N′−{cj+1}∪M′cjcj+1

≤ v1
st

N−{cj+1}∪Mcjcj+1
. Since the

money paid v1
st

N−cj
and the reward redistributed Rcj remains

the same, removing neighbours may decrease the money she
received.

∗ If she becomes a weak critical ancestor with pos-
itive utility, then her utility becomes u′cj ≤
v1st

N
−{cj}∪g1

st
Mcj−1cj

−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

≤ ucj , since

v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
≥ 0.

∗ If she becomes the new winner, the reward redistributed re-
mains the same and her utility becomes u′cj = vcj −v1

st

N−cj
+

Rcj < v1
st

N−{cj+1}∪Mcjcj+1
− v1

st

N−cj
+Rcj = ucj .

∗ If she is neither a strong critical ancestor nor a weak critical
ancestor, her utility u′cj = 0.

• For any weak critical ancestor i ∈ Mcj−1cj in Group (2):

– If the neighbour set r′i reported is fixed, the utility of buyer

i is defined by ui = Ri =
v1st

N−{i}∪cj
−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

,

which is not related to her reported valuation v′i. According
to the allocation policy, she cannot misreport valuation to be-
come a strong critical ancestor. If the allocation is unchanged,
no matter what valuation she reports, her utility remains the
same. If she reports a higher valuation to be the winner, the
reward redistributed to her remains the same and her utility be-

comes u′i = vi−v1
st

N−i
+

v1st

N−{i}∪cj
−v1st

N−{cj}∪Mcj−1cj

|Mcj−1cj
|+1

. Since

vi < v1
st

N−i
, we have u′i < ui.

– If the valuation v′i reported is fixed and r′i �= ri. The utility of
buyer i is ui = Ri, which is not related to i’s critical descen-
dants. Since removing some neighbours cannot change the al-
location and cannot decrease the number of buyers sharing the
reward with buyer i, misreporting neighbours will not increase
the utility.

• For the winner cw in Group (3):

– If the neighbour set r′cw reported is fixed, the util-
ity of buyer cw is defined by ucw = vcw +
v1st

N
−{cw}∪g1

st
Mcw−1cw

−v1st

N−{cw}∪Mcw−1cw

|Mcw−1cw |+1
− v1

st

N−cw
, which

is not related to her reported valuation v′cw . If the alloca-
tion is unchanged, no matter what valuation she reports,
her utility remains the same. If she reports a lower val-
uation to be a weak critical ancestor, her utility becomes

u′cw ≤
v1st

N
−{cw}∪g1

st
Mcw−1cw

−v1st

N−{cw}∪Mcw−1cw

|Mcw−1cw |+1
≤ ucw ,

since vcw − v1
st

N−cw
≥ 0. If she becomes a strong

critical ancestor of her critical descendants, her
utility will be u′cw = v1

st

N−{cw+1}∪Mcwcw+1
+

v1st

N
−{cw}∪g1

st
Mcw−1cw

−v1st

N−{cw}∪Mcw−1cw

|Mcw−1cw |+1
− v1

st

N−cw
< ucw

since vcw ≥ v1
st

N−{cw+1}∪Mcwcw+1
.

– If the valuation v′cw reported is fixed and r′cw �= rcw ,
the utility of buyer cw is defined by ucw = vcw +
v1st

N
−{cw}∪g1

st
Mcw−1cw

−v1st

N−{cw}∪Mcw−1cw

|Mcw−1cw |+1
− v1

st

N−cw
, which is

not related to her neighbours r′cw . According to the allocation
policy, v′cw = v1

st

N−{cw+1}∪Mcwcw+1
. Thus the allocation will

not be changed, and no matter what neighbourhood she reports,
her utility remains the same.

• For any other buyer i in Group (4):

– If the neighbour set r′i reported is fixed, the utility of buyer i
is zero. If cw is not her strong critical ancestor, the only way

W. Zhang et al. / Incentivize Diffusion with Fair Rewards256



she can gain some benefits is to report a higher valuation to win
the item. However, if she reports v′i > v1

st

N > vi, her payment
will be the original maximum valuation on the network, which
is greater than her truthful valuation. If cw is her strong critical
ancestor, no matter what valuation she reports, the allocation
will not be changed.

– If the valuation v′i reported is fixed and r′i �= ri, removing some
neighbours will not change the allocation.

In summary, we can draw the conclusion that the FDM is incentive
compatible.

Then we prove that although our FDM can distribute rewards
to more related buyers who have made contributions to the sale, it
will not sacrifice the seller’s revenue. Actually, it can even improve
the seller’s revenue compared to the previous work IDM with all
the properties guaranteed, which encourages the seller to apply our
mechanism.

Theorem 3. The seller’s revenue under fair diffusion mechanism is
always at least as good as the revenue under IDM, which is no less
than that of traditional VCG among neighbours.

Proof. Given a feasible action profile a ∈ F(θ), the seller’s revenue
is the sum of the first critical ancestor c1’s payment and all the re-
wards redistributed to the seller. Rs is the remaining money of the
difference which is not redistributed among the critical ancestors. It
is easy to confirm that Rs ≥ 0.

uFDM
s (a, (π, p)) =

∑
i∈N

pi(a, (π, p))

=v1
st

N−c1
+Rs

≥v1
st

N−c1

While under the IDM, the seller’s revenue is defined by
uIDM
s (a, (π, p)) = v1

st

N−c1
. Thus, we have

uFDM
s (a, (π, p)) ≥v1

st

N−c1
= uIDM

s (a, (π, p))

≥v2
nd

rs = uV CG
s (a, (π, p))

Therefore, the seller’s revenue in FDM is non-negative and at least
as good as that in IDM, which is also no less than that in traditional
VCG among neighbours.

Since the seller’s revenue is the sum of the first strong critical an-
cestor’s payment and the reward redistributed to her, we can easily
observe that the seller’s revenue in IDM is the lower bound of that in
FDM.

5 Conclusion

In this paper, we propose an advanced diffusion mechanism on social
networks. The seller can run the mechanism without paid third-party
platforms and gain a higher revenue. Our mechanism guarantees that
participating buyers are incentivized to offer their truthful valuations
for the item and invite all their neighbours to the sale. All the related
critical buyers on some simple path from the seller to the winner
will be rewarded for their diffusion effort, which is fairer than other

mechanisms proposed in previous work. Moreover, the seller’s rev-
enue in our mechanism will not be sacrificed, and is even improved
compared to other related work.

On the basis of our work, many other problems are worth further
investigation. One direction is to generalize FDM to a more complex
setting for multiple items [20]. Since the item can be passed through
the critical ancestors in FDM, it gives us a good chance to study a
distributed method to realize our mechanism. What’s more, the false-
name attack is a difficult problem in mechanism design. False-name
attacks also exist in our network setting. We find it also worthwhile
to consider the Bayesian Nash equilibrium to maximize the seller’s
revenue if given a valuation distribution on social networks [12, 10].
Another valuable future work can be generalizing our mechanism
to broader settings such as weighted networks to achieve the same
goal [13]. FDM considers to reward all buyers on the simple paths
to reach the winner. What about the others who are not on these
paths, but their valuations play an important role to determine the
payments? Should they also be rewarded?
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